Search results for: accuracy improvement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7901

Search results for: accuracy improvement

3791 Cardiokey: A Binary and Multi-Class Machine Learning Approach to Identify Individuals Using Electrocardiographic Signals on Wearable Devices

Authors: S. Chami, J. Chauvin, T. Demarest, Stan Ng, M. Straus, W. Jahner

Abstract:

Biometrics tools such as fingerprint and iris are widely used in industry to protect critical assets. However, their vulnerability and lack of robustness raise several worries about the protection of highly critical assets. Biometrics based on Electrocardiographic (ECG) signals is a robust identification tool. However, most of the state-of-the-art techniques have worked on clinical signals, which are of high quality and less noisy, extracted from wearable devices like a smartwatch. In this paper, we are presenting a complete machine learning pipeline that identifies people using ECG extracted from an off-person device. An off-person device is a wearable device that is not used in a medical context such as a smartwatch. In addition, one of the main challenges of ECG biometrics is the variability of the ECG of different persons and different situations. To solve this issue, we proposed two different approaches: per person classifier, and one-for-all classifier. The first approach suggests making binary classifier to distinguish one person from others. The second approach suggests a multi-classifier that distinguishes the selected set of individuals from non-selected individuals (others). The preliminary results, the binary classifier obtained a performance 90% in terms of accuracy within a balanced data. The second approach has reported a log loss of 0.05 as a multi-class score.

Keywords: biometrics, electrocardiographic, machine learning, signals processing

Procedia PDF Downloads 145
3790 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches

Authors: Aya Salama

Abstract:

Digital Twin is an emerging research topic that attracted researchers in the last decade. It is used in many fields, such as smart manufacturing and smart healthcare because it saves time and money. It is usually related to other technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, Human digital twin (HDT), in specific, is still a novel idea that still needs to prove its feasibility. HDT expands the idea of Digital Twin to human beings, which are living beings and different from the inanimate physical entities. The goal of this research was to create a Human digital twin that is responsible for real-time human replies automation by simulating human behavior. For this reason, clustering, supervised classification, topic extraction, and sentiment analysis were studied in this paper. The feasibility of the HDT for personal replies generation on social messaging applications was proved in this work. The overall accuracy of the proposed approach in this paper was 63% which is a very promising result that can open the way for researchers to expand the idea of HDT. This was achieved by using Random Forest for clustering the question data base and matching new questions. K-nearest neighbor was also applied for sentiment analysis.

Keywords: human digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification, clustering

Procedia PDF Downloads 92
3789 Indoor Real-Time Positioning and Mapping Based on Manhattan Hypothesis Optimization

Authors: Linhang Zhu, Hongyu Zhu, Jiahe Liu

Abstract:

This paper investigated a method of indoor real-time positioning and mapping based on the Manhattan world assumption. In indoor environments, relying solely on feature matching techniques or other geometric algorithms for sensor pose estimation inevitably resulted in cumulative errors, posing a significant challenge to indoor positioning. To address this issue, we adopt the Manhattan world hypothesis to optimize the camera pose algorithm based on feature matching, which improves the accuracy of camera pose estimation. A special processing method was applied to image data frames that conformed to the Manhattan world assumption. When similar data frames appeared subsequently, this could be used to eliminate drift in sensor pose estimation, thereby reducing cumulative errors in estimation and optimizing mapping and positioning. Through experimental verification, it is found that our method achieves high-precision real-time positioning in indoor environments and successfully generates maps of indoor environments. This provides effective technical support for applications such as indoor navigation and robot control.

Keywords: Manhattan world hypothesis, real-time positioning and mapping, feature matching, loopback detection

Procedia PDF Downloads 66
3788 Truck Scheduling Problem in a Cross-Dock Centre with Fixed Due Dates

Authors: Mohsen S. Sajadieha, Danyar Molavia

Abstract:

In this paper, a truck scheduling problem is investigated at a two-touch cross-docking center with due dates for outbound trucks as a hard constraint. The objective is to minimize the total cost comprising penalty and delivery cost of delayed shipments. The sequence of unloading shipments is considered and is assumed that shipments are sent to shipping dock doors immediately after unloading and a First-In-First-Out (FIFO) policy is considered for loading the shipments. A mixed integer programming model is developed for the proposed model. Two meta-heuristic algorithms including genetic algorithm (GA) and variable neighborhood search (VNS) are developed to solve the problem in medium and large sized scales. The numerical results show that increase in due dates for outbound trucks has a crucial impact on the reduction of penalty costs of delayed shipments. In addition, by increase the due dates, the improvement in the objective function arises on average in comparison with the situation that the cross-dock is multi-touch and shipments are sent to shipping dock doors only after unloading the whole inbound truck.

