Search results for: taper pin ratio
570 Population Dynamics of Cyprinid Fish Species (Mahseer: Tor Species) and Its Conservation in Yamuna River of Garhwal Region, India
Authors: Davendra Singh Malik
Abstract:
India is one of the mega-biodiversity countries in the world and contributing about 11.72% of global fish diversity. The Yamuna river is the longest tributary of Ganga river ecosystem, providing a natural habitat for existing fish diversity of Himalayan region of Indian subcontinent. The several hydropower dams and barrages have been constructed on different locations of major rivers in Garhwal region. These dams have caused a major ecological threat to change existing fresh water ecosystems altering water flows, interrupting ecological connectivity, fragmenting habitats and native riverine fish species. Mahseer fishes (Indian carp) of the genus Tor, are large cyprinids endemic to continental Asia popularly known as ‘Game or sport fishes’ have continued to be decimated by fragmented natural habitats due to damming the water flow in riverine system and categorized as threatened fishes of India. The fresh water fish diversity as 24 fish species were recorded from Yamuna river. The present fish catch data has revealed that mahseer fishes (Tor tor and Tor putitora) were contributed about 32.5 %, 25.6 % and 18.2 % in upper, middle and lower riverine stretches of Yaumna river. The length range of mahseer (360-450mm) recorded as dominant size of catch composition. The CPUE (catch per unit effort) of mahseer fishes also indicated about a sharp decline of fish biomass, changing growth pattern, sex ratio and maturity stages of fishes. Only 12.5 – 14.8 % mahseer female brooders have showed only maturity phases in breeding months. The fecundity of mature mahseer female fish brooders ranged from 2500-4500 no. of ova during breeding months. The present status of mahseer fishery has attributed to the over exploitative nature in Yamuna river. The mahseer population is shrinking continuously in down streams of Yamuna river due to cumulative effects of various ecological stress. Mahseer conservation programme have implemented as 'in situ fish conservation' for enhancement of viable population size of mahseer species and restore the genetic loss of mahseer fish germplasm in Yamuna river of Garhwal Himalayan region.Keywords: conservation practice, population dynamics, tor fish species, Yamuna River
Procedia PDF Downloads 255569 Changes in Skin Microbiome Diversity According to the Age of Xian Women
Authors: Hanbyul Kim, Hye-Jin Kin, Taehun Park, Woo Jun Sul, Susun An
Abstract:
Skin is the largest organ of the human body and can provide the diverse habitat for various microorganisms. The ecology of the skin surface selects distinctive sets of microorganisms and is influenced by both endogenous intrinsic factors and exogenous environmental factors. The diversity of the bacterial community in the skin also depends on multiple host factors: gender, age, health status, location. Among them, age-related changes in skin structure and function are attributable to combinations of endogenous intrinsic factors and exogenous environmental factors. Skin aging is characterized by a decrease in sweat, sebum and the immune functions thus resulting in significant alterations in skin surface physiology including pH, lipid composition, and sebum secretion. The present study gives a comprehensive clue on the variation of skin microbiota and the correlations between ages by analyzing and comparing the metagenome of skin microbiome using Next Generation Sequencing method. Skin bacterial diversity and composition were characterized and compared between two different age groups: younger (20 – 30y) and older (60 - 70y) Xian, Chinese women. A total of 73 healthy women meet two conditions: (I) living in Xian, China; (II) maintaining healthy skin status during the period of this study. Based on Ribosomal Database Project (RDP) database, skin samples of 73 participants were enclosed with ten most abundant genera: Chryseobacterium, Propionibacterium, Enhydrobacter, Staphylococcus and so on. Although these genera are the most predominant genus overall, each genus showed different proportion in each group. The most dominant genus, Chryseobacterium was more present relatively in Young group than in an old group. Similarly, Propionibacterium and Enhydrobacter occupied a higher proportion of skin bacterial composition of the young group. Staphylococcus, in contrast, inhabited more in the old group. The beta diversity that represents the ratio between regional and local species diversity showed significantly different between two age groups. Likewise, The Principal Coordinate Analysis (PCoA) values representing each phylogenetic distance in the two-dimensional framework using the OTU (Operational taxonomic unit) values of the samples also showed differences between the two groups. Thus, our data suggested that the composition and diversification of skin microbiomes in adult women were largely affected by chronological and physiological skin aging.Keywords: next generation sequencing, age, Xian, skin microbiome
