Search results for: formaldehyde and heat treatments
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4786

Search results for: formaldehyde and heat treatments

736 Current Concepts of Male Aesthetics: Facial Areas to Be Focused and Prioritized with Botulinum Toxin and Hyaluronic Acid Dermal Fillers Combination Therapies, Recommendations on Asian Patients

Authors: Sadhana Deshmukh

Abstract:

Objective: Men represent only a fraction of the medical aesthetic practice. They are increasingly becoming more cosmetically-inclined. The primary objective is to harmonize facial proportion by prioritizing and focusing on forehead nose, cheek and chin complex. Introduction: Despite tremendous variability, diverse population of the Indian subcontinent, the male skull is unique in its overall larger size, and shape. Men tend to have a large forehead with prominent supraorbital ridges, wide glabella, square orbit, and a prominent protruding mandible. Men have increased skeletal muscle mass, with less facial subcutaneous fat. Facial aesthetics is evolving rapidly. Commonly published canons of facial proportions usually represent feminine standards and are not applicable to males. Strict adherence to these norms is therefore not necessary to obtain satisfying results in male patients. Materials and Methods: Male patients age group 30-60 years have been enrolled. Botulinum toxin and hyaluronic acid fillers were used to update consensus recommendations for facial rejuvenation using these two types of products alone and in combination. Results: There are specific recommendations by facial area, focusing on relaxing musculature, restoring volume, recontouring using toxin and dermal fillers alone and in combination. For upper face, though botulinum toxin remains the cornerstone of treatment, temples and forehead fillers are recommended for optimal results. In Mid face, these fillers are placed more laterally to maintain the masculine look. Botulinum toxin and fillers in combination can improve outcomes in the lower face. Chin augmentation remains the center point for lower face. Conclusions: Males are more likely to have shorter doctor visits, less likely to ask questions, have a lower attention to bodily changes. The physician must patiently gauge male patients’ aging and cosmetic goals. Clinicians can also benefit from ongoing guidance on products, tailoring treatments, treating multiple facial areas, and using combinations of products. An appreciation that rejuvenation is 3-dimensional process involving muscle control, volume restoration and recontouring helps.

Keywords: male aesthetics, botulinum toxin, hyaluronic acid dermal fillers, Asian patients

Procedia PDF Downloads 157
735 Direct and Residual Effects of Boron and Zinc on Growth and Nutrient Status of Rice and Wheat Crop

Authors: M. Saleem, M. Shahnawaz, A. W. Gandahi, S. M. Bhatti

Abstract:

The micronutrients boron and zinc deficiencies are extensive in the areas of rice-wheat cropping system. Optimum levels of these nutrients in soil are necessary for healthy crop growth. Since rice and wheat are major staple food of worlds’ populace, the higher yields and nutrition status of these crops has direct effect on the health of human being and economy of the country. A field study was conducted to observe the direct and residual effect of two selected micronutrients boron (B) and zinc (Zn)) on rice and wheat crop growth and its grain nutrient status. Each plot received either B or Zn at the rates of 0, 1, 2, 3 and 4 kg B ha⁻¹, and 5, 10, 15 and 20 kg Zn ha⁻¹, combined B and Zn application at 1 kg B and 5 kg Zn ha⁻¹, 2 kg B and 10 kg Zn ha⁻¹. Colemanite ore were used as source of B and zinc sulfate for Zn. The second season wheat crop was planted in the same plots after the interval period of 30 days and during this time gap soil was fallow. Boron and Zn application significantly enhanced the plant height, number of tillers, Grains panicle⁻¹ seed index fewer empty grains panicle⁻¹ and yield of rice crop at all defined levels as compared to control. The highest yield (10.00 tons/ha) was recorded at 2 Kg B, 10 Kg Zn ha⁻¹ rates. Boron and Zn concentration in grain and straw significantly increased. The application of B also improved the nutrition status of rice as B, protein and total carbohydrates content of grain augmented. The analysis of soil samples collected after harvest of rice crop showed that the B and Zn content in post-harvest soil samples was high in colemanite and zinc sulfate applied plots. The residual B and Zn were also effectual for the second season wheat crop, as the growth parameters plant height, number of tillers, earhead length, weight 1000 grains, B and Zn content of grain significantly improved. The highest wheat grain yield (4.23 tons/ha) was recorded at the residual rates of 2 kg B and 10 kg Zn ha⁻¹ than the other treatments. This study showed that one application of B and Zn can increase crop yields for at least two consecutive seasons and the mineral colemanite can confidently be used as source of B for rice crop because very small quantities of these nutrients are consumed by first season crop and remaining amount was present in soil which were used by second season wheat crop for healthy growth. Consequently, there is no need to apply these micronutrients to the following crop when it is applied on the previous one.

Keywords: residual boron, zinc, rice, wheat

Procedia PDF Downloads 155
734 Effect of Dietary Organic Zinc Supplementation on Immunocompetance and Reproductive Performance in Rats

Authors: D. Nagalakshmi, S. Parashuramulu K. Sadasiva Rao, G. Aruna, L. Vikram

Abstract:

The zinc (Zn) is the second most abundant trace element in mammals and birds, forming structural component of over 300 enzymes, playing an important role in anti-oxidant defense, immune response and reproduction. Organic trace minerals are more readily absorbed from the digestive tract and more biologically available compared with its inorganic salt. Thus, the present study was undertaken on 60 adult female Sprague Dawley rats (275±2.04 g) for experimental duration of 12 weeks to investigate the effect of dietary Zn supplementation from various organic sources on immunity, reproduction, oxidative defense mechanism and blood biochemical profile. The rats were randomly allotted to 30 replicates (2 per replicate) which were in turn randomly allotted to 5 dietary treatments varying in Zn source i.e., one inorganic source (Zn carbonate) and 4 organic sources (Zn-proteinate, Zn-propionate, Zn-amino acid complex and Zn-methionine) so as to supply NRC recommended Zn concentration (12 ppm Zn). Supplementation of organic Zn had no effect on various haematological and serum biochemical constituents compared to inorganic Zn fed rats. The TBARS and protein carbonyls concentration in liver indicative of oxidative stress was comparable between various organic and inorganic groups. The glutathione reductase activity in haemolysate (P<0.05) and reduced glutathione concentration in liver (P<0.01) was higher when fed organic Zn and RBC catalase activity was higher (P<0.01) on Zn methionine compared to other organic sources tested and the inorganic source. The humoral immune response assessed as antibody titres against sheep RBC was higher (P<0.05) when fed organic sources of zinc compared to inorganic source. The cell mediated immune response expressed as delayed type hypersensitivity reaction was higher (P<0.05) in rats fed Zn propionate with no effect of other organic Zn sources. The serum progesterone concentration was higher (P<0.05) in rats fed organic Zn sources compared to inorganic zinc. The data on ovarian folliculogenesis indicated that organic Zn supplementation increased (P<0.05) the number of graafian follicles and corpus luteum with no effect on primary, secondary and tertiary follicle number. The study indicated that rats fed organic sources of Zn had higher antioxidant enzyme activities, immune response and serum progesterone concentration with higher number of mature follicles. Though the effect of feeding various organic sources were comparable, rats fed zinc methionine had higher antioxidant activity and cell mediated immune response was higher in rats on Zn propionate.