Keywords: cross-docking, truck scheduling, fixed due date, door assignment

Procedia PDF Downloads 407
3787 An UHPLC (Ultra High Performance Liquid Chromatography) Method for the Simultaneous Determination of Norfloxacin, Metronidazole, and Tinidazole Using Monolithic Column-Stability Indicating Application

Authors: Asmaa Mandour, Ramzia El-Bagary, Asmaa El-Zaher, Ehab Elkady

Abstract:

Background: An UHPLC (ultra high performance liquid chromatography) method for the simultaneous determination of norfloxacin (NOR), metronidazole (MET) and tinidazole (TNZ) using monolithic column is presented. Purpose: The method is considered an environmentally friendly method with relatively low organic composition of the mobile phase. Methods: The chromatographic separation was performed using Phenomenex® Onyex Monolithic C18 (50mmx 20mm) column. An elution program of mobile phase consisted of 0.5% aqueous phosphoric acid : methanol (85:15, v/v). Where elution of all drugs was completed within 3.5 min with 1µL injection volume. The UHPLC method was applied for the stability indication of NOR in the presence of its acid degradation product ND. Results: Retention times were 0.69, 1.19 and 3.23 min for MET, TNZ and NOR, respectively. While ND retention time was 1.06 min. Linearity, accuracy, and precision were acceptable over the concentration range of 5-50µg mL-1for all drugs. Conclusions: The method is simple, sensitive and suitable for the routine quality control and dosage form assay of the three drugs and can also be used for the stability indication of NOR in the presence of its acid degradation product.

Keywords: antibacterial, monolithic cilumn, simultaneous determination, UHPLC

Procedia PDF Downloads 257
3786 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange

Procedia PDF Downloads 335
3785 Challenges for Municipal Solid Waste Management in India: A Case Study of Eluru, Andhra Pradesh

Authors: V. V. Prasada Rao P., K. Venkata Subbaiah, J. Sudhir Kumar

Abstract:

Most Indian cities or townships are facing greater challenges in proper disposal of their municipal solid wastes, which are growing exponentially with the rising urban population and improvement in the living standards. As per the provisional figures, 377 million people live in the urban areas accounting for 31.16 % of the Country’s total population, and expected to grow by 3.74% every year. In India, the municipal authority is liable for the safe management & disposal of Municipal Solid Wastes. However, even with the current levels of MSW generation, a majority of the local governments are unable to comply with their constitutional responsibility due to reasons ranging from cultural aspects to technological and financial constraints. In contrast, it is expected that the MSW generation in India is likely to increase from 68.8 MTD in 2011 to 160.5 MTD by 2041. Thus, the immediate challenge before the urban local bodies in India is to evolve suitable strategies not only to cope up with the current levels, but also to address the anticipated generation levels of MSW. This paper discusses the reasons for the low levels of enforcement of MSW Rules and suggests effective management strategies for the safe disposal of MSW.

Keywords: biodegradable waste, dumping sites, management strategy, municipal solid waste (MSW), MSW rules, vermicompost

Procedia PDF Downloads 314
3784 Image Enhancement of Histological Slides by Using Nonlinear Transfer Function

Authors: D. Suman, B. Nikitha, J. Sarvani, V. Archana

Abstract:

Histological slides provide clinical diagnostic information about the subjects from the ancient times. Even with the advent of high resolution imaging cameras the image tend to have some background noise which makes the analysis complex. A study of the histological slides is done by using a nonlinear transfer function based image enhancement method. The method processes the raw, color images acquired from the biological microscope, which, in general, is associated with background noise. The images usually appearing blurred does not convey the intended information. In this regard, an enhancement method is proposed and implemented on 50 histological slides of human tissue by using nonlinear transfer function method. The histological image is converted into HSV color image. The luminance value of the image is enhanced (V component) because change in the H and S components could change the color balance between HSV components. The HSV image is divided into smaller blocks for carrying out the dynamic range compression by using a linear transformation function. Each pixel in the block is enhanced based on the contrast of the center pixel and its neighborhood. After the processing the V component, the HSV image is transformed into a colour image. The study has shown improvement of the characteristics of the image so that the significant details of the histological images were improved.