Procedia PDF Downloads 155568 Computational Simulations and Assessment of the Application of Non-Circular TAVI Devices
Authors: Jonathon Bailey, Neil Bressloff, Nick Curzen
Abstract:
Transcatheter Aortic Valve Implantation (TAVI) devices are stent-like frames with prosthetic leaflets on the inside, which are percutaneously implanted. The device in a crimped state is fed through the arteries to the aortic root, where the device frame is opened through either self-expansion or balloon expansion, which reveals the prosthetic valve within. The frequency at which TAVI is being used to treat aortic stenosis is rapidly increasing. In time, TAVI is likely to become the favoured treatment over Surgical Valve Replacement (SVR). Mortality after TAVI has been associated with severe Paravalvular Aortic Regurgitation (PAR). PAR occurs when the frame of the TAVI device does not make an effective seal against the internal surface of the aortic root, allowing blood to flow backwards about the valve. PAR is common in patients and has been reported to some degree in as much as 76% of cases. Severe PAR (grade 3 or 4) has been reported in approximately 17% of TAVI patients resulting in post-procedural mortality increases from 6.7% to 16.5%. TAVI devices, like SVR devices, are circular in cross-section as the aortic root is often considered to be approximately circular in shape. In reality, however, the aortic root is often non-circular. The ascending aorta, aortic sino tubular junction, aortic annulus and left ventricular outflow tract have an average ellipticity ratio of 1.07, 1.09, 1.29, and 1.49 respectively. An elliptical aortic root does not severely affect SVR, as the leaflets are completely removed during the surgical procedure. However, an elliptical aortic root can inhibit the ability of the circular Balloon-Expandable (BE) TAVI devices to conform to the interior of the aortic root wall, which increases the risk of PAR. Self-Expanding (SE) TAVI devices are considered better at conforming to elliptical aortic roots, however the valve leaflets were not designed for elliptical function, furthermore the incidence of PAR is greater in SE devices than BE devices (19.8% vs. 12.2% respectively). If a patient’s aortic root is too severely elliptical, they will not be suitable for TAVI, narrowing the treatment options to SVR. It therefore follows that in order to increase the population who can undergo TAVI, and reduce the risk associated with TAVI, non-circular devices should be developed. Computational simulations were employed to further advance our understanding of non-circular TAVI devices. Radial stiffness of the TAVI devices in multiple directions, frame bending stiffness and resistance to balloon induced expansion are all computationally simulated. Finally, a simulation has been developed that demonstrates the expansion of TAVI devices into a non-circular patient specific aortic root model in order to assess the alterations in deployment dynamics, PAR and the stresses induced in the aortic root.Keywords: tavi, tavr, fea, par, fem
Procedia PDF Downloads 438567 Biogas Production from Kitchen Waste for a Household Sustainability
Authors: Vuiswa Lucia Sethunya, Tonderayi Matambo, Diane Hildebrandt
Abstract:
South African’s informal settlements produce tonnes of kitchen waste (KW) per year which is dumped into the landfill. These landfill sites are normally located in close proximity to the household of the poor communities; this is a problem in which the young children from those communities end up playing in these landfill sites which may result in some health hazards because of methane, carbon dioxide and sulphur gases which are produced. To reduce this large amount of organic materials being deposited into landfills and to provide a cleaner place for those within the community especially the children, an energy conversion process such as anaerobic digestion of the organic waste to produce biogas was implemented. In this study, the digestion of various kitchen waste was investigated in order to understand and develop a system that is suitable for household use to produce biogas for cooking. Three sets of waste of different nutritional compositions were digested as per acquired in the waste streams of a household at mesophilic temperature (35ᵒC). These sets of KW were co-digested with cow dung (CW) at different ratios to observe the microbial behaviour and the system’s stability in a laboratory scale system. The gas chromatography-flame ionization detector analyses have been performed to identify and quantify the presence of organic compounds in the liquid samples from co-digested and mono-digested food waste. Acetic acid, propionic acid, butyric acid and valeric acid are the fatty acids which were studied. Acetic acid (1.98 g/L), propionic acid (0.75 g/L) and butyric acid (2.16g/L) were the most prevailing fatty acids. The results obtained from organic acids analysis suggest that the KW can be an innovative substituent to animal manure for biogas production. The faster degradation period in which the microbes break down the organic compound to produce the fatty acids during the anaerobic process of KW also makes it a better feedstock during high energy demand periods. The C/N ratio analysis showed that from the three waste streams the first stream containing vegetables (55%), fruits (16%), meat (25%) and pap (4%) yielded more methane-based biogas of 317mL/g of volatile solids (VS) at C/N of 21.06. Generally, this shows that a household will require a heterogeneous composition of nutrient-based waste to be fed into the digester to acquire the best biogas yield to sustain a households cooking needs.Keywords: anaerobic digestion, biogas, kitchen waste, household