Keywords: organic zinc, immune, rats, reproductive

Procedia PDF Downloads 286
733 GIS Based Atmospheric Analysis to Predict Future Temperature Rise Caused by Land Use and Land Cover in Okara by Using Environmental Remote Sensing

Authors: Sumaira Hafeez, Saira Akram

Abstract:

Albeit the populace in metropolitan regions on the planet develops each year, the urban communities battling to adapt to the expanded metropolitan movement grow at different rates. Land Surface Temperature and other atmospheric parameters of the area of not really settled using Landsat pictures more than 10 years isolated. The LULC types were moreover arranged using managed gathering techniques. Quick urbanization is changing the current examples of Land Use Land Cover (LULC) all around the world, which is thusly expanding the Land Surface Temperature (LST) other atmospheric parameters in numerous districts. Present review was centered around assessing the current and recreating the future LULC and Land Surface Temperature patterns in the elevated climate of lower Himalayan district of Pakistan. Past examples of LULC and Land Surface Temperature were distinguished through the multi-unearthly Landsat satellite pictures during the 1995–2019 information period. The future forecasts were made for the year 2030 to work out LULC and LST changes separately, utilizing their previous examples. The review presumes that the reliably extending encroachment of the city's as of late advanced provincial regions over the totally open have went with an overall warming of the district's typical. Meteorological parameters over the earlier ten years and that permitting the land to lie void for a significant long time resulting to clearing the country fields for future metropolitan improvement is a preparation that has lamentable natural effects.

Keywords: surface urban heat island, land surface temperature, urban climate change, spatial analysis of meterological and atmospheric science

Procedia PDF Downloads 136
732 Investigation on Reducing the Bandgap in Nanocomposite Polymers by Doping

Authors: Sharvare Palwai, Padmaja Guggilla

Abstract:

Smart materials, also called as responsive materials, undergo reversible physical or chemical changes in their properties as a consequence of small environmental variations. They can respond to a single or multiple stimuli such as stress, temperature, moist, electric or magnetic fields, light, or chemical compounds. Hence smart materials are the basis of many applications, including biosensors and transducers, particularly electroactive polymers. As the polymers exhibit good flexibility, high transparency, easy processing, and low cost, they would be promising for the sensor material. Polyvinylidene Fluoride (PVDF), being a ferroelectric polymer, exhibits piezoelectric and pyro electric properties. Pyroelectric materials convert heat directly into electricity, while piezoelectric materials convert mechanical energy into electricity. These characteristics of PVDF make it useful in biosensor devices and batteries. However, the influence of nanoparticle fillers such as Lithium Tantalate (LiTaO₃/LT), Potassium Niobate (KNbO₃/PN), and Zinc Titanate (ZnTiO₃/ZT) in polymer films will be studied comprehensively. Developing advanced and cost-effective biosensors is pivotal to foresee the fullest potential of polymer based wireless sensor networks, which will further enable new types of self-powered applications. Finally, nanocomposites films with best set of properties; the sensory elements will be designed and tested for their performance as electric generators under laboratory conditions. By characterizing the materials for their optical properties and investigate the effects of doping on the bandgap energies, the science in the next-generation biosensor technologies can be advanced.

Keywords: polyvinylidene fluoride, PVDF, lithium tantalate, potassium niobate, zinc titanate

Procedia PDF Downloads 134
731 The Prevalence of Obesity among a Huge Sample of 5-20 Years Old Jordanian Children and Adolescents Based on CDC Criteria

Authors: Walid Al-Qerem, Ruba Zumot

Abstract:

Background: The rise of obesity among children and adolescents remains a primary challenge for healthcare providers globally and in the Middle East. The aim of the present study is to determine the prevalence of obesity among 5-20 years old Jordanians based on CDC criteria. Method: A total of 5722 Jordanians (37% males; 63% females) aged 5-20 years data were retrieved from the Jordanian Ministry of Health electronic database (Hakeem). As per the CDC selection criteria, the chosen data pertains exclusively to healthy Jordanian children and adolescents who are medically sound, not suffering from health conditions, and not undergoing any treatments that could hinder normal growth patterns, such as severe infection, chronic kidney disease (CKD), Down’s syndrome, attention deficit hyperactivity disorder, cancer, heart disease, lung disease, cystic fibrosis, Crohn’s disease, type 1 diabetes, hormonal disturbances, any stress-related conditions, hormonal therapy such as corticosteroids, Growth hormones (GHS) or gonadotropin-releasing hormone agonists, insulin, and amphetamines or any other stimulants. In addition, participants with missing or invalid data values for anthropometric measurements were excluded from the study. Weight for age and body mass index for age were analyzed comparatively for Jordanian children and adolescents against the international growth standards. The Z-score for each record was computed based on CDC equations. As per CDC classifications, BMI for age percentiles, values ≥85th and < 95th are classified as overweight, and value at ≥ 95th is classified as obesity. Results: The average age of the evaluated sample was 12.33 ±4.39 years (10.79 ±3.39 for males and 13.23 ± 4.66 for females). The mean weight for males and females were 33.16±14.17 Kg and 133.54±17.17 cm for males, 43.86 ±18.82 Kg, and 142.19±18.35 for females, while for BMI the mean was for boys and girls 17.81±3.88 and 20.52±5.03 respectively. The results indicated that based on CDC criteria, 8.9% of males were classified as children/adolescents with overweight, and 9.7% were classified as children/adolescents with obesity, while in females, 17.8% were classified as children/adolescents with overweight and 10.2% were classified as children/adolescents with obesity. Discussion: The high prevalence of obesity reported in the present study emphasizes the importance of applying different strategies to prevent childhood obesity, including encouraging physical activity, promoting healthier food options, and behavioral changes. Conclusion: The results presented in this study indicated the high prevalence of overweight/obesity among Jordanian adolescents and children, which must be tagged by healthcare planners and providers.

Keywords: CDC, obesity, childhood, Jordan

Procedia PDF Downloads 57
730 Full-Scale 3D Simulation of the Electroslag Rapid Remelting Process

Authors: E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig

Abstract:

The standard electroslag remelting (ESR) process can ideally control the solidification of an ingot and produce homogeneous structure with minimum defects. However, the melt rate of electrode is rather low that makes the whole process uneconomical especially to produce small ingot sizes. In contrast, continuous casting is an economical process to produce small ingots such as billets at high casting speed. Unfortunately, deep liquid melt pool forms in the billet ingot of continuous casting that leads to center porosity and segregation. As such, continuous casting is not suitable to produce segregation prone alloys like tool steel or several super alloys. On the other hand, the electro slag rapid remelting (ESRR) process has advantages of both traditional ESR and continuous casting processes to produce billets. In the ESRR process, a T-shaped mold is used including a graphite ring that takes major amount of current through the mold. There are only a few reports available in the literature discussing about this topic. The research on the ESRR process is currently ongoing aiming to improve the design of the T-shaped mold, to decrease overall heat loss in the process, and to obtain a higher temperature at metal meniscus. In the present study, a 3D model is proposed to investigate the electromagnetic, thermal, and flow fields in the whole process as well as solidification of the billet ingot. We performed a fully coupled numerical simulation to explore the influence of the electromagnetically driven flow (MHD) on the thermal field in the slag and ingot. The main goal is to obtain some fundamental understanding of the formation of melt pool of the solidifying billet ingot in the ESRR process.

Keywords: billet ingot, magnetohydrodynamics (mhd), numerical simulation, remelting, solidification, t-shaped mold.