Keywords: HSV space, histology, enhancement, image

Procedia PDF Downloads 332
3783 The Artificial Intelligence (AI) Impact on Project Management: A Destructive or Transformative Agent

Authors: Kwame Amoah

Abstract:

Artificial intelligence (AI) has the prospect of transforming project management, significantly improving efficiency and accuracy. By automating specific tasks with defined guidelines, AI can assist project managers in making better decisions and allocating resources efficiently, with possible risk mitigation. This study explores how AI is already impacting project management and likely future AI's impact on the field. The AI's reaction has been a divided opinion; while others picture it as a destroyer of jobs, some welcome it as an innovation advocate. Both sides agree that AI will be disruptive and revolutionize PM's functions. If current research is to go by, AI or some form will replace one-third of all learning graduate PM jobs by as early as 2030. A recent survey indicates AI spending will reach $97.9 billion by the end of 2023. Considering such a profound impact, the project management profession will also see a paradigm shift driven by AI. The study examines what the project management profession will look like in the next 5-10 years after this technological disruption. The research methods incorporate existing literature, develop trend analysis, and conduct structured interviews with project management stakeholders from North America to gauge the trend. PM professionals can harness the power of AI, ensuring a smooth transition and positive outcomes. AI adoption will maximize benefits, minimize adverse consequences, and uphold ethical standards, leading to improved project performance.

Keywords: project management, disruptive teacnologies, project management function, AL applications, artificial intelligence

Procedia PDF Downloads 89
3782 Effect of Testing Device Calibration on Liquid Limit Assessment

Authors: M. O. Bayram, H. B. Gencdal, N. O. Fercan, B. Basbug

Abstract:

Liquid limit, which is used as a measure of soil strength, can be detected by Casagrande and fall-cone testing methods. The two methods majorly diverge from each other in terms of operator dependency. The Casagrande method that is applied according to ASTM D4318-17 standards may give misleading results, especially if the calibration process is not performed well. To reveal the effect of calibration for drop height and amount of soil paste placement in the Casagrande cup, a series of tests were carried out by multipoint method as it is specified in the ASTM standards. The tests include the combination of 6 mm, 8 mm, 10 mm, and 12 mm drop heights and under-filled, half-filled, and full-filled Casagrande cups by kaolinite samples. It was observed that during successive tests, the drop height of the cup deteriorated; hence the device was recalibrated before and after each test to provide the accuracy of the results. Besides, the tests by under-filled and full-filled samples for higher drop heights revealed lower liquid limit values than the lower drop heights revealed. For the half-filled samples, it was clearly seen that the liquid limit values didn’t change at all as the drop height increased, and this explains the function of standard specifications.

Keywords: calibration, casagrande cup method, drop height, kaolinite, liquid limit, placing form

Procedia PDF Downloads 165
3781 Exploring Students’ Voices in Lecturers’ Teaching and Learning Developmental Trajectory

Authors: Khashane Stephen Malatji, Makwalete Johanna Malatji

Abstract:

Student evaluation of teaching (SET) is the common way of assessing teaching quality at universities and tracing the professional growth of lecturers. The aim of this study was to investigate the role played by student evaluation in the teaching and learning agenda at one South African University. The researchers used a qualitative approach and a case study research design. With regards to data collection, document analysis was used. Evaluation reports were reviewed to monitor the growth of lecturers who were evaluated during the academic years 2020 and 2021 in one faculty. The results of the study reveal that student evaluation remains the most relevant tool to inform the teaching agenda at a university. Lecturers who were evaluated were found to grow academically. All lecturers evaluated during 2020 have shown great improvement when evaluated repeatedly during 2021. Therefore, it can be concluded that student evaluation helps to improve the pedagogical and professional proficiency of lecturers. The study therefore, recommends that lecturers conduct an evaluation for each module they teach every semester or annually in case of year modules. The study also recommends that lecturers attend to all areas that draw negative comments from students in order to improve.

Keywords: students’ voices, teaching agenda, evaluation, feedback, responses

Procedia PDF Downloads 92
3780 Implementation of Video Education to Improve Patient’s Knowledge of Activating Emergency Medical System for Stroke Symptoms: Evidence- Based Practice Project on Inpatient Neurology Unit in the United States

Authors: V. Miller, T. Jariel, C. Cooper-Chadwick

Abstract:

Early treatment of stroke leads to higher survival and lower disability rates. Increasing knowledge to activate the emergency medical system for signs of stroke can improve outcomes for patients with stroke and decrease morbidity and mortality. Even though patients who get discharged from the hospital receive standard verbal and printed education, nearly 20% of them answer the question incorrectly when asked, “What will you do if you or someone you know have signs of stroke?” The main goal of this evidence-based project was to improve patients’ knowledge of what to do if they have signs of stroke. Evidence suggests that using video education in conjunction with verbal and printed education improves patient comprehension and retention. The percentage of patients who noted that they needed to call 911 for stroke symptoms increased from 80% to 87% in six months after project implementation. The results of this project demonstrate significant improvement in patients’ knowledge about the necessity of activation of emergency medical systems for stroke symptoms.

