Search results for: adaptive genetic algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5559

Search results for: adaptive genetic algorithm

1509 Relationship of Oxidative Stress to Elevated Homocysteine and DNA Damage in Coronary Artery Disease Patients

Authors: Shazia Anwer Bukhari, Madiha Javeed Ghani, Muhammad Ibrahim Rajoka

Abstract:

Objective: Biochemical, environmental, physical and genetic factors have a strong effect on the development of coronary disease (CAD). Plasma homocysteine (Hcy) level and DNA damage play a pivotal role in its development and progression. The aim of this study was to investigate the predictive strength of an oxidative stress, clinical biomarkers and total antioxidant status (TAS) in CAD patients to find the correlation of homocysteine, TOS and oxidative DNA damage with other clinical parameters. Methods: Sixty confirmed patients with CAD and 60 healthy individuals as control were included in this study. Different clinical and laboratory parameters were studied in blood samples obtained from patients and control subjects using commercially available biochemical kits and statistical software Results: As compared to healthy individuals, CAD patients had significantly higher concentrations of indices of oxidative stress: homocysteine (P=0.0001), total oxidative stress (TOS) (P=0.0001), serum cholesterol (P=0.04), low density lipoprotein cholesterol (LDL) (P=0.01), high density lipoprotein-cholesterol (HDL) (P=0.0001), and malondialdehyde (MDA) (P=0.001) than those of healthy individuals. Plasma homocysteine level and oxidative DNA damage were positively correlated with cholesterol, triglycerides, systolic blood pressure, urea, total protein and albumin (P values= 0.05). Both Hcy and oxidative DNA damage were negatively correlated with TAS and proteins. Conclusion: Coronary artery disease patients had a significant increase in homocysteine level and DNA damage due to increased oxidative stress. In conclusion, our study shows a significantly increase in lipid peroxidation, TOS, homocysteine and DNA damage in the erythrocytes of patients with CAD. A significant decrease level of HDL-C and TAS was observed only in CAD patients. Therefore these biomarkers may be useful diagnosis of patients with CAD and play an important role in the pathogenesis of CAD.

Keywords: antioxidants, coronary artery disease, DNA damage, homocysteine, oxidative stress, malondialdehyde, 8-Hydroxy-2’deoxyguanosine

Procedia PDF Downloads 484
1508 The Advantages of Using DNA-Barcoding for Determining the Fraud in Seafood

Authors: Elif Tugce Aksun Tumerkan

Abstract:

Although seafood is an important part of human diet and categorized highly traded food industry internationally, it is remain overlooked generally in the global food security aspect. Food product authentication is the main interest in the aim of both avoids commercial fraud and to consider the risks that might be harmful to human health safety. In recent years, with increasing consumer demand for regarding food content and it's transparency, there are some instrumental analyses emerging for determining food fraud depend on some analytical methodologies such as proteomic and metabolomics. While, fish and seafood consumed as fresh previously, within advanced technology, processed or packaged seafood consumption have increased. After processing or packaging seafood, morphological identification is impossible when some of the external features have been removed. The main fish and seafood quality-related issues are the authentications of seafood contents such as mislabelling products which may be contaminated and replacement partly or completely, by lower quality or cheaper ones. For all mentioned reasons, truthful consistent and easily applicable analytical methods are needed for assurance the correct labelling and verifying of seafood products. DNA-barcoding methods become popular robust that used in taxonomic research for endangered or cryptic species in recent years; they are used for determining food traceability also. In this review, when comparing the other proteomic and metabolic analysis, DNA-based methods are allowing a chance to identification all type of food even as raw, spiced and processed products. This privilege caused by DNA is a comparatively stable molecule than protein and other molecules. Furthermore showing variations in sequence based on different species and founding in all organisms, make DNA-based analysis more preferable. This review was performed to clarify the main advantages of using DNA-barcoding for determining seafood fraud among other techniques.

Keywords: DNA-barcoding, genetic analysis, food fraud, mislabelling, packaged seafood

Procedia PDF Downloads 166
1507 Technology Futures in Global Militaries: A Forecasting Method Using Abstraction Hierarchies

Authors: Mark Andrew

Abstract:

Geopolitical tensions are at a thirty-year high, and the pace of technological innovation is driving asymmetry in force capabilities between nation states and between non-state actors. Technology futures are a vital component of defence capability growth, and investments in technology futures need to be informed by accurate and reliable forecasts of the options for ‘systems of systems’ innovation, development, and deployment. This paper describes a method for forecasting technology futures developed through an analysis of four key systems’ development stages, namely: technology domain categorisation, scanning results examining novel systems’ signals and signs, potential system-of systems’ implications in warfare theatres, and political ramifications in terms of funding and development priorities. The method has been applied to several technology domains, including physical systems (e.g., nano weapons, loitering munitions, inflight charging, and hypersonic missiles), biological systems (e.g., molecular virus weaponry, genetic engineering, brain-computer interfaces, and trans-human augmentation), and information systems (e.g., sensor technologies supporting situation awareness, cyber-driven social attacks, and goal-specification challenges to proliferation and alliance testing). Although the current application of the method has been team-centred using paper-based rapid prototyping and iteration, the application of autonomous language models (such as GPT-3) is anticipated as a next-stage operating platform. The importance of forecasting accuracy and reliability is considered a vital element in guiding technology development to afford stronger contingencies as ideological changes are forecast to expand threats to ecology and earth systems, possibly eclipsing the traditional vulnerabilities of nation states. The early results from the method will be subjected to ground truthing using longitudinal investigation.