Procedia PDF Downloads 199566 Preparation and CO2 Permeation Properties of Carbonate-Ceramic Dual-Phase Membranes
Authors: H. Ishii, S. Araki, H. Yamamoto
Abstract:
In recent years, the carbon dioxide (CO2) separation technology is required in terms of the reduction of emission of global warming gases and the efficient use of fossil fuels. Since the emission amount of CO2 gas occupies the large part of greenhouse effect gases, it is considered that CO2 have the most influence on global warming. Therefore, we need to establish the CO2 separation technologies with high efficiency at low cost. In this study, we focused on the membrane separation compared with conventional separation technique such as distillation or cryogenic separation. In this study, we prepared carbonate-ceramic dual-phase membranes to separate CO2 at high temperature. As porous ceramic substrate, the (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+σ, La0.6Sr0.4Ti0.3 Fe0.7O3 and Ca0.8Sr0.2Ti0.7Fe0.3O3-α (PLNCG, LSTF and CSTF) were examined. PLNCG, LSTF and CSTF have the perovskite structure. The perovskite structure has high stability and shows ion-conducting doped by another metal ion. PLNCG, LSTF and CSTF have perovskite structure and has high stability and high oxygen ion diffusivity. PLNCG, LSTF and CSTF powders were prepared by a solid-phase process using the appropriate carbonates or oxides. To prepare porous substrates, these powders mixed with carbon black (20 wt%) and a few drops of polyvinyl alcohol (5 wt%) aqueous solution. The powder mixture were packed into stainless steel mold (13 mm) and uniaxially pressed into disk shape under a pressure of 20 MPa for 1 minute. PLNCG, LSTF and CSTF disks were calcined in air for 6 h at 1473, 1573 and 1473 K, respectively. The carbonate mixture (Li2CO3/Na2CO3/K2CO3: 42.5/32.5/25 in mole percent ratio) was placed inside a crucible and heated to 793 K. Porous substrates were infiltrated with the molten carbonate mixture at 793 K. Crystalline structures of the fresh membranes and after the infiltration with the molten carbonate mixtures were determined by X-ray diffraction (XRD) measurement. We confirmed the crystal structure of PLNCG and CSTF slightly changed after infiltration with the molten carbonate mixture. CO2 permeation experiments with PLNCG-carbonate, LSTF-carbonate and CSTF-carbonate membranes were carried out at 773-1173 K. The gas mixture of CO2 (20 mol%) and He was introduced at the flow rate of 50 ml/min to one side of membrane. The permeated CO2 was swept by N2 (50 ml/min). We confirmed the effect of ceramic materials and temperature on the CO2 permeation at high temperature.Keywords: membrane, perovskite structure, dual-phase, carbonate
Procedia PDF Downloads 367565 Artificial Membrane Comparison for Skin Permeation in Skin PAMPA
Authors: Aurea C. L. Lacerda, Paulo R. H. Moreno, Bruna M. P. Vianna, Cristina H. R. Serra, Airton Martin, André R. Baby, Vladi O. Consiglieri, Telma M. Kaneko
Abstract:
The modified Franz cell is the most widely used model for in vitro permeation studies, however it still presents some disadvantages. Thus, some alternative methods have been developed such as Skin PAMPA, which is a bio- artificial membrane that has been applied for skin penetration estimation of xenobiotics based on HT permeability model consisting. Skin PAMPA greatest advantage is to carry out more tests, in a fast and inexpensive way. The membrane system mimics the stratum corneum characteristics, which is the primary skin barrier. The barrier properties are given by corneocytes embedded in a multilamellar lipid matrix. This layer is the main penetration route through the paracellular permeation pathway and it consists of a mixture of cholesterol, ceramides, and fatty acids as the dominant components. However, there is no consensus on the membrane composition. The objective of this work was to compare the performance among different bio-artificial membranes for studying the permeation in skin PAMPA system. Material and methods: In order to mimetize the lipid composition`s present in the human stratum corneum six membranes were developed. The membrane composition was equimolar mixture of cholesterol, ceramides 1-O-C18:1, C22, and C20, plus fatty acids C20 and C24. The membrane integrity assay was based on the transport of Brilliant Cresyl Blue, which has a low permeability; and Lucifer Yellow with very poor permeability and should effectively be completely rejected. The membrane