Keywords: emergency medical systems activation, evidence-based practice nursing, stroke education, video education

Procedia PDF Downloads 72
3779 Developing Artificial Neural Networks (ANN) for Falls Detection

Authors: Nantakrit Yodpijit, Teppakorn Sittiwanchai

Abstract:

The number of older adults is rising rapidly. The world’s population becomes aging. Falls is one of common and major health problems in the elderly. Falls may lead to acute and chronic injuries and deaths. The fall-prone individuals are at greater risk for decreased quality of life, lowered productivity and poverty, social problems, and additional health problems. A number of studies on falls prevention using fall detection system have been conducted. Many available technologies for fall detection system are laboratory-based and can incur substantial costs for falls prevention. The utilization of alternative technologies can potentially reduce costs. This paper presents the new design and development of a wearable-based fall detection system using an Accelerometer and Gyroscope as motion sensors for the detection of body orientation and movement. Algorithms are developed to differentiate between Activities of Daily Living (ADL) and falls by comparing Threshold-based values with Artificial Neural Networks (ANN). Results indicate the possibility of using the new threshold-based method with neural network algorithm to reduce the number of false positive (false alarm) and improve the accuracy of fall detection system.

Keywords: aging, algorithm, artificial neural networks (ANN), fall detection system, motion sensorsthreshold

Procedia PDF Downloads 500
3778 Numerical Study on Parallel Rear-Spoiler on Super Cars

Authors: Anshul Ashu

Abstract:

Computers are applied to the vehicle aerodynamics in two ways. One of two is Computational Fluid Dynamics (CFD) and other is Computer Aided Flow Visualization (CAFV). Out of two CFD is chosen because it shows the result with computer graphics. The simulation of flow field around the vehicle is one of the important CFD applications. The flow field can be solved numerically using panel methods, k-ε method, and direct simulation methods. The spoiler is the tool in vehicle aerodynamics used to minimize unfavorable aerodynamic effects around the vehicle and the parallel spoiler is set of two spoilers which are designed in such a manner that it could effectively reduce the drag. In this study, the standard k-ε model of the simplified version of Bugatti Veyron, Audi R8 and Porsche 911 are used to simulate the external flow field. Flow simulation is done for variable Reynolds number. The flow simulation consists of three different levels, first over the model without a rear spoiler, second for over model with single rear spoiler, and third over the model with parallel rear-spoiler. The second and third level has following parameter: the shape of the spoiler, the angle of attack and attachment position. A thorough analysis of simulations results has been found. And a new parallel spoiler is designed. It shows a little improvement in vehicle aerodynamics with a decrease in vehicle aerodynamic drag and lift. Hence, it leads to good fuel economy and traction force of the model.

Keywords: drag, lift, flow simulation, spoiler

Procedia PDF Downloads 504
3777 Energy Detection Based Sensing and Primary User Traffic Classification for Cognitive Radio

Authors: Urvee B. Trivedi, U. D. Dalal

Abstract:

As wireless communication services grow quickly; the seriousness of spectrum utilization has been on the rise gradually. An emerging technology, cognitive radio has come out to solve today’s spectrum scarcity problem. To support the spectrum reuse functionality, secondary users are required to sense the radio frequency environment, and once the primary users are found to be active, the secondary users are required to vacate the channel within a certain amount of time. Therefore, spectrum sensing is of significant importance. Once sensing is done, different prediction rules apply to classify the traffic pattern of primary user. Primary user follows two types of traffic patterns: periodic and stochastic ON-OFF patterns. A cognitive radio can learn the patterns in different channels over time. Two types of classification methods are discussed in this paper, by considering edge detection and by using autocorrelation function. Edge detection method has a high accuracy but it cannot tolerate sensing errors. Autocorrelation-based classification is applicable in the real environment as it can tolerate some amount of sensing errors.

Keywords: cognitive radio (CR), probability of detection (PD), probability of false alarm (PF), primary user (PU), secondary user (SU), fast Fourier transform (FFT), signal to noise ratio (SNR)

Procedia PDF Downloads 349
3776 Second Language Acquisition in a Study Abroad Context: International Students’ Perspectives of the Evolution of Their ‘Second Language Self’

Authors: Dianah Kitiabi

Abstract:

This study examines the experiences of graduate international students in Study Abroad (SA) in order to understand the evolution of their second language (L2) skills during the period of their sojourn abroad. The study documents students’ perspectives through analysis of interview data situated within the context of their overall SA experience. Based on a phenomenological approach, the study focuses on a sample of nine graduate students with at least one year of SA experience. Gass & Mackey’s (2007) interaction approach and Vygotsky’s (1962) sociocultural theory help frame the study within the discourse of second language acquisition (SLA) in SA, such as to highlight the effects of SA on L2 skills of advanced-level learners. The findings of the study are first presented as individual case vignettes where students’ interpretations of their personal experiences are described in entirety, followed by an analysis across the cases that highlight emergent themes. The results of this study show that the linguistic outcomes of international students studying abroad are highly individualized. Although students reported to have improved some of their L2 skills, they also reported a lack of improvement in other L2 skills, most of which differed by case. What emerges is that besides contextual factors, students’ pre-program exposure to L2, interactions with NSs, frequency of L2 use in context, and personal beliefs contribute to their linguistic gains in SA.

Keywords: context, interaction, second language acquisition, study abroad

Procedia PDF Downloads 86
3775 Parasitological Study and Its Role in Fisheries Management and Stock Assessment of Boops boops (Lineauses, 1758) along the Tunisian Coast

Authors: I. Chebbi, L. Boudaya, L. Neifar

Abstract:

The bogue, Boops boops is an economically important fishery resource and commonly captured in the Mediterranean, and its diversity in parasites has been used as a tool to differentiate between stocks along with Tunisia since it is widely acceptable in fisheries management. In this study, a total of 90 fish are investigated from three localities off Tunisia, including Kelibia, Mahdia, and Zarzis. Fifteen species of parasites totaling 1270 individuals were harvested from B. boops, whereas ten parasites were used as biological tags. Based on Mahalanobis distance, each parasite species shows a great importance in the discrimination between groups. Tetraphyllidea larvae are the most influential parasites in determining the position of samples belonging to Kelibia. Monogenean species and Hysterothylacium sp. are the most important species for determining the position of samples from Mahdia. Specimens from Zarzis are characterized by the absence of the four Monogenean species and the Tetraphyllidea larvae. Parasites allocate B. boops population correctly to their origin communities with an accuracy of 83.3%. These results were corroborated by the discriminant analyses, highlighted the presence of three stocks, and improved that the parasitological method can be considered as a reliable key to provide imperative information for discriminating among B. boops stocks in Tunisian waters.

Keywords: biological marker, Boops boops, parasite, population structure

Procedia PDF Downloads 140
3774 A Validated UPLC-MS/MS Assay Using Negative Ionization Mode for High-Throughput Determination of Pomalidomide in Rat Plasma

Authors: Muzaffar Iqbal, Essam Ezzeldin, Khalid A. Al-Rashood

Abstract:

Pomalidomide is a second generation oral immunomodulatory agent, being used for the treatment of multiple myeloma in patients with disease refractory to lenalidomide and bortezomib. In this study, a sensitive UPLC-MS/MS assay was developed and validated for high-throughput determination of pomalidomide in rat plasma using celecoxib as an internal standard (IS). Liquid liquid extraction using dichloromethane as extracting agent was employed to extract pomalidomide and IS from 200 µL of plasma. Chromatographic separation was carried on Acquity BEHTM C18 column (50 × 2.1 mm, 1.7 µm) using an isocratic mobile phase of acetonitrile:10 mM ammonium acetate (80:20, v/v), at a flow rate of 0.250 mL/min. Both pomalidomide and IS were eluted at 0.66 ± 0.03 and 0.80 ± 0.03 min, respectively with a total run time of 1.5 min only. Detection was performed on a triple quadrupole tandem mass spectrometer using electrospray ionization in negative mode. The precursor to product ion transitions of m/z 272.01 → 160.89 for pomalidomide and m/z 380.08 → 316.01 for IS were used to quantify them respectively, using multiple reaction monitoring mode. The developed method was validated according to regulatory guideline for bioanalytical method validation. The linearity in plasma sample was achieved in the concentration range of 0.47–400 ng/mL (r2 ≥ 0.997). The intra and inter-day precision values were ≤ 11.1% (RSD, %) whereas accuracy values ranged from - 6.8 – 8.5% (RE, %). In addition, other validation results were within the acceptance criteria and the method was successfully applied in a pharmacokinetic study of pomalidomide in rats.