Keywords: forecasting, technology futures, uncertainty, complexity

Procedia PDF Downloads 113
1506 Power Management Strategy for Solar-Wind-Diesel Stand-Alone Hybrid Energy System

Authors: Md. Aminul Islam, Adel Merabet, Rachid Beguenane, Hussein Ibrahim

Abstract:

This paper presents a simulation and mathematical model of stand-alone solar-wind-diesel based hybrid energy system (HES). A power management system is designed for multiple energy resources in a stand-alone hybrid energy system. Both Solar photovoltaic and wind energy conversion system consists of maximum power point tracking (MPPT), voltage regulation, and basic power electronic interfaces. An additional diesel generator is included to support and improve the reliability of stand-alone system when renewable energy sources are not available. A power management strategy is introduced to distribute the generated power among resistive load banks. The frequency regulation is developed with conventional phase locked loop (PLL) system. The power management algorithm was applied in Matlab®/Simulink® to simulate the results.

Keywords: solar photovoltaic, wind energy, diesel engine, hybrid energy system, power management, frequency and voltage regulation

Procedia PDF Downloads 452
1505 Intelligent Software Architecture and Automatic Re-Architecting Based on Machine Learning

Authors: Gebremeskel Hagos Gebremedhin, Feng Chong, Heyan Huang

Abstract:

Software system is the combination of architecture and organized components to accomplish a specific function or set of functions. A good software architecture facilitates application system development, promotes achievement of functional requirements, and supports system reconfiguration. We describe three studies demonstrating the utility of our architecture in the subdomain of mobile office robots and identify software engineering principles embodied in the architecture. The main aim of this paper is to analyze prove architecture design and automatic re-architecting using machine learning. Intelligence software architecture and automatic re-architecting process is reorganizing in to more suitable one of the software organizational structure system using the user access dataset for creating relationship among the components of the system. The 3-step approach of data mining was used to analyze effective recovery, transformation and implantation with the use of clustering algorithm. Therefore, automatic re-architecting without changing the source code is possible to solve the software complexity problem and system software reuse.

Keywords: intelligence, software architecture, re-architecting, software reuse, High level design

Procedia PDF Downloads 117
1504 Using the Timepix Detector at CERN Accelerator Facilities

Authors: Andrii Natochii

Abstract:

The UA9 collaboration in the last two years has installed two different types of detectors to investigate the channeling effect in the bent silicon crystals with high-energy particles beam on the CERN accelerator facilities: Cherenkov detector CpFM and silicon pixel detector Timepix. In the current work, we describe the main performances of the Timepix detector operation at the SPS and H8 extracted beamline at CERN. We are presenting some detector calibration results and tuning. Our research topics also cover a cluster analysis algorithm for the particle hits reconstruction. We describe the optimal acquisition setup for the Timepix device and the edges of its functionality for the high energy and flux beam monitoring. The measurements of the crystal parameters are very important for the future bent crystal applications and needs a track reconstruction apparatus. Thus, it was decided to construct a short range (1.2 m long) particle telescope based on the Timepix sensors and test it at H8 SPS extraction beamline. The obtained results will be shown as well.

Keywords: beam monitoring, channeling, particle tracking, Timepix detector

Procedia PDF Downloads 179
1503 Wheat Dihaploid and Somaclonal Lines Screening for Resistance to P. nodorum

Authors: Lidia Kowalska, Edward Arseniuk

Abstract:

Glume and leaf blotch is a disease of wheat caused by necrotrophic fungus Parastagonospora nodorum. It is a serious pathogen in many wheat-growing areas throughout the world. Use of resistant cultivars is the most effective and economical means to control the above-mentioned disease. Plant breeders and pathologists have worked intensively to incorporate resistance to the pathogen in new cultivars. Conventional methods of breeding for resistance can be supported by using the biotechnological ones, i.e., somatic embryogenesis and androgenesis. Therefore, an effort was undertaken to compare genetic variation in P. nodorum resistance among winter wheat somaclones, dihaploids and conventional varieties. For the purpose, a population of 16 somaclonal and 4 dihaploid wheat lines from six crosses were used to assess their resistance to P. nodorum under field conditions. Lines were grown in disease-free (fungicide protected) and inoculated micro plots in 2 replications of a split-plot design in a single environment. The plant leaves were inoculated with a mixture of P. nodorum isolates three times. Spore concentrations were adjusted to 4 x 10⁶ of viable spores per one milliliter. The disease severity was rated on a scale, where > 90% – susceptible, < 10% - resistant. Disease ratings of plant leaves showed statistically significant differences among all lines tested. Higher resistance to P. nodorum was observed more often on leaves of somaclonal lines than on dihaploid ones. On average, disease, severity reached 15% on leaves of somaclones and 30% on leaves of dihaploids. Some of the genotypes were showing low leaf infection, e.g. dihaploid D-33 (disease severity 4%) and a somaclone S-1 (disease severity 2%). The results from this study prove that dihaploid and somaclonal variation might be successfully used as an additional source of wheat resistance to the pathogen and it could be recommended to use in commercial breeding programs. The reported results prove that biotechnological methods may effectively be used in breeding for disease resistance of wheat to fungal necrotrophic pathogens.