characterization was performed using Confocal Laser Raman Spectroscopy, using stabilized laser at 785 nm with 10 second integration time and 2 accumulations. The membrane behaviour results on the PAMPA system were statistically evaluated and all of the compositions have shown integrity and permeability. The confocal Raman spectra were obtained in the region of 800-1200 cm-1 that is associated with the C-C stretches of the carbon scaffold from the stratum corneum lipids showed similar pattern for all the membranes. The ceramides, long chain fatty acids and cholesterol in equimolar ratio permitted to obtain lipid mixtures with self-organization capability, similar to that occurring into the stratum corneum. Conclusion: The artificial biological membranes studied for Skin PAMPA showed to be similar and with comparable properties to the stratum corneum.Keywords: bio-artificial membranes, comparison, confocal Raman, skin PAMPA
Procedia PDF Downloads 509564 Anthropometric Indices of Obesity and Coronary Artery Atherosclerosis: An Autopsy Study in South Indian population
Authors: Francis Nanda Prakash Monteiro, Shyna Quadras, Tanush Shetty
Abstract:
The association between human physique and morbidity and mortality resulting from coronary artery disease has been studied extensively over several decades. Multiple studies have also been done on the correlation between grade of atherosclerosis, coronary artery diseases and anthropometrical measurements. However, the number of autopsy-based studies drastically reduces this number. It has been suggested that while in living subjects, it would be expensive, difficult, and even harmful to subject them to imaging modalities like CT scans and procedures involving contrast media to study mild atherosclerosis, no such harm is encountered in study of autopsy cases. This autopsy-based study was aimed to correlate the anthropometric measurements and indices of obesity, such as waist circumference (WC), hip circumference (HC), body mass index (BMI) and waist hip ratio (WHR) with the degree of atherosclerosis in the right coronary artery (RCA), main branch of the left coronary artery (LCA) and the left anterior descending artery (LADA) in 95 South Indian origin victims of both the genders between the age of 18 years and 75 years. The grading of atherosclerosis was done according to criteria suggested by the American Heart Association. The study also analysed the correlation of the anthropometric measurements and indices of obesity with the number of coronaries affected with atherosclerosis in an individual. All the anthropometric measurements and the derived indices were found to be significantly correlated to each other in both the genders except for the age, which is found to have a significant correlation only with the WHR. In both the genders severe degree of atherosclerosis was commonly observed in LADA, followed by LCA and RCA. Grade of atherosclerosis in RCA is significantly related to the WHR in males. Grade of atherosclerosis in LCA and LADA is significantly related to the WHR in females. Significant relation was observed between grade of atherosclerosis in RCA and WC, and WHR, and between grade of atherosclerosis in LADA and HC in males. Significant relation was observed between grade of atherosclerosis in RCA and WC, and WHR, and between grade of atherosclerosis in LADA and HC in females. Anthropometric measurements/indices of obesity can be an effective means to identify high risk cases of atherosclerosis at an early stage that can be effective in reducing the associated cardiac morbidity and mortality. A person with anthropometric measurements suggestive of mild atherosclerosis can be advised to modify his lifestyle, along with decreasing his exposure to the other risk factors. Those with measurements suggestive of higher degree of atherosclerosis can be subjected to confirmatory procedures to start effective treatment.Keywords: atherosclerosis, coronary artery disease, indices, obesity
Procedia PDF Downloads 66563 Rapid Fetal MRI Using SSFSE, FIESTA and FSPGR Techniques
Authors: Chen-Chang Lee, Po-Chou Chen, Jo-Chi Jao, Chun-Chung Lui, Leung-Chit Tsang, Lain-Chyr Hwang
Abstract:
Fetal Magnetic Resonance Imaging (MRI) is a challenge task because the fetal movements could cause motion artifact in MR images. The remedy to overcome this problem is to use fast scanning pulse sequences. The Single-Shot Fast Spin-Echo (SSFSE) T2-weighted imaging technique is routinely performed and often used as a gold standard in clinical examinations. Fast spoiled gradient-echo (FSPGR) T1-Weighted Imaging (T1WI) is often used to identify fat, calcification and hemorrhage. Fast Imaging Employing Steady-State Acquisition (FIESTA) is commonly used to identify fetal structures as well as the heart and vessels. The contrast of FIESTA image is related to T1/T2 and is different from that of SSFSE. The advantages and disadvantages of these two scanning sequences for fetal imaging have not been clearly demonstrated yet. This study aimed to compare these three rapid MRI techniques (SSFSE, FIESTA, and FSPGR) for fetal MRI examinations. The