Procedia PDF Downloads 295
729 Strained Channel Aluminum Nitride/Gallium Nitride Heterostructures Homoepitaxially Grown on Aluminum Nitride-On-Sapphire Template by Plasma-Assisted Molecular Beam Epitaxy

Authors: Jiajia Yao, GuanLin Wu, Fang liu, JunShuai Xue, JinCheng Zhang, Yue Hao

Abstract:

Due to its outstanding material properties like high thermal conductivity and ultra-wide bandgap, Aluminum nitride (AlN) has the promising potential to provide high breakdown voltage and high output power among III-nitrides for various applications in electronics and optoelectronics. This work presents material growth and characterization of strained channel Aluminum nitride/Gallium nitride (AlN/GaN) heterostructures grown by plasma-assisted molecular beam epitaxy (PA-MBE) on AlN-on-sapphire templates. To improve the crystal quality and manifest the ability of the PA-MBE approach, a thick AlN buffer with a thickness of 180 nm is first grown on AlN template, which acts as a back-barrier to enhance the breakdown characteristic and isolates the leakage path existing in the interface between AlN epilayer and AlN template, as well as improve the heat dissipation. The grown AlN buffer features a root-mean-square roughness of 0.2 nm over a scanned area of 2×2 µm2 measured by atomic force microscopy (AFM), and exhibits full-width at half-maximum of 95 and 407 arcsec for the (002) and (102) plane the X-ray rocking curve, respectively, tested by high resolution x-ray diffraction (HR-XRD). With a thin and strained GaN channel, the electron mobility of 294 cm2 /Vs. with a carrier concentration of 2.82×1013 cm-2 at room temperature is achieved in AlN/GaN double-channel heterostructures, and the depletion capacitance is as low as 14 pF resolved by the capacitance-voltage, which indicates the promising opportunities for future applications in next-generation high temperature, high-frequency and high-power electronics with a further increased electron mobility by optimization of heterointerface quality.

Keywords: AlN/GaN, HEMT, MBE, homoepitaxy

Procedia PDF Downloads 96
728 Producing of Amorphous-Nanocrystalline Composite Powders

Authors: K. Tomolya, D. Janovszky, A. Sycheva, M. Sveda, A. Roosz

Abstract:

CuZrAl amorphous alloys have attracted high interest due to unique physical and mechanical properties, which can be enhanced by adding of Ni and Ti elements. It is known that this properties can be enhanced by crystallization of amorphous alloys creating nanocrystallines in the matrix. The present work intends to produce nanosized crystalline parti-cle reinforced amorphous matrix composite powders by crystallization of amorphous powders. As the first step the amorphous powders were synthe-tized by ball-milling of crystalline powders. (Cu49Zr45Al6) 80Ni10Ti10 and (Cu49Zr44Al7) 80Ni10Ti10 (at%) alloys were ball-milled for 12 hours in order to reach the fully amorphous structure. The impact en-ergy of the balls during milling causes the change of the structure in the powders. Scanning electron microscopical (SEM) images shows that the phases mixed first and then changed into a fully amorphous matrix. Furthermore, nanosized particles in the amorphous matrix were crystallized by heat treatment of the amorphous powders that was confirmed by TEM measurement. It was of importance to define the tem-perature when the amorphous phase starts to crystal-lize. Amorphous alloys have a special heating curve and characteristic temperatures, which can be meas-ured by differential scanning calorimetry (DSC). A typical DSC curve of an amorphous alloy exhibits an endothermic event characteristic of the equilibrium glass transition (Tg) and a distinct undercooled liquid region, followed by one or two exothermic events corresponding to crystallization processes (Tp). After measuring the DSC traces of the amorphous powders, the annealing temperatures should be determined between Tx and Tp. In our experiments several temperatures from the annealing temperature range were selected and de-pendency of crystallized nanoparticles fraction on their hardness was investigated.

Keywords: amorphous structure, composite, mechanical milling, powder, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), transmission electronmocroscopy (TEM)

Procedia PDF Downloads 450
727 Development of Cost-Effective Protocol for Preparation of Dehydrated Paneer (Indian Cottage Cheese) Using Freeze Drying

Authors: Sadhana Sharma, P. K. Nema, Siddhartha Singha

Abstract:

Paneer or Indian cottage cheese is an acid and heat coagulated milk product, highly perishable because of high moisture (58-60 %). Typically paneer is marble to light creamy white in appearance. A good paneer should have cohesive body with slight sponginess or springiness. The texture must be smooth and velvety with close-knit compactness. It should have pleasing mild acidic, slightly sweet and nutty flavour. Consumers today demand simple to prepare, convenient, healthy and natural foods. Dehydrated paneer finds numerous ways to be used. It can be used in curry preparation similar to paneer-in-curry, a delicacy in Indian cuisine. It may be added to granola/ trail mix yielding a high energy snack. If grounded to a powder, it may be used as a cheesy spice mix or used as popcorn seasoning. Dried paneer powder may be added to pizza dough or to a white sauce to turn it into a paneer sauce. Drying of such food hydrogels by conventional methods is associated with several undesirable characteristics including case hardening, longer drying time, poor rehydration ability and fat loss during drying. The present study focuses on developing cost-effective protocol for freeze-drying of paneer. The dehydrated product would be shelf-stable and can be rehydrated to its original state having flavor and texture comparable to the fresh form. Moreover, the final product after rehydration would be more fresh and softer than its frozen counterparts. The developed product would be shelf-stable at room temperature without any addition of preservatives.

Keywords: color, freeze-drying, paneer, texture

Procedia PDF Downloads 160
726 An In-Depth Experimental Study of Wax Deposition in Pipelines

Authors: Arias M. L., D’Adamo J., Novosad M. N., Raffo P. A., Burbridge H. P., Artana G.

Abstract:

Shale oils are highly paraffinic and, consequently, can create wax deposits that foul pipelines during transportation. Several factors must be considered when designing pipelines or treatment programs that prevents wax deposition: including chemical species in crude oils, flowrates, pipes diameters and temperature. This paper describes the wax deposition study carried out within the framework of Y-TEC's flow assurance projects, as part of the process to achieve a better understanding on wax deposition issues. Laboratory experiments were performed on a medium size, 1 inch diameter, wax deposition loop of 15 mts long equipped with a solid detector system, online microscope to visualize crystals, temperature and pressure sensors along the loop pipe. A baseline test was performed with diesel with no paraffin or additive content. Tests were undertaken with different temperatures of circulating and cooling fluid at different flow conditions. Then, a solution formed with a paraffin added to the diesel was considered. Tests varying flowrate and cooling rate were again run. Viscosity, density, WAT (Wax Appearance Temperature) with DSC (Differential Scanning Calorimetry), pour point and cold finger measurements were carried out to determine physical properties of the working fluids. The results obtained in the loop were analyzed through momentum balance and heat transfer models. To determine possible paraffin deposition scenarios temperature and pressure loop output signals were studied. They were compared with WAT static laboratory methods. Finally, we scrutinized the effect of adding a chemical inhibitor to the working fluid on the dynamics of the process of wax deposition in the loop.