Keywords: pomalidomide, pharmacokinetics, LC-MS/MS, celecoxib

Procedia PDF Downloads 392
3773 A Study on Reliability of Gender and Stature Determination by Odontometric and Craniofacial Anthropometric Parameters

Authors: Churamani Pokhrel, C. B. Jha, S. R. Niraula, P. R. Pokharel

Abstract:

Human identification is one of the most challenging subjects that man has confronted. The determination of adult sex and stature are two of the four key factors (sex, stature, age, and race) in identification of an individual. Craniofacial and odontometric parameters are important tools for forensic anthropologists when it is not possible to apply advanced techniques for identification purposes. The present study provides anthropometric correlation of the parameters with stature and gender and also devises regression formulae for reconstruction of stature. A total of 312 Nepalese students with equal distribution of sex i.e., 156 male and 156 female students of age 18-35 years were taken for the study. Total of 10 parameters were measured (age, sex, stature, head circumference, head length, head breadth, facial height, bi-zygomatic width, mesio-distal canine width and inter-canine distance of both maxilla and mandible). Co-relation and regression analysis was done to find the association between the parameters. All parameters were found to be greater in males than females and each was found to be statistically significant. Out of total 312 samples, the best regressor for the determination of stature was head circumference and mandibular inter-canine width and that for gender was head circumference and right mandibular teeth. The accuracy of prediction was 83%. Regression equations and analysis generated from craniofacial and odontometric parameters can be a supplementary approach for the estimation of stature and gender when extremities are not available.

Keywords: craniofacial, gender, odontometric, stature

Procedia PDF Downloads 194
3772 Metagenomics Profile during the Bioremediation of Fischer-Tropsch Derived Short-Chain Alcohols and Volatile Fatty Acids Using a Moving Bed Biofilm Reactor

Authors: Mabtho Moreroa-Monyelo, Grace Ijoma, Rosina Nkuna, Tonderayi Matambo

Abstract:

A moving bed biofilm reactor (MBBR) was used for the bioremediation of high strength chemical oxygen demand (COD) Fisher-Tropsch (FT) wastewater. The aerobic MBBR system was operated over 60 days. For metagenomics profile assessment of the targeted 16S sequence of bacteria involved in the bioremediation of the chemical compounds, sludge samples were collected every second day of operation. Parameters such as pH and COD were measured daily to compare the system efficiency as the changedin microbial diversity progressed. The study revealed that pH was a contributing factor to microbial diversity, which further affected the efficiency of the MBBR system. The highest COD removal rate of 86.4% was achieved at pH 8.3. It was observed that when there was more, A higher bacterial diversity led to an improvement in the reduction of COD. Furthermore, an OTUof 4530 was obtained, which were divided into 12 phyla, 27 classes, 44 orders, 74 families, and 138 genera across all sludge samples from the MBBR. A determination of the relative abundance of microorganisms at phyla level indicates that the most abundant phylum on day it was Firmicutes (50%); thereafter, the most abundant phylum changed toProteobacteria.

Keywords: biodegradation, fischer-tropsch wastewater, metagenomics, moving bed biofilm reactor

Procedia PDF Downloads 166
3771 Modeling of Tool Flank Wear in Finish Hard Turning of AISI D2 Using Genetic Programming

Authors: V. Pourmostaghimi, M. Zadshakoyan

Abstract:

Efficiency and productivity of the finish hard turning can be enhanced impressively by utilizing accurate predictive models for cutting tool wear. However, the ability of genetic programming in presenting an accurate analytical model is a notable characteristic which makes it more applicable than other predictive modeling methods. In this paper, the genetic equation for modeling of tool flank wear is developed with the use of the experimentally measured flank wear values and genetic programming during finish turning of hardened AISI D2. Series of tests were conducted over a range of cutting parameters and the values of tool flank wear were measured. On the basis of obtained results, genetic model presenting connection between cutting parameters and tool flank wear were extracted. The accuracy of the genetically obtained model was assessed by using two statistical measures, which were root mean square error (RMSE) and coefficient of determination (R²). Evaluation results revealed that presented genetic model predicted flank wear over the study area accurately (R² = 0.9902 and RMSE = 0.0102). These results allow concluding that the proposed genetic equation corresponds well with experimental data and can be implemented in real industrial applications.

Keywords: cutting parameters, flank wear, genetic programming, hard turning

Procedia PDF Downloads 183
3770 Study of Launch Recovery Control Dynamics of Retro Propulsive Reusable Rockets

Authors: Pratyush Agnihotri

Abstract:

The space missions are very costly because the transportation to the space is highly expensive and therefore there is the need to achieve complete re-usability in our launch vehicles to make the missions highly economic by cost cutting of the material recovered. Launcher reusability is the most efficient approach to decreasing admittance to space access economy, however stays an incredible specialized hurdle for the aerospace industry. Major concern of the difficulties lies in guidance and control procedure and calculations, specifically for those of the controlled landing stage, which should empower an exact landing with low fuel edges. Although cutting edge ways for navigation and control are present viz hybrid navigation and robust control. But for powered descent and landing of first stage of launch vehicle the guidance control is need to enable on board optimization. At first the CAD model of the launch vehicle I.e. space x falcon 9 rocket is presented for better understanding of the architecture that needs to be identified for the guidance and control solution for the recovery of the launcher. The focus is on providing the landing phase guidance scheme for recovery and re usability of first stage using retro propulsion. After reviewing various GNC solutions, to achieve accuracy in pre requisite landing online convex and successive optimization are explored as the guidance schemes.