Keywords: glume and leaf blotch, somaclonal, androgenic variation, wheat, resistance breeding

Procedia PDF Downloads 120
1502 Personalized Email Marketing Strategy: A Reinforcement Learning Approach

Authors: Lei Zhang, Tingting Xu, Jun He, Zhenyu Yan

Abstract:

Email marketing is one of the most important segments of online marketing. It has been proved to be the most effective way to acquire and retain customers. The email content is vital to customers. Different customers may have different familiarity with a product, so a successful marketing strategy must personalize email content based on individual customers’ product affinity. In this study, we build our personalized email marketing strategy with three types of emails: nurture, promotion, and conversion. Each type of email has a different influence on customers. We investigate this difference by analyzing customers’ open rates, click rates and opt-out rates. Feature importance from response models is also analyzed. The goal of the marketing strategy is to improve the click rate on conversion-type emails. To build the personalized strategy, we formulate the problem as a reinforcement learning problem and adopt a Q-learning algorithm with variations. The simulation results show that our model-based strategy outperforms the current marketer’s strategy.

Keywords: email marketing, email content, reinforcement learning, machine learning, Q-learning

Procedia PDF Downloads 192
1501 Harmonic Data Preparation for Clustering and Classification

Authors: Ali Asheibi

Abstract:

The rapid increase in the size of databases required to store power quality monitoring data has demanded new techniques for analysing and understanding the data. One suggested technique to assist in analysis is data mining. Preparing raw data to be ready for data mining exploration take up most of the effort and time spent in the whole data mining process. Clustering is an important technique in data mining and machine learning in which underlying and meaningful groups of data are discovered. Large amounts of harmonic data have been collected from an actual harmonic monitoring system in a distribution system in Australia for three years. This amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. In this paper, harmonic data preparation processes to better understanding of the data have been presented. Underlying classes in this data has then been identified using clustering technique based on the Minimum Message Length (MML) method. The underlying operational information contained within the clusters can be rapidly visualised by the engineers. The C5.0 algorithm was used for classification and interpretation of the generated clusters.

Keywords: data mining, harmonic data, clustering, classification

Procedia PDF Downloads 245
1500 A Comprehensive Framework for Fraud Prevention and Customer Feedback Classification in E-Commerce

Authors: Samhita Mummadi, Sree Divya Nagalli, Harshini Vemuri, Saketh Charan Nakka, Sumesh K. J.

Abstract:

One of the most significant challenges faced by people in today’s digital era is an alarming increase in fraudulent activities on online platforms. The fascination with online shopping to avoid long queues in shopping malls, the availability of a variety of products, and home delivery of goods have paved the way for a rapid increase in vast online shopping platforms. This has had a major impact on increasing fraudulent activities as well. This loop of online shopping and transactions has paved the way for fraudulent users to commit fraud. For instance, consider a store that orders thousands of products all at once, but what’s fishy about this is the massive number of items purchased and their transactions turning out to be fraud, leading to a huge loss for the seller. Considering scenarios like these underscores the urgent need to introduce machine learning approaches to combat fraud in online shopping. By leveraging robust algorithms, namely KNN, Decision Trees, and Random Forest, which are highly effective in generating accurate results, this research endeavors to discern patterns indicative of fraudulent behavior within transactional data. Introducing a comprehensive solution to this problem in order to empower e-commerce administrators in timely fraud detection and prevention is the primary motive and the main focus. In addition to that, sentiment analysis is harnessed in the model so that the e-commerce admin can tailor to the customer’s and consumer’s concerns, feedback, and comments, allowing the admin to improve the user’s experience. The ultimate objective of this study is to ramp up online shopping platforms against fraud and ensure a safer shopping experience. This paper underscores a model accuracy of 84%. All the findings and observations that were noted during our work lay the groundwork for future advancements in the development of more resilient and adaptive fraud detection systems, which will become crucial as technologies continue to evolve.

Keywords: behavior analysis, feature selection, Fraudulent pattern recognition, imbalanced classification, transactional anomalies

Procedia PDF Downloads 24
1499 Molecular Detection of Helicobacter Pylori and Its Association with TNFα-308 Polymorphism in Cardiovascular Diseases

Authors: Azar Sharafianpor, Hossein Rassi, Fahimeh Nemati Mansur

Abstract:

Cardiovascular diseases (CVD) are the most important cause of death in industrialized and developing countries such as Iran. The most important risk factors for the CVD, genetic factors and chronic infectious agents, such as Helicobacter pylori, can be mentioned. The TNFα gene is one of the most important anti-inflammatory cytokines that can affect the sensitivity, efficacy, and ability of the immune response to chronic infections. Some TNF-α gene polymorphisms, including the replacement of the G nucleotide G with A at position 308 in the promoter region of TNF-α, increase the transcription of cytokines in the target cells and thus predispose a person to chronic infections. This study examines the TNF-α 308 polymorphism and its association with Helicobacter pylori infection in this disease. This study was a case-control study in which 154 patients were examined as cases or patients with symptoms of myocardial infarction or angina and 160 as controls or healthy subjects. All of the subjects at different ages were given venous blood and age, BMI, cholesterol, LDL, and HDL were determined. DNA was extracted from the specimens, and the cagA gene from H. pylori and the TNF-α-308 polymorphism were determined by PCR in patients and healthy subjects. Statistical analysis was performed with Epi Info software. The results showed that the frequency of H. pylori infection in the patients and healthy group were 53.23% (82 out of 154) and 47.5% (76 out of 160). There was no significant difference in H. pylori outbreak between the two groups. The frequencies of TNF-α-308 genotype for GG, GA, and AA in patients were 0.17, 0.49, and 0.34, respectively, whereas for controls 0.47, 0.35, and 0.18 for GG, GA, and AA, respectively. The frequency of genotype analysis of TNF-α-308 polymorphisms in both patients and healthy groups showed that there was a significant difference in the frequency of genotypes and the AA genotype was higher in the affected individuals. Also, there was a significant relationship between the genotype and the contamination with H. pylori and changes in cholesterol, LDL, and HDL levels were observed. The results of the study indicate that H. pylori detection in individuals with AA genotype in people under 50 years of age can play an important role in early diagnosis and treatment of cardiovascular disease.