Keywords: paraffin desposition, flow assurance, chemical inhibitors, flow loop

Procedia PDF Downloads 105
725 Comparative Therapeutic Potential of 'Green Synthesized' Antimicrobials against Scalp Infections

Authors: D. Desai, J.Dixon, N. Jain, M. Datta

Abstract:

Microbial infections of scalp consist of symptomatic appearances associated with seborrhoeic dermatitis, folliculitis, furuncles, carbuncles and ringworm. The main causative organisms in these scalp-based infections are bacteria like S. aureus, P. aeruginosa and a fungus M. Furfur. Allopathic treatment of these infections is available and efficient, but occasionally, topical applications have been found to cause side effects. India is known as the botanical garden of the world and considered as the epicentre for utilization of traditional drugs. Many treatments based on herb extracts are commonly used in India. It has been observed treatment with ethnomedicines requires a higher dosage and greater time period. Additionally, repeated applications are required to obtain the full efficacy of the treatment. An attempt has been made to imbibe the traditional knowledge with nanotechnology to generate a proficient therapeutic against scalp infections. We have imbibed metallic nanoparticles with extracts from traditional medicines and propose to formulate an antimicrobial hair massager. Four commonly used herbs for treatment against scalp disorders like Zingiber officinale (ginger), Allium sativum (garlic), Azadirachta indica (neem) leaves and Citrus limon (lemon) peel was taken. 30 gms of dried homogenized powder was obtained and processed for obtaining the aqueous and ethanolic extract by soxhlet apparatus. The extract was dried and reconstituted to obtain working solution of 1mg/ml. Phytochemical analysis for the obtained extract was done. Synthesis of nanoparticles was mediated by incubating 1mM silver nitrate with extracts of various herbs to obtain silver nanoparticles. The formation of the silver nanoparticles (AgNPs) was monitored using UV-Vis spectroscopy. The AgNPs thus obtained were centrifuged and dried. The AgNPs thus formed were characterized by X Ray Diffraction, scanning electron microscopy and transmission electron microscopy. The size of the AgNPs varied from 10-20 nm and was spherical in shape. P. aeruginosa was plated on nutrient agar and comparative antibacterial activity was tested. Comparative antimicrobial potential was calculated for the extracts and the corresponding nanoconstructs. It was found AgNPs were more efficient than their aqueous and ethanolic counterparts except in the ase of C. limon. Statistical analysis was performed to validate the results obtained.

Keywords: ethnomedicine, nanoconstructs, scalp infections, Zingiber officinale

Procedia PDF Downloads 368
724 Biodegradation of Triclosan and Tetracycline in Sewage Sludge by Pleurotus Ostreatus Fungal Pellets

Authors: Ayda Maadani Mallak, Amir lakzian, Elham Khodaverdi, Gholam Hossein Haghnia

Abstract:

The use of pharmaceuticals and personal care products such as antibiotics and antibacterials has been increased in recent years. Since the major part of consumed compounds remains unchanged in the wastewater treatment plant, they will easily find their way into the human food chain following the land use of sewage sludge (SS). Biological treatment of SS is one the most effective methods for expunging contaminants. White rot fungi, due to their ligninolytic enzymes, are extensively used to degrade organic compounds. Among all three different morphological forms and growth patterns of filamentous fungi (mycelia, clumps, and pellets), fungal pellet formation has been the subject of interest in industrial bioprocesses. Therefore this study was aimed to investigate the uptake of tetracycline (TC) and triclosan (TCS) by radish plant (Raphanus sativus) from soil amended with untreated and pretreated SS by P. ostreatus fungal pellets under greenhouse conditions. The experimental soil was amended with 1) Contaminated SS with TC at a concentration of 100 mgkg-1 and pretreated by fungal pellets, 2) Contaminated SS with TC at 100 mgkg-1 and untreated with fungal pellets, 3) Contaminated SS with TCS at a concentration of 50 mgkg-1 and pretreated by fungal pellets, 4) contaminated SS with TCS at 50 mgkg-1 and untreated with fungal pellets. An uncontaminated and untreated SS-amended soil also was considered as control treatment. An AB SCIEX 3200 QTRAP LC-MS/MS system was used in order to analyze the concentration of TC and TCS in plant tissues and soil medium. Results of this study revealed that the presence of TC and TCS in SS-amended soil decreased the radish biomass significantly. The reduction effect of TCS on dry biomass of shoot and root was 39 and 45% compared to controls, whereas for TC, the reduction percentage for shoot and root was 27 and 40.6%, respectively. However, fungal treatment of SS by P. ostreatus pellets reduced the negative effect of both compounds on plant biomass remarkably, as no significant difference was observed compared to control treatments. Pretreatment of SS with P. ostreatus also caused a significant reduction in translocation factor (concentration in shoot/root), especially for TC compound up to 32.3%, whereas this reduction for TCS was less (8%) compared to untreated SS. Generally, the results of this study confirmed the positive effect of using fungal pellets in SS amendment to decrease TC and TCS uptake by radish plants. In conclusion, P. ostreatus fungal pellets might provide future insights into bioaugmentation to remove antibiotics from environmental matrices.

Keywords: antibiotic, fungal pellet, sewage sludge, white-rot fungi

Procedia PDF Downloads 158
723 The Sustainable Governance of Aquifer Injection Using Treated Coal Seam Gas Water in Queensland, Australia: Lessons for Integrated Water Resource Management

Authors: Jacqui Robertson

Abstract:

The sustainable governance of groundwater is of the utmost importance in an arid country like Australia. Groundwater has been relied on by our agricultural and pastoral communities since the State was settled by European colonialists. Nevertheless, the rapid establishment of a coal seam gas (CSG) industry in Queensland, Australia, has had extensive impacts on the pre-existing groundwater users. Managed aquifer recharge of important aquifers in Queensland, Australia, using treated coal seam gas produced water has been used to reduce the impacts of CSG development in Queensland Australia. However, the process has not been widely adopted. Negative environmental outcomes are now acknowledged as not only engineering, scientific or technical problems to be solved but also the result of governance failures. An analysis of the regulatory context for aquifer injection using treated CSG water in Queensland, Australia, using Ostrom’s Common Pool Resource (CPR) theory and a ‘heat map’ designed by the author, highlights the importance of governance arrangements. The analysis reveals the costs and benefits for relevant stakeholders of artificial recharge of groundwater resources in this context. The research also reveals missed opportunities to further active management of the aquifer and resolve existing conflicts between users. The research illustrates the importance of strategically and holistically evaluating innovations in technology that impact water resources to reveal incentives that impact resource user behaviors. The paper presents a proactive step that can be adapted to support integrated water resource management and sustainable groundwater development.

Keywords: managed aquifer recharge, groundwater regulation, common-pool resources, integrated water resource management, Australia

Procedia PDF Downloads 237
722 Sol-Gel Coated Fabric for Controlled Release of Mosquito Repellent

Authors: Bhaskar M. Murai, Neeraj Banchor, Ishveen Chabbra, Madhusudhan Nadgir, S. Vidhya

Abstract:

Sol-gel technology combined with electronics and biochemistry helps to overcome the problems caused by mosquitoes by developing a portable, low-cost device which enables controlled release of trapped compound inside it. It is a wet-chemical technique which is used primarily for fabrication of silicate gel which is usually allowed to dry as per requirement. The outcome is solid rock hard material which is porous and has lots of applications in different fields. Taking porosity as a key factor, allethrin a naturally occurring synthetic compound with molecular mass 302.40 was entrapped inside the sol-gel matrix as a dopant. Allethrin is commonly used as an insecticide and is a key ingredient in commercially available mosquitoes repellent in Asian and subtropical countries. It has low toxicity for humans and birds, and are used in many household insecticides such as RAID as well as mosquito coils. They are however highly toxic to fish and bees. Insects subject to its exposure become paralyzed (nervous system effect) before dying. They are also used as an ultra-low volume spray for outdoor mosquito control. Therefore, there is a need for controlled release of allethrin in the environment. For controlled release of allethrin from sol-gel matrix, its (allethrin) we utilized temperature based controlled evaporation through porous sol-gel. Different types of fabric like cotton, Terri-cotton, polyester, surgical cap, knee-cap etc are studied and the best with maximum absorption capacity is selected to hold the sol-gel matrix with maximum quantity. For sol-gel coating 2 x 2cm cloth pieces are dipped in sol-gel solution for 10 minutes and by calculating the weight difference we concluded that Terri cotton is best suitable for our project. An electronic circuit with heating plate is developed in to test the controlled release of compound. An oscillatory circuit is used to produce the required heat.