image qualities and influencing factors among these three techniques were explored. A 1.5T GE Discovery 450 clinical MR scanner with an eight-channel high-resolution abdominal coil was used in this study. Twenty-five pregnant women were recruited to enroll fetal MRI examination with SSFSE, FIESTA and FSPGR scanning. Multi-oriented and multi-slice images were acquired. Afterwards, MR images were interpreted and scored by two senior radiologists. The results showed that both SSFSE and T2W-FIESTA can provide good image quality among these three rapid imaging techniques. Vessel signals on FIESTA images are higher than those on SSFSE images. The Specific Absorption Rate (SAR) of FIESTA is lower than that of the others two techniques, but it is prone to cause banding artifacts. FSPGR-T1WI renders lower Signal-to-Noise Ratio (SNR) because it severely suffers from the impact of maternal and fetal movements. The scan times for these three scanning sequences were 25 sec (T2W-SSFSE), 20 sec (FIESTA) and 18 sec (FSPGR). In conclusion, all these three rapid MR scanning sequences can produce high contrast and high spatial resolution images. The scan time can be shortened by incorporating parallel imaging techniques so that the motion artifacts caused by fetal movements can be reduced. Having good understanding of the characteristics of these three rapid MRI techniques is helpful for technologists to obtain reproducible fetal anatomy images with high quality for prenatal diagnosis.Keywords: fetal MRI, FIESTA, FSPGR, motion artifact, SSFSE
Procedia PDF Downloads 530562 Effect of Cigarette Smoke on Micro-Architecture of Respiratory Organs with and without Dietary Probiotics
Authors: Komal Khan, Hafsa Zaneb, Saima Masood, Muhammad Younus, Sanan Raza
Abstract:
Cigarette smoke induces many physiological and pathological changes in respiratory tract like goblet cell hyperplasia and regional distention of airspaces. It is also associated with elevation of inflammatory profiles in different airway compartments. As probiotics are generally known to promote mucosal tolerance, it was postulated that prophylactic use of probiotics can be helpful in reduction of respiratory damage induced by cigarette smoke exposure. Twenty-four adult mice were randomly divided into three groups (cigarette-smoke (CS) group, cigarette-smoke+ Lactobacillus (CS+ P) group, control (Cn) group), each having 8 mice. They were exposed to cigarette smoke for 28 days (6 cigarettes/ day for 6 days/week). Wright-Giemsa staining of bronchoalveolar lavage fluid (BALF) was performed in three mice per group. Tissue samples of trachea and lungs of 7 mice from each group were processed by paraffin embedding technique for haematoxylin & eosin (H & E) and alcian blue- periodic acid-Schiff (AB-PAS) staining. Then trachea (goblet cell number, ratio and loss of cilia) and lungs (airspace distention) were studied. The results showed that the number of goblet cells was increased in CS group as a result of defensive mechanism of the respiratory system against irritating substances. This study also revealed that the cells of CS group having acidic glycoprotein were found to be higher in quantity as compared to those containing neutral glycoprotein. However, CS + P group showed a decrease in goblet cell index due to enhanced immunity by prophylactically used probiotics. Moreover, H & E stained tracheas showed significant loss of cilia in CS group due to propelling of mucous but little loss in CS + P group because of having good protective tracheal epithelium. In lungs, protection of airspaces was also much more evident in CS+ P group as compared to CS group having distended airspaces, especially at 150um distance from terminal bronchiole. In addition, a comprehensive analysis of inflammatory cells population of BALF showed neutrophilia and eosinophilia was significantly reduced in CS+ P group. This study proved that probiotics are found to be useful for reduction of changes in micro-architecture of the respiratory system. Thus, dietary supplementation of probiotic as prophylactic measure can be useful in achieving immunomodulatory effects.Keywords: cigarette smoke, probiotics, goblet cells, airspace enlargement, BALF
Procedia PDF Downloads 364561 Extracorporeal Co2 Removal (Ecco2r): An Option for Treatment for Refractory Hypercapnic Respiratory Failure
Authors: Shweh Fern Loo, Jun Yin Ong, Than Zaw Oo
Abstract:
Acute respiratory distress syndrome (ARDS) is a common serious condition of bilateral lung infiltrates that develops secondary to various underlying conditions such as diseases or injuries. ARDS with severe hypercapnia is associated with higher ICU mortality and morbidity. Venovenous Extracorporeal membrane oxygenation (VV-ECMO) support has been established to avert life-threatening hypoxemia and hypercapnic respiratory failure despite optimal conventional mechanical ventilation. However, VV-ECMO is relatively not advisable in particular groups of patients, especially in multi-organ failure, advanced age, hemorrhagic complications and irreversible central nervous system pathology. We presented a case of a 79-year-old Chinese lady without any pre-existing lung disease admitted to our hospital intensive care unit (ICU) after acute presentation of breathlessness and chest pain. After extensive workup, she was diagnosed with rapidly progressing acute interstitial pneumonia with ARDS and hypercapnia respiratory failure. The patient received lung protective strategies of mechanical ventilation and neuromuscular blockage therapy as per clinical guidelines. However, hypercapnia respiratory failure was refractory, and she was deemed not a good candidate for VV-ECMO support given her advanced age and high vasopressor requirements from shock. Alternative therapy with extracorporeal CO2 removal (ECCO2R) was considered and implemented. The patient received 12 days of ECCO2R paired with muscle paralysis, optimization of lung-protective mechanical ventilation and dialysis. Unfortunately, the patient still had refractory hypercapnic respiratory failure with dual vasopressor support despite prolonged therapy. Given failed and futile medical treatment, the family opted for withdrawal of care, a conservative approach, and comfort care, which led to her demise. The effectivity of extracorporeal CO2 removal may depend on disease burden, involvement and severity of the disease. There is insufficient data to make strong recommendations about its benefit-risk ratio for ECCO2R devices, and further studies and data would be required. Nonetheless, ECCO2R can be considered an alternative treatment for refractory hypercapnic respiratory failure patients who are unsuitable for initiating venovenous ECMO.Keywords: extracorporeal CO2 removal (ECCO2R), acute respiratory distress syndrome (ARDS), acute interstitial pneumonia (AIP), hypercapnic respiratory failure
Procedia PDF Downloads 65560 Insufficient Sleep as a Risk Factor for Substance Use Among Adolescents: The Mediating Role of Depressive Symptoms
Authors: Aaron Kim, Nydia Hernandez
Abstract:
Despite the known deficits in sleep duration among adolescents and the increasing prevalence of substance use behaviors among this group, relatively little is known about how insufficient sleep is related to various substance use behaviors and the underlying mechanisms. Informed by the literature suggesting the predictive role of insufficient sleep for substance use and depressive symptoms, we hypothesized that adolescents who lack sufficient sleep during school nights would report a higher level of depressive symptoms and substance use than their counterparts with sufficient sleep. We also hypothesized that depressive symptoms would explain the association of insufficient sleep with substance use, suggesting that mental health plays an important role as a mechanism between insufficient sleep and substance use. This study used the data drawn from the 2019 Youth Risk Behavior Surveillance System Data, which includes a nationally representative sample of U.S. high school students (N=13,677, 49.4% Female, 9th-12th graders). Self-report measures of insufficient sleep (sleeping<7 h on an average school night), depressive symptoms (yes/no), any past 30-day use of cigarette (yes/no), e-cigarette (yes/no), alcohol (yes/no), and marijuana (yes/no). Among the total sample, 47.9% of students reported that they did not have sufficient sleep on school nights, indicating sleeping less than 7 hours. Regarding depressive symptoms, 36.7% of students reported feeling sad or hopeless almost every day for two weeks or more in a row during the past 12 months. Also, the percentages of students who reported one or more times of cigarette use, e-cigarette use, alcohol use, and marijuana use in the past month were 5.32%, 30.11%, 26.83%, and 21.65%, respectively. For bivariate associations among these study variables, insufficient sleep was positively associated with other variables: depressive symptoms (r=.08, p<.001), cigarette use (r=.03, p<.001), e-cigarette use (r=.04, p<.001), alcohol use (r=.07, p<.001), and marijuana use (r=.08, p<.001). After controlling for students’ characteristics (i.e., age, gender, race/ethnicity, grades), sleeping less than 7 hours on school nights (vs. sleeping more than 7 hours) was significantly associated with the past 30-day use of alcohol and marijuana, whereas cigarette and e-cigarette uses were not. That is, the students who reported having an insufficient sleep on school nights had higher odds of alcohol (Odds Ratio [OR]=1.15, 95% Confidence Interval [CI]=1.014-1.301) and marijuana use (OR=1.36, 95% CI=1.132-1.543). In a subsequent analysis including depressive symptoms together with insufficient sleep, the association of insufficient sleep with alcohol use (OR=1.13, 95% CI=1.011-1.297) and marijuana use (OR=1.33, 95% CI=1.130-1.521) were attenuated and explained by depressive symptoms. Depressive symptoms significantly increased the odds of alcohol use by 32.2% (OR=1.32, 95% CI=1.131-1.557) and marijuana use by 202.1% (OR=2.02, 95% CI=1.672-2.502). These findings together suggest that insufficient sleep may contribute to increased risks of substance uses among adolescents. The current study also shows that psychological disorders of adolescents play important roles in understanding the association between insufficient sleep and substance use, suggesting insufficient sleep is related to substance use indirectly through depressive symptoms. This study indicates the importance of sleep deprivation among adolescents and screening for insufficient sleep in preventing/intervening in substance use.Keywords: adolescents, depressive symptoms, sleep, substance use