Keywords: Helicobacter pylori, TNFα gene, cardiovascular diseases, TNFα-308 polymorphism

Procedia PDF Downloads 150
1498 Implementation of Elliptic Curve Cryptography Encryption Engine on a FPGA

Authors: Mohamad Khairi Ishak

Abstract:

Conventional public key crypto systems such as RSA (Ron Rivest, Adi Shamir and Leonard Adleman), DSA (Digital Signature Algorithm), and Elgamal are no longer efficient to be implemented in the small, memory constrained devices. Elliptic Curve Cryptography (ECC), which allows smaller key length as compared to conventional public key crypto systems, has thus become a very attractive choice for many applications. This paper describes implementation of an elliptic curve cryptography (ECC) encryption engine on a FPGA. The system has been implemented in 2 different key sizes, which are 131 bits and 163 bits. Area and timing analysis are provided for both key sizes for comparison. The crypto system, which has been implemented on Altera’s EPF10K200SBC600-1, has a hardware size of 5945/9984 and 6913/9984 of logic cells for 131 bits implementation and 163 bits implementation respectively. The crypto system operates up to 43 MHz, and performs point multiplication operation in 11.3 ms for 131 bits implementation and 14.9 ms for 163 bits implementation. In terms of speed, our crypto system is about 8 times faster than the software implementation of the same system.

Keywords: elliptic curve cryptography, FPGA, key sizes, memory

Procedia PDF Downloads 317
1497 Parameters Optimization of the Laminated Composite Plate for Sound Transmission Problem

Authors: Yu T. Tsai, Jin H. Huang

Abstract:

In this paper, the specific sound transmission loss (TL) of the laminated composite plate (LCP) with different material properties in each layer is investigated. The numerical method to obtain the TL of the LCP is proposed by using elastic plate theory. The transfer matrix approach is novelty presented for computational efficiency in solving the numerous layers of dynamic stiffness matrix (D-matrix) of the LCP. Besides the numerical simulations for calculating the TL of the LCP, the material properties inverse method is presented for the design of a laminated composite plate analogous to a metallic plate with a specified TL. As a result, it demonstrates that the proposed computational algorithm exhibits high efficiency with a small number of iterations for achieving the goal. This method can be effectively employed to design and develop tailor-made materials for various applications.

Keywords: sound transmission loss, laminated composite plate, transfer matrix approach, inverse problem, elastic plate theory, material properties

Procedia PDF Downloads 385
1496 Evaluating Gene-Gene Interaction among Nicotine Dependence Genes on the Risk of Oral Clefts

Authors: Mengying Wang, Dongjing Liu, Holger Schwender, Ping Wang, Hongping Zhu, Tao Wu, Terri H Beaty

Abstract:

Background: Maternal smoking is a recognized risk factor for nonsyndromic cleft lip with or without cleft palate (NSCL/P). It has been reported that the effect of maternal smoking on oral clefts is mediated through genes that influence nicotine dependence. The polymorphisms of cholinergic receptor nicotinic alpha (CHRNA) and beta (CHRNB) subunits genes have previously shown strong associations with nicotine dependence. Here, we attempted to investigate whether the above genes are associated with clefting risk through testing for potential gene-gene (G×G) and gene-environment (G×E) interaction. Methods: We selected 120 markers in 14 genes associated with nicotine dependence to conduct transmission disequilibrium tests among 806 Chinese NSCL/P case-parent trios ascertained in an international consortium which conducted a genome-wide association study (GWAS) of oral clefts. We applied Cordell’s method using “TRIO” package in R to explore G×G as well as G×E interaction involving environmental tobacco smoke (ETS) based on conditional logistic regression model. Results: while no SNP showed significant association with NSCL/P after Bonferroni correction, we found signals for G×G interaction between 10 pairs of SNPs in CHRNA3, CHRNA5, and CHRNB4 (p<10-8), among which the most significant interaction was found between RS3743077 (CHRNA3) and RS11636753 (CHRNB4, p<8.2×10-12). Linkage disequilibrium (LD) analysis revealed only low level of LD between these markers. However, there were no significant results for G×ETS interaction. Conclusion: This study fails to detect association between nicotine dependence genes and NSCL/P, but illustrates the importance of taking into account potential G×G interaction for genetic association analysis in NSCL/P. This study also suggests nicotine dependence genes should be considered as important candidate genes for NSCL/P in future studies.

Keywords: Gene-Gene Interaction, Maternal Smoking, Nicotine Dependence, Non-Syndromic Cleft Lip with or without Cleft Palate

Procedia PDF Downloads 336
1495 Application of Artificial Neural Network for Prediction of High Tensile Steel Strands in Post-Tensioned Slabs

Authors: Gaurav Sancheti

Abstract:

This study presents an impacting approach of Artificial Neural Networks (ANNs) in determining the quantity of High Tensile Steel (HTS) strands required in post-tensioned (PT) slabs. Various PT slab configurations were generated by varying the span and depth of the slab. For each of these slab configurations, quantity of required HTS strands were recorded. ANNs with backpropagation algorithm and varying architectures were developed and their performance was evaluated in terms of Mean Square Error (MSE). The recorded data for the quantity of HTS strands was used as a feeder database for training the developed ANNs. The networks were validated using various validation techniques. The results show that the proposed ANNs have a great potential with good prediction and generalization capability.