Keywords: sol-gel, allethrin, TEOS, biochemistry

Procedia PDF Downloads 375
721 The Financial and Metallurgical Benefits of Niobium Grain Refined As-Rolled 460 MPa H-Beam to the Construction Industry in SE Asia

Authors: Michael Wright, Tiago Costa

Abstract:

The construction industry in SE Asia has been relying on S355 MPa “as rolled” H-beams for many years now. It is an easily sourced, metallurgically simple, reliable product that all designers, fabricators and constructors are familiar with. However, as the Global demand to better use our finite resources gets stronger, the need for an as-rolled S460 MPa H-Beam is becoming more apparent. The Financial benefits of an “as-rolled” S460 MPa H-beam are obvious. The S460 MPa beam which is currently available and used is fabricated from rolled strip. However, making H-beam from 3 x 460 MPa strips requires costly equipment, valuable welding skills & production time, all of which can be in short supply or better used for other purposes. The Metallurgical benefits of an “as-rolled” S460 MPa H-beam are consistency in the product. Fabricated H-beams have inhomogeneous areas where the strips have been welded together - parent metal, heat affected zone and weld metal all in the one body. They also rely heavily on the skill of the welder to guarantee a perfect, defect free weld. If this does not occur, the beam is intrinsically flawed and could lead to failure in service. An as-rolled beam is a relatively homogenous product, with the optimum strength and ductility produced by delivering steel with as fine as possible uniform cross sectional grain size. This is done by cost effective alloy design coupled with proper metallurgical process control implemented into an existing mill’s equipment capability and layout. This paper is designed to highlight the benefits of bring an “as-rolled” S460 MPa H-beam to the construction market place in SE Asia, and hopefully encourage the current “as-rolled” H-beam producers to rise to the challenge and produce an innovative high quality product for the local market.

Keywords: fine grained, As-rolled, long products, process control, metallurgy

Procedia PDF Downloads 300
720 Designing of Nano-materials for Waste Heat Conversion into Electrical Energy Thermoelectric generator

Authors: Wiqar Hussain Shah

Abstract:

The electrical and thermal properties of the doped Tellurium Telluride (Tl10Te6) chalcogenide nano-particles are mainly characterized by a competition between metallic (hole doped concentration) and semi-conducting state. We have studied the effects of Sn doping on the electrical and thermoelectric properties of Tl10-xSnxTe6 (1.00 ≤x≤ 2.00), nano-particles, prepared by solid state reactions in sealed silica tubes and ball milling method. Structurally, all these compounds were found to be phase pure as confirmed by the x-rays diffractometery (XRD) and energy dispersive X-ray spectroscopy (EDS) analysis. Additionally crystal structure data were used to model the data and support the findings. The particles size was calculated from the XRD data by Scherrer’s formula. The EDS was used for an elemental analysis of the sample and declares the percentage of elements present in the system. The thermo-power or Seebeck co-efficient (S) was measured for all these compounds which show that S increases with increasing temperature from 295 to 550 K. The Seebeck coefficient is positive for the whole temperature range, showing p-type semiconductor characteristics. The electrical conductivity was investigated by four probe resistivity techniques revealed that the electrical conductivity decreases with increasing temperature, and also simultaneously with increasing Sn concentration. While for Seebeck coefficient the trend is opposite which is increases with increasing temperature. These increasing behavior of Seebeck coefficient leads to high power factor which are increases with increasing temperature and Sn concentration except For Tl8Sn2Te6 because of lowest electrical conductivity but its power factor increases well with increasing temperature.

Keywords: Sn doping in Tellurium Telluride nano-materials, electron holes competition, Seebeck co-efficient, effects of Sn doping on Electrical conductivity, effects on Power factor

Procedia PDF Downloads 44
719 Exploring Coping Strategies among Caregivers of Children Who Have Survived Cancer

Authors: Noor Ismael, Somaya Malkawi, Sherin Al Awady, Taleb Ismael

Abstract:

Background/Significance: Cancer is a serious health condition that affects individuals’ quality of life during and after the course of this condition. Children who have survived cancer and their caregivers may deal with residual physical, cognitive or social disabilities. There is little research on caregivers’ health and wellbeing after cancer. To the authors’ best knowledge; there is no specific research about how caregivers cope with everyday stressors after cancer. Therefore, this study aimed to explore the coping strategies that caregivers of children who have survived cancer utilize to overcome everyday stressors. Methods: This study utilized a descriptive survey design. The sample consisted of 103 caregivers, who visited the health and wellness clinic at a national cancer center (additional demographics are presented in the results). The sample included caregivers of children who were off cancer treatments for at least two years from the beginning of data collection. The institution’s internal review board approved this study. Caregivers who agreed to participate completed the survey. The survey collected caregiver reported demographic information and the Brief COPE which measures caregivers' frequency of engaging in certain coping strategies. The Brief COPE consisted of 14 coping sub-scales, which are self-distraction, active coping, denial, substance use, use of emotional support, use of instrumental support, behavioral disengagement, venting, positive reframing, planning, humor, acceptance, religion, and self-blame. Data analyses included calculating sub-scales’ scores for the fourteen coping strategies and analysis of frequencies of demographics and coping strategies. Results: The 103 caregivers who participated in this study were 62% mothers, 80% married, 45% finished high school, 50% do not work outside the house, and 60% have low family income. Result showed that religious coping (66%) and acceptance (60%) were the most utilized coping strategies, followed by positive reframing (45%), active coping (44%) and planning (43%). The least utilized coping strategies in our sample were humor (5%), behavioral disengagement (8%), and substance-use (10%). Conclusions: Caregivers of children who have survived cancer mostly utilize religious coping and acceptance in dealing with everyday stressors. Because these coping strategies do not directly solve stressors like active coping and planning coping strategies, it is important to support caregivers in choosing and implementing effective coping strategies. Knowing from our results that some caregivers may utilize substance use as a coping strategy, which has negative health effects on caregivers and their children, there must be direct interventions that target these caregivers and their families.