Procedia PDF Downloads 123559 Children’s Perception of Conversational Agents and Their Attention When Learning from Dialogic TV
Authors: Katherine Karayianis
Abstract:
Children with Attention Deficit Hyperactivity Disorder (ADHD) have trouble learning in traditional classrooms. These children miss out on important developmental opportunities in school, which leads to challenges starting in early childhood, and these problems persist throughout their adult lives. Despite receiving supplemental support in school, children with ADHD still perform below their non-ADHD peers. Thus, there is a great need to find better ways of facilitating learning in children with ADHD. Evidence has shown that children with ADHD learn best through interactive engagement, but this is not always possible in schools, given classroom restraints and the large student-to-teacher ratio. Redesigning classrooms may not be feasible, so informal learning opportunities provide a possible alternative. One popular informal learning opportunity is educational TV shows like Sesame Street. These types of educational shows can teach children foundational skills taught in pre-K and early elementary school. One downside to these shows is the lack of interactive dialogue between the TV characters and the child viewers. Pseudo-interaction is often deployed, but the benefits are limited if the characters can neither understand nor contingently respond to the child. AI technology has become extremely advanced and is now popular in many electronic devices that both children and adults have access to. AI has been successfully used to create interactive dialogue in children’s educational TV shows, and results show that this enhances children’s learning and engagement, especially when children perceive the character as a reliable teacher. It is likely that children with ADHD, whose minds may otherwise wander, may especially benefit from this type of interactive technology, possibly to a greater extent depending on their perception of the animated dialogic agent. To investigate this issue, I have begun examining the moderating role of inattention among children’s learning from an educational TV show with different types of dialogic interactions. Preliminary results have shown that when character interactions are neither immediate nor accurate, children who are more easily distracted will have greater difficulty learning from the show, but contingent interactions with a TV character seem to buffer these negative effects of distractibility by keeping the child engaged. To extend this line of work, the moderating role of the child’s perception of the dialogic agent as a reliable teacher will be examined in the association between children’s attention and the type of dialogic interaction in the TV show. As such, the current study will investigate this moderated moderation.Keywords: attention, dialogic TV, informal learning, educational TV, perception of teacher
Procedia PDF Downloads 84558 Effect of Methanol Root Extracts of Moringa Oleifera on Lipid Profile Parameters, Atherogenic Indices and HMG – CoA Reductase Activities of Poloxamer 407-Induced Hyperlipidemic Rats
Authors: Matthew Ocheleka Itodo, Ogo Agbo Ogo, Agnes Ogbene Abutu, Bawa Inalegwu
Abstract:
Hyperlipidemia is characterised by elevated serum total cholesterol and low density and very low-density lipoprotein cholesterol and decreased high-density lipoprotein are the risk factor for coronary heart diseases. There are claims by traditional medicine practitioners in Nigeria that Moringa oleifera plants are used for the treatment of cardiovascular diseases, but it appears there is no scientific research and, publication or documented work to verify these claims. This study aimed to determine the effect of methanol root extracts of Moringa oleifera on Lipid profile, Atherogenic indices and 3 hydroxyl 3 methylglutaryl Coenzyme A reductase activity of poloxamer 407-induced hyperlipidemic rats. The animals were grouped into 8; Group 1: Normal control, Group 2: Hyperlipidemic control. Groups 2 to 8 were induced with Poloxamer 407 1000 mg/Kg body weight. However, group 3 were treated with standard drugs (atorvastatin). Group 4 was treated with crude extract, and groups 5 to 8 were treated with purified fractions from column chromatography. The preliminary antihyperlipidemic study showed Methanol root extract at 200 mg/kg body weight significantly (p≤0.05) decreased total cholesterol, low-density lipoprotein, triacylglyceride, 3 hydroxyls 3 methylglutaryl Coenzyme A reductase, and increase high-density lipoprotein of hyperlipidemic treated groups. Screening the extracts for the most potent anti-hyperlipidemic activity reveals that fraction 1 of Total Cholesterol and Fraction 3 of Triacylglyceride have the highest percentage reduction of 56% and 51%, respectively. The atherogenic risk factor of all induced treated rats shows a significant (p<0.05) decrease in levels of Castelli’s risk index II, atherogenic index of plasma and a significant (p<0.05) higher level of Castelli’s risk index I ratio. The study shows that the methanol extract of root possesses antihyperlipidemic effects and may explain why it has been found to be useful in the management of cardiovascular diseases by traditional medicine practitioners.Keywords: hyperlipidemia, moringa oleifera, poloxamer 407, lipid profile