Keywords: artificial neural networks, back propagation, conceptual design, high tensile steel strands, post tensioned slabs, validation techniques

Procedia PDF Downloads 221
1494 Coach-Created Motivational Climate and the Coach-Athlete Relationship

Authors: Kamila Irena Szpunar

Abstract:

The central idea of the study is considered from two perspectives. The first perspective includes the interpersonal relationships formed by coach and athlete. Another perspective is connected with motivational environment which is created by the coach in team. This study will show the interplay between the perceived motivational climate created by the coach and the interpersonal dynamics between coaches and athletes. It is important because it will supply knowledge of the interpersonal conditions that can foster adaptive or maladaptive behavior in sport conditions. It also ensures implications for understanding how the perceived motivational atmosphere in a team is manifested at the level of coach – athlete relationship and interactions. The primary purpose of the study was to identify the association between coach-athlete relationship and athletes' perception of the motivational climate in team sports. The secondary purposes examined the differences between female and male athletes in perceiving of the motivational climate and the coach athlete-relationship. To check coach-athlete relationship Polish translation of The Coach-Athlete Relationship Questionnaire will be used. It measures athletes' perceptions of coach- athlete relationship defined by 3+1 Cs conceptual model of the coach-athlete relationship. From this model were used three constructs such as closeness (feelings of trust, respect etc.), commitment (thoughts about the future of the relationship), and complementarity (co-operative interactions during practice sessions). To check perceived motivational climate will be used Polish translation of The Perceived Motivational Climate in Sport Questionnaire-2 (PMCSQ-2). PMCSQ-2 was created to assess athletes' perceptions of the motivational climates in their teams. The questionnaire includes two general dimensions, the perceived task-involving climate and the perceived ego-involving climate; each contains three subscales. To check the associations between elements the motivational climate and coach-athlete relationship was used canonical correlation analysis. Student's t-test was used to check gender differences in athletes' perceptions of the motivational climate and the coach-athlete relationship. The findings suggest that in Polish athletes' perceptions of the coach-athlete relationship have motivational significance and that there are gender differences between female and male athletes in both variables – coach-athlete relationship and kind of motivational climate. According to the author's knowledge, such kind of study has not been conducted in Polish conditions before and is the first study on the subject of the motivational climate and the coach-athlete relationship in Poland. Information from this study can be useful for the development of interventions for enhancing the quality of coach- athlete relationship and its associated outcomes connected with motivational climate.

Keywords: coach-athlete relationship, ego-involving climate, motivational climate, task-involving climate

Procedia PDF Downloads 197
1493 Framework for Socio-Technical Issues in Requirements Engineering for Developing Resilient Machine Vision Systems Using Levels of Automation through the Lifecycle

Authors: Ryan Messina, Mehedi Hasan

Abstract:

This research is to examine the impacts of using data to generate performance requirements for automation in visual inspections using machine vision. These situations are intended for design and how projects can smooth the transfer of tacit knowledge to using an algorithm. We have proposed a framework when specifying machine vision systems. This framework utilizes varying levels of automation as contingency planning to reduce data processing complexity. Using data assists in extracting tacit knowledge from those who can perform the manual tasks to assist design the system; this means that real data from the system is always referenced and minimizes errors between participating parties. We propose using three indicators to know if the project has a high risk of failing to meet requirements related to accuracy and reliability. All systems tested achieved a better integration into operations after applying the framework.

Keywords: automation, contingency planning, continuous engineering, control theory, machine vision, system requirements, system thinking

Procedia PDF Downloads 203
1492 Alternator Fault Detection Using Wigner-Ville Distribution

Authors: Amin Ranjbar, Amir Arsalan Jalili Zolfaghari, Amir Abolfazl Suratgar, Mehrdad Khajavi

Abstract:

This paper describes two stages of learning-based fault detection procedure in alternators. The procedure consists of three states of machine condition namely shortened brush, high impedance relay and maintaining a healthy condition in the alternator. The fault detection algorithm uses Wigner-Ville distribution as a feature extractor and also appropriate feature classifier. In this work, ANN (Artificial Neural Network) and also SVM (support vector machine) were compared to determine more suitable performance evaluated by the mean squared of errors criteria. Modules work together to detect possible faulty conditions of machines working. To test the method performance, a signal database is prepared by making different conditions on a laboratory setup. Therefore, it seems by implementing this method, satisfactory results are achieved.

Keywords: alternator, artificial neural network, support vector machine, time-frequency analysis, Wigner-Ville distribution

Procedia PDF Downloads 370
1491 Assessment of Sperm Aneuploidy Using Advanced Sperm Fish Technique in Infertile Patients

Authors: Archana. S, Usha Rani. G, Anand Balakrishnan, Sanjana.R, Solomon F, Vijayalakshmi. J

Abstract:

Background: There is evidence that male factors contribute to the infertility of up to 50% of couples, who are evaluated and treated for infertility using advanced assisted reproductive technologies. Genetic abnormalities, including sperm chromosome aneuploidy as well as structural aberrations, are one of the major causes of male infertility. Recent advances in technology expedite the evaluation of sperm aneuploidy. The purpose of the study was to de-termine the prevalence of sperm aneuploidy in infertile males and the degree of association between DNA fragmentation and sperm aneuploidy. Methods: In this study, 75 infertile men were included, and they were divided into four abnormal groups (Oligospermia, Terato-spermia, Asthenospermia and Oligoasthenoteratospermia (OAT)). Men with children who were normozoospermia served as the control group. The Fluorescence in situ hybridization (FISH) method was used to test for sperm aneuploidy, and the Sperm Chromatin Dispersion Assay (SCDA) was used to measure the fragmentation of sperm DNA. Spearman's correla-tion coefficient was used to evaluate the relationship between sperm aneuploidy and sperm DNA fragmentation along with age. P < 0.05 was regarded as significant. Results: 75 partic-ipants' ages varied from 28 to 48 years old (35.5±5.1). The percentage of spermatozoa bear-ing X and Y was determined to be statistically significant (p-value < 0.05) and was found to be 48.92% and 51.18% of CEP X X 1 – nucish (CEP XX 1) [100] and CEP Y X 1 – nucish (CEP Y X 1) [100]. When compared to the rate of DNA fragmentation, it was discovered that infertile males had a greater frequency of sperm aneuploidy. Asthenospermia and OAT groups in sex chromosomal aneuploidy were significantly correlated (p<0.05). Conclusion: Sperm FISH and SCDA assay results showed increased sperm aneuploidy frequency, and DNA fragmentation index in infertile men compared with fertile men. There is a significant relationship observed between sperm aneuploidy and DNA fragmentation in OAT patients. When evaluating male variables and idiopathic infertility, the sperm FISH screening method can be used as a valuable diagnostic tool.