Keywords: caregivers, cancer, stress, coping

Procedia PDF Downloads 169
718 Detecting Elderly Abuse in US Nursing Homes Using Machine Learning and Text Analytics

Authors: Minh Huynh, Aaron Heuser, Luke Patterson, Chris Zhang, Mason Miller, Daniel Wang, Sandeep Shetty, Mike Trinh, Abigail Miller, Adaeze Enekwechi, Tenille Daniels, Lu Huynh

Abstract:

Machine learning and text analytics have been used to analyze child abuse, cyberbullying, domestic abuse and domestic violence, and hate speech. However, to the authors’ knowledge, no research to date has used these methods to study elder abuse in nursing homes or skilled nursing facilities from field inspection reports. We used machine learning and text analytics methods to analyze 356,000 inspection reports, which have been extracted from CMS Form-2567 field inspections of US nursing homes and skilled nursing facilities between 2016 and 2021. Our algorithm detected occurrences of the various types of abuse, including physical abuse, psychological abuse, verbal abuse, sexual abuse, and passive and active neglect. For example, to detect physical abuse, our algorithms search for combinations or phrases and words suggesting willful infliction of damage (hitting, pinching or burning, tethering, tying), or consciously ignoring an emergency. To detect occurrences of elder neglect, our algorithm looks for combinations or phrases and words suggesting both passive neglect (neglecting vital needs, allowing malnutrition and dehydration, allowing decubiti, deprivation of information, limitation of freedom, negligence toward safety precautions) and active neglect (intimidation and name-calling, tying the victim up to prevent falls without consent, consciously ignoring an emergency, not calling a physician in spite of indication, stopping important treatments, failure to provide essential care, deprivation of nourishment, leaving a person alone for an inappropriate amount of time, excessive demands in a situation of care). We further compare the prevalence of abuse before and after Covid-19 related restrictions on nursing home visits. We also identified the facilities with the most number of cases of abuse with no abuse facilities within a 25-mile radius as most likely candidates for additional inspections. We also built an interactive display to visualize the location of these facilities.

Keywords: machine learning, text analytics, elder abuse, elder neglect, nursing home abuse

Procedia PDF Downloads 146
717 The Importance of Clinical Pharmacy and Computer Aided Drug Design

Authors: Mario Hanna Louis Hanna

Abstract:

The use of CAD (pc Aided layout) generation is ubiquitous inside the structure, engineering and construction (AEC) industry. This has led to its inclusion in the curriculum of structure faculties in Nigeria as an important part of the training module. This newsletter examines the moral troubles involved in implementing CAD (pc Aided layout) content into the architectural training curriculum. Using current literature, this study begins with the advantages of integrating CAD into architectural education and the responsibilities of various stakeholders in the implementation process. It also examines issues related to the terrible use of records generation and the perceived bad effect of CAD use on design creativity. The use of a survey technique, information from the architecture department of Chukwuemeka Odumegwu Ojukwu Uli college changed into accumulated to serve as a case observe on how the problems raised have been being addressed. The object draws conclusions on what guarantees a hit moral implementation. Tens of millions of human beings around the sector suffer from hepatitis C, one of the international's deadliest sicknesses. Interferon (IFN) is a remedy alternative for patients with hepatitis C, but these treatments have their aspect outcomes. Our research targeted growing an oral small molecule drug that goals hepatitis C virus (HCV) proteins and has fewer facet effects. Our contemporary study targets to broaden a drug primarily based on a small molecule antiviral drug precise for the hepatitis C virus (HCV). Drug improvement and the use of laboratory experiments isn't always best high-priced, however also time-eating to behavior those experiments. instead, on this in silicon have a look at, we used computational strategies to recommend a particular antiviral drug for the protein domain names of discovered in the hepatitis C virus. This examines used homology modeling and abs initio modeling to generate the 3-D shape of the proteins, then figuring out pockets within the proteins. Proper lagans for pocket pills were advanced the usage of the de novo drug design method. Pocket geometry is taken into consideration while designing ligands. A few of the various lagans generated, a different for each of the HCV protein domains has been proposed.

Keywords: drug design, anti-viral drug, in-silicon drug design, Hepatitis C virus (HCV) CAD (Computer Aided Design), CAD education, education improvement, small-size contractor automatic pharmacy, PLC, control system, management system, communication.

Procedia PDF Downloads 27
716 Numerical Modeling of Air Shock Wave Generated by Explosive Detonation and Dynamic Response of Structures

Authors: Michał Lidner, Zbigniew SzcześNiak

Abstract:

The ability to estimate blast load overpressure properly plays an important role in safety design of buildings. The issue of studying of blast loading on structural elements has been explored for many years. However, in many literature reports shock wave overpressure is estimated with simplified triangular or exponential distribution in time. This indicates some errors when comparing real and numerical reaction of elements. Nonetheless, it is possible to further improve setting similar to the real blast load overpressure function versus time. The paper presents a method of numerical analysis of the phenomenon of the air shock wave propagation. It uses Finite Volume Method and takes into account energy losses due to a heat transfer with respect to an adiabatic process rule. A system of three equations (conservation of mass, momentum and energy) describes the flow of a volume of gaseous medium in the area remote from building compartments, which can inhibit the movement of gas. For validation three cases of a shock wave flow were analyzed: a free field explosion, an explosion inside a steel insusceptible tube (the 1D case) and an explosion inside insusceptible cube (the 3D case). The results of numerical analysis were compared with the literature reports. Values of impulse, pressure, and its duration were studied. Finally, an overall good convergence of numerical results with experiments was achieved. Also the most important parameters were well reflected. Additionally analyses of dynamic response of one of considered structural element were made.

Keywords: adiabatic process, air shock wave, explosive, finite volume method

Procedia PDF Downloads 192
715 Application of Natural Dyes on Polyester and Polyester-Cellulosic Blended Fabrics

Authors: Deepali Rastogi, Akanksha Rastogi

Abstract:

Comfort and safety are two essential factors in a newborn’s clothing. Natural dyes are considered safe for infant clothes because they are non-toxic and have medicinal properties. Natural dyes are sensitive to pH and may show changes in hue under different pH conditions. Infant garments face treatments different than adult clothing, for instance, exposure to infant’s saliva, milk, and urine. The present study was designed to study the suitability of natural dyes for infant clothes. Cotton fabric was dyed using fifteen natural dyes and two mordants, alum, and ferrous sulphate. The dyed samples were assessed for colour fastness to washing, rubbing, perspiration and light. In addition, fastness to milk, saliva, and urine was also tested. Simulated solutions of saliva and urine were prepared for the study. For milk, one of the commercial formulations for infants was taken and used as per the directions. A wide gamut of colours was obtained after dyeing the cotton with different natural dyes and mordants. The colour strength of all the dyed samples was determined in terms of K/S values. Most of the ferrous sulphate mordanted dyes gave higher K/S values than alum mordanted samples. The wash fastness of dyed cotton fabrics ranged from 3/4 -5. Perspiration fastness test for the samples was done in both acidic and alkaline mediums. The ratings ranged from 3-5, with most of the dyes falling in the range of 4-5. The rubbing fastness of the dyed samples was tested in dry and wet conditions. The results showed excellent rub fastness ranging between 4-5. Light fastness was found to be good to moderate. The main food for infants is milk, and this becomes one of the main agents to spot infants' garments. All dyes showed excellent fastness properties against milk with a grey scale rating of 4-5. Fastness against saliva is recommended by various eco-labels, standards, and organizations for fabrics of infants or babies. The fastness of most of the dyes was found to be satisfactory against saliva. Infant garments get frequently soiled with urine. Most of the natural dyes on cotton fabric had good to excellent fastness to simulated urine. The grey scale ratings ranged from 3/4 – 5. Thus, it can be concluded that most of the natural dyes can be successfully used for infant wear and accessories and are fast to various liquids to which infant wear are exposed. Therefore, we can surround little ones with beautiful hues from nature's garden and clothe them in natural fibres dyed with natural dyes.