Keywords: guidance, navigation, control, retro propulsion, reusable rockets

Procedia PDF Downloads 96
3769 Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis.

Keywords: base isolation, computational efficiency, nonlinear exponential model, nonlinear time history analysis

Procedia PDF Downloads 389
3768 Enhanced Photoelectrochemical Water Splitting Coupled with Pharmaceutical Pollutants Degradation on Zr:BiVO4 Photoanodes by Synergetic Catalytic Activity of NiFeOOH Nanostructures

Authors: Mabrook Saleh Amera, Prabhakarn Arunachalama, Maged N. Shaddadb, Abdulhadi Al-Qadia

Abstract:

Global energy crises and water pollution have negatively impacted sustainable development in recent years. It is most promising to use Bismuth vanadate (BiVO4) as an electrode for photoelectrocatalytic (PEC) oxidation of water and pollution degradation. However, BiVO4 anodes suffer from poor charge separation and slow water oxidation. In this paper, a Zr:BiVO4/NiFeOOH heterojunction was successfully prepared by electrodeposition and photoelectrochemical transformation process. The method resulted in a notable 5-fold improvement in photocurrent features (1.27 mAcm−2 at 1.23 VRHE) and a lower onset potential of 0.6 VRHE. Photoanodes with high photocatalytic features and high photocorrosion resistance may be attributed their high conformity and amorphous nature of the coating. In this study, PEC was compared to electrocatalysis (EC), and the effect of bias potential on PEC degradation was discussed for tetracycline (TCH), riboflavin, and streptomycin. In PEC, TCH was degraded in the most efficient way (96 %) by Zr:BiVO4/NiFeOOH, three times larger than Zr:BiVO4 and EC (55 %). Thus, this study offers a potential solution for oxidizing PEC water and treating water pollution.

Keywords: photoelectrochemical, water splitting, pharmaceutical pollutants degradation, photoanodes, cocatalyst

Procedia PDF Downloads 60
3767 Triggering Supersonic Boundary-Layer Instability by Small-Scale Vortex Shedding

Authors: Guohua Tu, Zhi Fu, Zhiwei Hu, Neil D Sandham, Jianqiang Chen

Abstract:

Tripping of boundary-layers from laminar to turbulent flow, which may be necessary in specific practical applications, requires high amplitude disturbances to be introduced into the boundary layers without large drag penalties. As a possible improvement on fixed trip devices, a technique based on vortex shedding for enhancing supersonic flow transition is demonstrated in the present paper for a Mach 1.5 boundary layer. The compressible Navier-Stokes equations are solved directly using a high-order (fifth-order in space and third-order in time) finite difference method for small-scale cylinders suspended transversely near the wall. For cylinders with proper diameter and mount location, asymmetry vortices shed within the boundary layer are capable of tripping laminar-turbulent transition. Full three-dimensional simulations showed that transition was enhanced. A parametric study of the size and mounting location of the cylinder is carried out to identify the most effective setup. It is also found that the vortex shedding can be suppressed by some factors such as wall effect.

Keywords: boundary layer instability, boundary layer transition, vortex shedding, supersonic flows, flow control

Procedia PDF Downloads 371
3766 Fake News During COVID-19 Pandemic: An Overview from A Legal Perspective

Authors: Ida Shafinaz Mohamed Kamil, Mohd Dahlan Abdul Malek

Abstract:

Today, the whole world is facing a catastrophe called the novel coronavirus disease known as COVID-19. As of October 2021, it has been reported that more than 248 million cases and 5 million deaths have been recorded worldwide. In Malaysia, 2,466,663 cases were reported, with 28,876 deaths recorded on 30 October 2021. Unfortunately, the world is not only facing the COVID-19 pandemic but the COVID-19 infodemic as well, where fake news about COVID-19 disease is spreading faster and more widely than from the virus itself. The spread of fake news is amplified through various social media platforms, which is causing concern among the community. The uncertainty in understanding what fake news really is has caused difficulties and challenges in providing a solution to the hazards that it creates. This article discusses what constitutes fake news and examines the current legal framework put in place to combat fake news in Malaysia. Employing a doctrinal research methodology, this article thoroughly analyzes the relevant legal provisions under the Communications and Multimedia Act 1998, the Penal Code and the Emergency (Essential Powers) Ordinance (No.2) 2021, which came into force on 12 March 2021 as well as related case laws, for offenses and punishments with regards to fake news. The findings from the analysis indicate that there is still room for improvement in regulating fake news, in particular concerning COVID-19.