Keywords: ale infertility, dfi (dna fragmentation assay) (scd-sperm chromatin dispersion).art (artificial reproductive technology), trisomy, aneuploidy, fish (fluorescence in-situ hybridization), oat (oligoasthoteratospermia)

Procedia PDF Downloads 52
1490 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance

Authors: Ammar Alali, Mahmoud Abughaban

Abstract:

Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.

Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe

Procedia PDF Downloads 225
1489 Design and Motion Control of a Two-Wheel Inverted Pendulum Robot

Authors: Shiuh-Jer Huang, Su-Shean Chen, Sheam-Chyun Lin

Abstract:

Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results.

Keywords: balance control, speed control, intelligent controller, two wheel inverted pendulum

Procedia PDF Downloads 223
1488 Research on Development and Accuracy Improvement of an Explosion Proof Combustible Gas Leak Detector Using an IR Sensor

Authors: Gyoutae Park, Seungho Han, Byungduk Kim, Youngdo Jo, Yongsop Shim, Yeonjae Lee, Sangguk Ahn, Hiesik Kim, Jungil Park

Abstract:

In this paper, we presented not only development technology of an explosion proof type and portable combustible gas leak detector but also algorithm to improve accuracy for measuring gas concentrations. The presented techniques are to apply the flame-proof enclosure and intrinsic safe explosion proof to an infrared gas leak detector at first in Korea and to improve accuracy using linearization recursion equation and Lagrange interpolation polynomial. Together, we tested sensor characteristics and calibrated suitable input gases and output voltages. Then, we advanced the performances of combustible gaseous detectors through reflecting demands of gas safety management fields. To check performances of two company's detectors, we achieved the measurement tests with eight standard gases made by Korea Gas Safety Corporation. We demonstrated our instruments better in detecting accuracy other than detectors through experimental results.

Keywords: accuracy improvement, IR gas sensor, gas leak, detector

Procedia PDF Downloads 390
1487 A Review on Water Models of Surface Water Environment

Authors: Shahbaz G. Hassan

Abstract:

Water quality models are very important to predict the changes in surface water quality for environmental management. The aim of this paper is to give an overview of the water qualities, and to provide directions for selecting models in specific situation. Water quality models include one kind of model based on a mechanistic approach, while other models simulate water quality without considering a mechanism. Mechanistic models can be widely applied and have capabilities for long-time simulation, with highly complexity. Therefore, more spaces are provided to explain the principle and application experience of mechanistic models. Mechanism models have certain assumptions on rivers, lakes and estuaries, which limits the application range of the model, this paper introduces the principles and applications of water quality model based on the above three scenarios. On the other hand, mechanistic models are more easily to compute, and with no limit to the geographical conditions, but they cannot be used with confidence to simulate long term changes. This paper divides the empirical models into two broad categories according to the difference of mathematical algorithm, models based on artificial intelligence and models based on statistical methods.

Keywords: empirical models, mathematical, statistical, water quality

Procedia PDF Downloads 262
1486 Identifying Risk Factors for Readmission Using Decision Tree Analysis

Authors: Sıdıka Kaya, Gülay Sain Güven, Seda Karsavuran, Onur Toka

Abstract:

This study is part of an ongoing research project supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project Number 114K404, and participation to this conference was supported by Hacettepe University Scientific Research Coordination Unit under Project Number 10243. Evaluation of hospital readmissions is gaining importance in terms of quality and cost, and is becoming the target of national policies. In Turkey, the topic of hospital readmission is relatively new on agenda and very few studies have been conducted on this topic. The aim of this study was to determine 30-day readmission rates and risk factors for readmission. Whether readmission was planned, related to the prior admission and avoidable or not was also assessed. The study was designed as a ‘prospective cohort study.’ 472 patients hospitalized in internal medicine departments of a university hospital in Turkey between February 1, 2015 and April 30, 2015 were followed up. Analyses were conducted using IBM SPSS Statistics version 22.0 and SPSS Modeler 16.0. Average age of the patients was 56 and 56% of the patients were female. Among these patients 95 were readmitted. Overall readmission rate was calculated as 20% (95/472). However, only 31 readmissions were unplanned. Unplanned readmission rate was 6.5% (31/472). Out of 31 unplanned readmission, 24 was related to the prior admission. Only 6 related readmission was avoidable. To determine risk factors for readmission we constructed Chi-square automatic interaction detector (CHAID) decision tree algorithm. CHAID decision trees are nonparametric procedures that make no assumptions of the underlying data. This algorithm determines how independent variables best combine to predict a binary outcome based on ‘if-then’ logic by portioning each independent variable into mutually exclusive subsets based on homogeneity of the data. Independent variables we included in the analysis were: clinic of the department, occupied beds/total number of beds in the clinic at the time of discharge, age, gender, marital status, educational level, distance to residence (km), number of people living with the patient, any person to help his/her care at home after discharge (yes/no), regular source (physician) of care (yes/no), day of discharge, length of stay, ICU utilization (yes/no), total comorbidity score, means for each 3 dimensions of Readiness for Hospital Discharge Scale (patient’s personal status, patient’s knowledge, and patient’s coping ability) and number of daycare admissions within 30 days of discharge. In the analysis, we included all 95 readmitted patients (46.12%), but only 111 (53.88%) non-readmitted patients, although we had 377 non-readmitted patients, to balance data. The risk factors for readmission were found as total comorbidity score, gender, patient’s coping ability, and patient’s knowledge. The strongest identifying factor for readmission was comorbidity score. If patients’ comorbidity score was higher than 1, the risk for readmission increased. The results of this study needs to be validated by other data–sets with more patients. However, we believe that this study will guide further studies of readmission and CHAID is a useful tool for identifying risk factors for readmission.