Keywords: fastness properties, infant wear, mordants, natural dyes

Procedia PDF Downloads 140
714 Inner Quality Parameters of Rapeseed (Brassica napus) Populations in Different Sowing Technology Models

Authors: É. Vincze

Abstract:

Demand on plant oils has increased to an enormous extent that is due to the change of human nutrition habits on the one hand, while on the other hand to the increase of raw material demand of some industrial sectors, just as to the increase of biofuel production. Besides the determining importance of sunflower in Hungary the production area, just as in part the average yield amount of rapeseed has increased among the produced oil crops. The variety/hybrid palette has changed significantly during the past decade. The available varieties’/hybrids’ palette has been extended to a significant extent. It is agreed that rapeseed production demands professionalism and local experience. Technological elements are successive; high yield amounts cannot be produced without system-based approach. The aim of the present work was to execute the complex study of one of the most critical production technology element of rapeseed production, that was sowing technology. Several sowing technology elements are studied in this research project that are the following: biological basis (the hybrid Arkaso is studied in this regard), sowing time (sowing time treatments were set so that they represent the wide period used in industrial practice: early, optimal and late sowing time) plant density (in this regard reaction of rare, optimal and too dense populations) were modelled. The multifactorial experimental system enables the single and complex evaluation of rapeseed sowing technology elements, just as their modelling using experimental result data. Yield quality and quantity have been determined as well in the present experiment, just as the interactions between these factors. The experiment was set up in four replications at the Látókép Plant Production Research Site of the University of Debrecen. Two different sowing times were sown in the first experimental year (2014), while three in the second (2015). Three different plant densities were set in both years: 200, 350 and 500 thousand plants ha-1. Uniform nutrient supply and a row spacing of 45 cm were applied. Winter wheat was used as pre-crop. Plant physiological measurements were executed in the populations of the Arkaso rapeseed hybrid that were: relative chlorophyll content analysis (SPAD) and leaf area index (LAI) measurement. Relative chlorophyll content (SPAD) and leaf area index (LAI) were monitored in 7 different measurement times.

Keywords: inner quality, plant density, rapeseed, sowing time

Procedia PDF Downloads 200
713 Effect of Fire Retardant Painting Product on Smoke Optical Density of Burning Natural Wood Samples

Authors: Abdullah N. Olimat, Ahmad S. Awad, Faisal M. AL-Ghathian

Abstract:

Natural wood is used in many applications in Jordan such as furniture, partitions constructions, and cupboards. Experimental work for smoke produced by the combustion of certain wood samples was studied. Smoke generated from burning of natural wood, is considered as a major cause of death in furniture fires. The critical parameter for life safety in fires is the available time for escape, so the visual obscuration due to smoke release during fire is taken into consideration. The effect of smoke, produced by burning of wood, depends on the amount of smoke released in case of fire. The amount of smoke production, apparently, affects the time available for the occupants to escape. To achieve the protection of life of building occupants during fire growth, fire retardant painting products are tested. The tested samples of natural wood include Beech, Ash, Beech Pine, and white Beech Pine. A smoke density chamber manufactured by fire testing technology has been used to perform measurement of smoke properties. The procedure of test was carried out according to the ISO-5659. A nonflammable vertical radiant heat flux of 25 kW/m2 is exposed to the wood samples in a horizontal orientation. The main objective of the current study is to carry out the experimental tests for samples of natural woods to evaluate the capability to escape in case of fire and the fire safety requirements. Specific optical density, transmittance, thermal conductivity, and mass loss are main measured parameters. Also, comparisons between samples with paint and with no paint are carried out between the selected samples of woods.

Keywords: extinction coefficient, optical density, transmittance, visibility

Procedia PDF Downloads 237
712 Revealing Thermal Degradation Characteristics of Distinctive Oligo-and Polisaccharides of Prebiotic Relevance

Authors: Attila Kiss, Erzsébet Némedi, Zoltán Naár

Abstract:

As natural prebiotic (non-digestible) carbohydrates stimulate the growth of colon microflora and contribute to maintain the health of the host, analytical studies aiming at revealing the chemical behavior of these beneficial food components came to the forefront of interest. Food processing (especially baking) may lead to a significant conversion of the parent compounds, hence it is of utmost importance to characterize the transformation patterns and the plausible decomposition products formed by thermal degradation. The relevance of this work is confirmed by the wide-spread use of these carbohydrates (fructo-oligosaccharides, cyclodextrins, raffinose and resistant starch) in the food industry. More and more functional foodstuffs are being developed based on prebiotics as bioactive components. 12 different types of oligosaccharides have been investigated in order to reveal their thermal degradation characteristics. Different carbohydrate derivatives (D-fructose and D-glucose oligomers and polymers) have been exposed to elevated temperatures (150 °C 170 °C, 190 °C, 210 °C, and 220 °C) for 10 min. An advanced HPLC method was developed and used to identify the decomposition products of carbohydrates formed as a consequence of thermal treatment. Gradient elution was applied with binary solvent elution (acetonitrile, water) through amine based carbohydrate column. Evaporative light scattering (ELS) proved to be suitable for the reliable detection of the UV/VIS inactive carbohydrate degradation products. These experimental conditions and applied advanced techniques made it possible to survey all the formed intermediers. Change in oligomer distribution was established in cases of all studied prebiotics throughout the thermal treatments. The obtained results indicate increased extent of chain degradation of the carbohydrate moiety at elevated temperatures. Prevalence of oligomers with shorter chain length and even the formation of monomer sugars (D-glucose and D-fructose) might be observed at higher temperatures. Unique oligomer distributions, which have not been described previously are revealed in the case of each studied, specific carbohydrate, which might result in various prebiotic activities. Resistant starches exhibited high stability when being thermal treated. The degradation process has been modeled by a plausible reaction mechanism, in which proton catalyzed degradation and chain cleavage take place.

Keywords: prebiotics, thermal degradation, fructo-oligosaccharide, HPLC, ELS detection

Procedia PDF Downloads 305
711 Defect Correlation of Computed Tomography and Serial Sectioning in Additively Manufactured Ti-6Al-4V

Authors: Bryce R. Jolley, Michael Uchic

Abstract:

This study presents initial results toward the correlative characterization of inherent defects of Ti-6Al-4V additive manufacture (AM). X-Ray Computed Tomography (CT) defect data are compared and correlated with microscopic photographs obtained via automated serial sectioning. The metal AM specimen was manufactured out of Ti-6Al-4V virgin powder to specified dimensions. A post-contour was applied during the fabrication process with a speed of 1050 mm/s, power of 260 W, and a width of 140 µm. The specimen was stress relief heat-treated at 16°F for 3 hours. Microfocus CT imaging was accomplished on the specimen within a predetermined region of the build. Microfocus CT imaging was conducted with parameters optimized for Ti-6Al-4V additive manufacture. After CT imaging, a modified RoboMet. 3D version 2 was employed for serial sectioning and optical microscopy characterization of the same predetermined region. Automated montage capture with sub-micron resolution, bright-field reflection, 12-bit monochrome optical images were performed in an automated fashion. These optical images were post-processed to produce 2D and 3D data sets. This processing included thresholding and segmentation to improve visualization of defect features. The defects observed from optical imaging were compared and correlated with the defects observed from CT imaging over the same predetermined region of the specimen. Quantitative results of area fraction and equivalent pore diameters obtained via each method are presented for this correlation. It is shown that Microfocus CT imaging does not capture all inherent defects within this Ti-6Al-4V AM sample. Best practices for this correlative effort are also presented as well as the future direction of research resultant from this current study.