Keywords: fake news, legal pespective, covid 19, pendemic

Procedia PDF Downloads 86
3765 Oxytocin and Sensorimotor Synchronization in Pairs of Strangers

Authors: Yana Gorina, Olga Lopatina, Elina Tsigeman, Larisa Mararitsa

Abstract:

The ability to act in concert with others, the so-called sensorimotor synchronisation, is a fundamental human ability that underlies successful interpersonal coordination. The manifestation of accuracy and plasticity in synchronisation is an adaptive aspect of interaction with the environment, as well as the ability to predict upcoming actions and behaviour of others. The ability to temporarily coordinate one’s actions with a predictable external event is manifested in such types of social behaviour as a synchronised group dance to music played live by an orchestra, group sports (rowing, swimming, etc.), synchronised actions of surgeons during an operation, applause from an admiring audience, walking rhythms, etc. Both our body and mind are involved in achieving the synchronisation during social interactions. However, it has not yet been well described how the brain determine the external rhythm and what neuropeptides coordinate and synchronise actions. Over the past few decades, there has been an increased interest among neuroscientists and neurophysiologists regarding the neuropeptide oxytocin in the context of its complex, diverse and sometimes polar effects manifested in the emotional and social aspects of behaviour (attachment, trust, empathy, emotion recognition, stress response, anxiety and depression, etc.). Presumable, oxytocin might also be involved in social synchronisation processes. The aim of our study is to test the hypothesis that oxytocin is linked to interpersonal synchronisation in a pair of strangers.

Keywords: behavior, movement, oxytocin, synchronization

Procedia PDF Downloads 67
3764 Total-Reflection X-Ray Spectroscopy as a Tool for Element Screening in Food Samples

Authors: Hagen Stosnach

Abstract:

The analytical demands on modern instruments for element analysis in food samples include the analysis of major, trace and ultra-trace essential elements as well as potentially toxic trace elements. In this study total reflection, X-ray fluorescence analysis (TXRF) is presented as an analytical technique, which meets the requirements, defined by the Association of Official Agricultural Chemists (AOAC) regarding the limit of quantification, repeatability, reproducibility and recovery for most of the target elements. The advantages of TXRF are the small sample mass required, the broad linear range from µg/kg up to wt.-% values, no consumption of gases or cooling water, and the flexible and easy sample preparation. Liquid samples like alcoholic or non-alcoholic beverages can be analyzed without any preparation. For solid food samples, the most common sample pre-treatment methods are mineralization, direct deposition of the sample onto the reflector without/with minimal treatment, mainly as solid suspensions or after extraction. The main disadvantages are due to the possible peaks overlapping, which may lower the accuracy of quantitative analysis and the limit in the element identification. This analytical technique will be presented by several application examples, covering a broad range of liquid and solid food types.

Keywords: essential elements, toxic metals, XRF, spectroscopy

Procedia PDF Downloads 135
3763 B Spline Finite Element Method for Drifted Space Fractional Tempered Diffusion Equation

Authors: Ayan Chakraborty, BV. Rathish Kumar

Abstract:

Off-late many models in viscoelasticity, signal processing or anomalous diffusion equations are formulated in fractional calculus. Tempered fractional calculus is the generalization of fractional calculus and in the last few years several important partial differential equations occurring in the different field of science have been reconsidered in this term like diffusion wave equations, Schr$\ddot{o}$dinger equation and so on. In the present paper, a time-dependent tempered fractional diffusion equation of order $\gamma \in (0,1)$ with forcing function is considered. Existence, uniqueness, stability, and regularity of the solution has been proved. Crank-Nicolson discretization is used in the time direction. B spline finite element approximation is implemented. Generally, B-splines basis are useful for representing the geometry of a finite element model, interfacing a finite element analysis program. By utilizing this technique a priori space-time estimate in finite element analysis has been derived and we proved that the convergent order is $\mathcal{O}(h²+T²)$ where $h$ is the space step size and $T$ is the time. A couple of numerical examples have been presented to confirm the accuracy of theoretical results. Finally, we conclude that the studied method is useful for solving tempered fractional diffusion equations.

Keywords: B-spline finite element, error estimates, Gronwall's lemma, stability, tempered fractional

Procedia PDF Downloads 194
3762 Predictive Analytics of Student Performance Determinants

Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi

Abstract:

Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.

Keywords: student performance, supervised machine learning, classification, cross-validation, prediction

Procedia PDF Downloads 131