Keywords: decision tree, hospital, internal medicine, readmission

Procedia PDF Downloads 256
1485 The Interplay between Autophagy and Macrophages' Polarization in Wound Healing: A Genetic Regulatory Network Analysis

Authors: Mayada Mazher, Ahmed Moustafa, Ahmed Abdellatif

Abstract:

Background: Autophagy is a eukaryotic, highly conserved catabolic process implicated in many pathophysiologies such as wound healing. Autophagy-associated genes serve as a scaffolding platform for signal transduction of macrophage polarization during the inflammatory phase of wound healing and tissue repair process. In the current study, we report a model for the interplay between autophagy-associated genes and macrophages polarization associated genes. Methods: In silico analysis was performed on 249 autophagy-related genes retrieved from the public autophagy database and gene expression data retrieved from Gene Expression Omnibus (GEO); GSE81922 and GSE69607 microarray data macrophages polarization 199 DEGS. An integrated protein-protein interaction network was constructed for autophagy and macrophage gene sets. The gene sets were then used for GO terms pathway enrichment analysis. Common transcription factors for autophagy and macrophages' polarization were identified. Finally, microRNAs enriched in both autophagy and macrophages were predicated. Results: In silico prediction of common transcription factors in DEGs macrophages and autophagy gene sets revealed a new role for the transcription factors, HOMEZ, GABPA, ELK1 and REL, that commonly regulate macrophages associated genes: IL6,IL1M, IL1B, NOS1, SOC3 and autophagy-related genes: Atg12, Rictor, Rb1cc1, Gaparab1, Atg16l1. Conclusions: Autophagy and macrophages' polarization are interdependent cellular processes, and both autophagy-related proteins and macrophages' polarization related proteins coordinate in tissue remodelling via transcription factors and microRNAs regulatory network. The current work highlights a potential new role for transcription factors HOMEZ, GABPA, ELK1 and REL in wound healing.

Keywords: autophagy related proteins, integrated network analysis, macrophages polarization M1 and M2, tissue remodelling

Procedia PDF Downloads 150
1484 Numerical Model for Investigation of Recombination Mechanisms in Graphene-Bonded Perovskite Solar Cells

Authors: Amir Sharifi Miavaghi

Abstract:

It is believed recombination mechnisms in graphene-bonded perovskite solar cells based on numerical model in which doped-graphene structures are employed as anode/cathode bonding semiconductor. Moreover, th‌‌‌‌e da‌‌‌‌‌rk-li‌‌‌‌‌ght c‌‌‌‌urrent d‌‌‌‌ens‌‌‌‌ity-vo‌‌‌‌‌‌‌ltage density-voltage cu‌‌‌‌‌‌‌‌‌‌‌rves are investigated by regression analysis. L‌‌‌oss m‌‌‌‌echa‌‌‌‌nisms suc‌‌‌h a‌‌‌‌‌‌s ba‌‌‌‌ck c‌‌‌ontact b‌‌‌‌‌arrier, d‌‌‌‌eep surface defect i‌‌‌‌n t‌‌‌‌‌‌‌he adsorbent la‌‌‌yer is det‌‌‌‌‌ermined b‌‌‌y adapting th‌‌‌e sim‌‌‌‌‌ulated ce‌‌‌‌‌ll perfor‌‌‌‌‌mance to t‌‌‌‌he measure‌‌‌‌ments us‌‌‌‌ing the diffe‌‌‌‌‌‌rential evolu‌‌‌‌‌tion of th‌‌‌‌e global optimization algorithm. T‌‌‌‌he performance of t‌‌‌he c‌‌‌‌ell i‌‌‌‌n the connection proc‌‌‌‌‌ess incl‌‌‌‌‌‌udes J-V cur‌‌‌‌‌‌ves that are examined at di‌‌‌‌‌fferent tempe‌‌‌‌‌‌‌ratures an‌‌‌d op‌‌‌‌en cir‌‌‌‌cuit vol‌‌‌‌tage (V) und‌‌‌‌er differ‌‌‌‌‌ent light intensities as a function of temperature. Ba‌‌‌‌sed o‌‌‌n t‌‌‌he prop‌‌‌‌osed nu‌‌‌‌‌merical mod‌‌‌‌el a‌‌‌‌nd the acquired lo‌‌‌‌ss mecha‌‌‌‌‌‌nisms, our approach can be used to improve the efficiency of the solar cell further. Due to the high demand for alternative energy sources, solar cells are good alternatives for energy storage using the photovoltaic phenomenon.