Keywords: additive manufacture, automated serial sectioning, computed tomography, nondestructive evaluation

Procedia PDF Downloads 141
710 Optimizing the Window Geometry Using Fractals

Authors: K. Geetha Ramesh, A. Ramachandraiah

Abstract:

In an internal building space, daylight becomes a powerful source of illumination. The challenge therefore, is to develop means of utilizing both direct and diffuse natural light in buildings while maintaining and improving occupant's visual comfort, particularly at greater distances from the windows throwing daylight. The geometrical features of windows in a building have significant effect in providing daylight. The main goal of this research is to develop an innovative window geometry, which will effectively provide the daylight component adequately together with internal reflected component(IRC) and also the external reflected component(ERC), if any. This involves exploration of a light redirecting system using fractal geometry for windows, in order to penetrate and distribute daylight more uniformly to greater depths, minimizing heat gain and glare, and also to reduce building energy use substantially. Of late the creation of fractal geometrical window and the occurrence of daylight illuminance due to such windows is becoming an interesting study. The amount of daylight can change significantly based on the window geometry and sky conditions. This leads to the (i) exploration of various fractal patterns suitable for window designs, and (ii) quantification of the effect of chosen fractal window based on the relationship between the fractal pattern, size, orientation and glazing properties for optimizing daylighting. There are a lot of natural lighting applications able to predict the behaviour of a light in a room through a traditional opening - a regular window. The conventional prediction methodology involves the evaluation of the daylight factor, the internal reflected component and the external reflected component. Having evaluated the daylight illuminance level for a conventional window, the technical performance of a fractal window for an optimal daylighting is to be studied and compared with that of a regular window. The methodologies involved are highlighted in this paper.

Keywords: daylighting, fractal geometry, fractal window, optimization

Procedia PDF Downloads 301
709 MicroRNA Drivers of Resistance to Androgen Deprivation Therapy in Prostate Cancer

Authors: Philippa Saunders, Claire Fletcher

Abstract:

INTRODUCTION: Prostate cancer is the most prevalent malignancy affecting Western males. It is initially an androgen-dependent disease: androgens bind to the androgen receptor and drive the expression of genes that promote proliferation and evasion of apoptosis. Despite reduced androgen dependence in advanced prostate cancer, androgen receptor signaling remains a key driver of growth. Androgen deprivation therapy (ADT) is, therefore, a first-line treatment approach and works well initially, but resistance inevitably develops. Abiraterone and Enzalutamide are drugs widely used in ADT and are androgen synthesis and androgen receptor signaling inhibitors, respectively. The shortage of other treatment options means acquired resistance to these drugs is a major clinical problem. MicroRNAs (miRs) are important mediators of post-transcriptional gene regulation and show altered expression in cancer. Several have been linked to the development of resistance to ADT. Manipulation of such miRs may be a pathway to breakthrough treatments for advanced prostate cancer. This study aimed to validate ADT resistance-implicated miRs and their clinically relevant targets. MATERIAL AND METHOD: Small RNA-sequencing of Abiraterone- and Enzalutamide-resistant C42 prostate cancer cells identified subsets of miRs dysregulated as compared to parental cells. Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) was used to validate altered expression of candidate ADT resistance-implicated miRs 195-5p, 497-5p and 29a-5p in ADT-resistant and -responsive prostate cancer cell lines, patient-derived xenografts (PDXs) and primary prostate cancer explants. RESULTS AND DISCUSSION: This study suggests a possible role for miR-497-5p in the development of ADT resistance in prostate cancer. MiR-497-5p expression was increased in ADT-resistant versus ADT-responsive prostate cancer cells. Importantly, miR-497-5p expression was also increased in Enzalutamide-treated, castrated (ADT-mimicking) PDXs versus intact PDXs. MiR-195-5p was also elevated in ADT-resistant versus -responsive prostate cancer cells, while there was a drop in miR-29a-5p expression. Candidate clinically relevant targets of miR-497-5p in prostate cancer were identified by mining AGO-PAR-CLIP-seq data sets and may include AVL9 and FZD6. CONCLUSION: In summary, this study identified microRNAs that are implicated in prostate cancer resistance to androgen deprivation therapy and could represent novel therapeutic targets for advanced disease.

Keywords: microRNA, androgen deprivation therapy, Enzalutamide, abiraterone, patient-derived xenograft

Procedia PDF Downloads 143
708 Effects of Inlet Filtration Pressure Loss on Single and Two-Spool Gas Turbine

Authors: Enyia James Diwa, Dodeye Ina Igbong, Archibong Archibong Eso

Abstract:

Gas turbine operators have been faced with the dramatic financial setback resulting from compressor fouling. In a highly deregulated power industry where there is stiffness in the market competition, has made it imperative to improvise means of reducing maintenance cost in other to yield maximum profit. Compressor fouling results from the deposition of contaminants in the presence of oil and moisture on the compressor blade or annulus surfaces, which leads to a loss in flow capacity and compressor efficiency. These combined effects reduce power output, increase heat rate and cause creep life reduction. This paper also contains a model of two gas turbine engines via Cranfield University software known as TURBOMATCH, which is simulation software for detecting engine fouling rate. The model engines are of different configurations and capacities, and are operating in two different modes of constant output power and turbine inlet temperature for a two and three stage filter system. The idea is to investigate the more economically viable filtration systems by gas turbine users based on performance only. It has been demonstrated in the results that the two spool engine is a little more beneficial compared to the single spool. This is as a result of a higher pressure ratio of the two spools as well as the deceleration of the high-pressure compressor and high-pressure turbine speed in a constant TET. Meanwhile, the inlet filtration system was properly designed and balanced with a well-timed and economical compressor washing regime/scheme to control compressor fouling. The different technologies of inlet air filtration and compressor washing are considered and an attempt at optimization with respect to the cost of a combination of both control measures are made.

Keywords: inlet filtration, pressure loss, single spool, two spool

Procedia PDF Downloads 322
707 Experimental Research on Neck Thinning Dynamics of Droplets in Cross Junction Microchannels

Authors: Yilin Ma, Zhaomiao Liu, Xiang Wang, Yan Pang

Abstract:

Microscale droplets play an increasingly important role in various applications, including medical diagnostics, material synthesis, chemical engineering, and cell research due to features of high surface-to-volume ratio and tiny scale, which can significantly improve reaction rates, enhance heat transfer efficiency, enable high-throughput parallel studies as well as reduce reagent usage. As a mature technique to manipulate small amounts of liquids, droplet microfluidics could achieve the precise control of droplet parameters such as size, uniformity, structure, and thus has been widely adopted in the engineering and scientific research of multiple fields. Necking processes of the droplet in the cross junction microchannels are experimentally and theoretically investigated and dynamic mechanisms of the neck thinning in two different regimes are revealed. According to evolutions of the minimum neck width and the thinning rate, the necking process is further divided into different stages and the main driving force during each stage is confirmed. Effects of the flow rates and the cross-sectional aspect ratio on the necking process as well as the neck profile at different stages are provided in detail. The distinct features of the two regimes in the squeezing stage are well captured by the theoretical estimations of the effective flow rate and the variations of the actual flow rates in different channels are reasonably reflected by the channel width ratio. In the collapsing stage, the quantitative relation between the minimum neck width and the remaining time is constructed to identify the physical mechanism.

Keywords: cross junction, neck thinning, force analysis, inertial mechanism

Procedia PDF Downloads 110