Keywords: numerical model, recombination mechanism, graphen, perovskite solarcell

Procedia PDF Downloads 67
1483 Associations of Gene Polymorphism of IL-17 a (C737T) with Its Level in Patients with Erysipelas Kazakh Population

Authors: Nazira B. Bekenova, Lydia A. Mukovozova, Andrej M. Grjibovski, Alma Z. Tokayeva, Yerbol M. Smail, Nurlan E. Aukenov

Abstract:

Erysipelas is an infectious disease with socio-economic significance and prone to prolonged recurrent course (30%). Contribution of genetic factors, in particular the gene polymorphism of cytokines, can be essential in disease etiology and pathogenesis. Interleukin – 17 A are produced by T helpers of 17 type and plays a key role in development of local inflammation process. Local inflammatory process is a dominant in the clinic of erysipelas. Established that the skin and mucosas are primary areas of migration (homing) Th17-cell and their cytokines are stimulate the barrier function of the epithelium. We studied associations between gene polymorphism of IL-17A (C737T) rs 8193036 and IL-17A level in patients with erysipelas Kazakh population. Altogether, 90 cases with erysipelas and 90 healthy controls from an ethnic Kazakh population comprised the sample. Cases were identified at Clinical Infectious Diseases Hospital of Semey (Kazakhstan). The IL-17A (rs8193036) polymorphism was analyzed by a real time polymerase chain reaction. Plasma levels of IL-17 A were assessed by immuneenzyme analysis method using ‘Vector-Best’ test-system (Russia). Differences in levels of IL-17 A between CC, TT, CT groups were studied using Kruskal — Wallis test. Pairwise comparisons were performed using Mann-Whitney tests with Bonferroni correction (New significance level was set to 0.025). We found, that in patients with erysipelas with CC genotype the level of IL-17 A was higher (p= 0, 010) compared to the carriers of CT genotype. When compared the level of IL – 17 A between the patients with TT genotype and patients with CC genotype, also between the patients with CT genotype and patients with TT genotype statistically significant differences are not revealed (p = 0.374 and p = 0.043, respectively). Comparisons of IL-17 A plasma levels between the CC and CT genotypes, between the CC and TT genotypes, and between the TT and CT in healthy patients did not reveal significant differences (p = 0, 291). Therefore, we are determined the associations of gene polymorphism of IL-17 A (C737T) with its level in patients erysipelas carriers CC genotype.

Keywords: erysipelas, interleukin – 17 A, Kazakh, polymorphism

Procedia PDF Downloads 434
1482 Using of Particle Swarm Optimization for Loss Minimization of Vector-Controlled Induction Motors

Authors: V. Rashtchi, H. Bizhani, F. R. Tatari

Abstract:

This paper presents a new online loss minimization for an induction motor drive. Among the many loss minimization algorithms (LMAs) for an induction motor, a particle swarm optimization (PSO) has the advantages of fast response and high accuracy. However, the performance of the PSO and other optimization algorithms depend on the accuracy of the modeling of the motor drive and losses. In the development of the loss model, there is always a trade off between accuracy and complexity. This paper presents a new online optimization to determine an optimum flux level for the efficiency optimization of the vector-controlled induction motor drive. An induction motor (IM) model in d-q coordinates is referenced to the rotor magnetizing current. This transformation results in no leakage inductance on the rotor side, thus the decomposition into d-q components in the steady-state motor model can be utilized in deriving the motor loss model. The suggested algorithm is simple for implementation.

Keywords: induction machine, loss minimization, magnetizing current, particle swarm optimization

Procedia PDF Downloads 630
1481 Spectral Anomaly Detection and Clustering in Radiological Search

Authors: Thomas L. McCullough, John D. Hague, Marylesa M. Howard, Matthew K. Kiser, Michael A. Mazur, Lance K. McLean, Johanna L. Turk

Abstract:

Radiological search and mapping depends on the successful recognition of anomalies in large data sets which contain varied and dynamic backgrounds. We present a new algorithmic approach for real-time anomaly detection which is resistant to common detector imperfections, avoids the limitations of a source template library and provides immediate, and easily interpretable, user feedback. This algorithm is based on a continuous wavelet transform for variance reduction and evaluates the deviation between a foreground measurement and a local background expectation using methods from linear algebra. We also present a technique for recognizing and visualizing spectrally similar clusters of data. This technique uses Laplacian Eigenmap Manifold Learning to perform dimensional reduction which preserves the geometric "closeness" of the data while maintaining sensitivity to outlying data. We illustrate the utility of both techniques on real-world data sets.

Keywords: radiological search, radiological mapping, radioactivity, radiation protection

Procedia PDF Downloads 691
1480 Uncertainty Estimation in Neural Networks through Transfer Learning

Authors: Ashish James, Anusha James

Abstract:

The impressive predictive performance of deep learning techniques on a wide range of tasks has led to its widespread use. Estimating the confidence of these predictions is paramount for improving the safety and reliability of such systems. However, the uncertainty estimates provided by neural networks (NNs) tend to be overconfident and unreasonable. Ensemble of NNs typically produce good predictions but uncertainty estimates tend to be inconsistent. Inspired by these, this paper presents a framework that can quantitatively estimate the uncertainties by leveraging the advances in transfer learning through slight modification to the existing training pipelines. This promising algorithm is developed with an intention of deployment in real world problems which already boast a good predictive performance by reusing those pretrained models. The idea is to capture the behavior of the trained NNs for the base task by augmenting it with the uncertainty estimates from a supplementary network. A series of experiments with known and unknown distributions show that the proposed approach produces well calibrated uncertainty estimates with high quality predictions.

Keywords: uncertainty estimation, neural networks, transfer learning, regression

Procedia PDF Downloads 134