Procedia PDF Downloads 90557 Domestic Violence against Women and the Nutritional Status of Their Under-5 Children: A Cross Sectional Survey in Urban Slums of Chittagong, Bangladesh
Authors: Mohiuddin Ahsanul Kabir Chowdhury, Ahmed Ehsanur Rahman, Nazia Binte Ali, Abdullah Nurus Salam Khan, Afrin Iqbal, Mohammad Mehedi Hasan, Salma Morium, Afsana Bhuiyan, Shams El Arifeen
Abstract:
Violence against women has been treated as a global epidemic which is as fatal as any serious disease or accidents. Like many other low-income countries it is also common in Bangladesh. In spite of existence of a few documented evidences in some other countries, in Bangladesh, domestic violence against women (DVAW) is not considered as a factor for malnutrition in children yet. Hence, the aim of the study was to investigate the association between DVAW and the nutritional status of their under-5 children in the context of slum areas of Chittagong, Bangladesh. A Cross-sectional survey was conducted among 87 women of reproductive age having at least one child under-5 years of age and staying with husband for at least last 1 year in selected slums under Chittagong City Corporation area. Data collection tools were structured questionnaire for the study participants and mid-upper arm circumference (MUAC) to measure the nutritional status of the under-5 children. The data underwent descriptive and regression analysis. Out of 87 respondents, 50 (57.5%) reported to suffer from domestic violence by their husband during last one year. Physical violence was found to be significantly associated with age (p=0.02), age at marriage (p=0.043), wealth score (p=0.000), and with knowledge regarding law (p=0.017). According to the measurement of mid-upper arm circumference (MUAC) 21% children were suffering from severe acute malnutrition (SAM) and the same percentage of children were suffering from moderate acute malnutrition (MAM). However, unadjusted odds ratio suggested that there was negative association with domestic violence and nutritional status. But, the logistic regression confounding for other variable showed significant association with total family income (p=0.006), wealth score (p=0.031), age at marriage (p=0.029) and number of child (p=0.006). Domestic violence against women and under nutrition of the children, both are highly prevalent in Bangladesh. More extensive research should be performed to identify the factors contributing to the high prevalence of domestic violence and malnutrition in urban slums of Bangladesh. Household-based intervention is needed to limit this burning problem. In a nutshell, effective community participation, education and counseling are essential to create awareness among the community.Keywords: Bangladesh, cross sectional survey, domestic violence against women, nutritional status, under-5 children, urban slums
Procedia PDF Downloads 196556 Factors in a Sustainability Assessment of New Types of Closed Cavity Facades
Authors: Zoran Veršić, Josip Galić, Marin Binički, Lucija Stepinac
Abstract:
With the current increase in CO₂ emissions and global warming, the sustainability of both existing and new solutions must be assessed on a wide scale. As the implementation of closed cavity facades (CCF) is on the rise, a variety of factors must be included in the analysis of new types of CCF. This paper aims to cover the relevant factors included in the sustainability assessment of new types of CCF. Several mathematical models are being used to describe the physical behavior of CCF. Depending on the type of CCF, they cover the main factors which affect the durability of the façade: thermal behavior of various elements in the façade, stress, and deflection of the glass panels, pressure inside a cavity, exchange rate, and the moisture buildup in the cavity. CCF itself represents a complex system in which all mentioned factors must be considered mutually. Still, the façade is only an envelope of a more complex system, the building. Choice of the façade dictates the heat loss and the heat gain, thermal comfort of inner space, natural lighting, and ventilation. Annual consumption of energy for heating, cooling, lighting, and maintenance costs will present the operational advantages or disadvantages of the chosen façade system in both the economic and environmental aspects. Still, the only operational viewpoint is not all-inclusive. As the building codes constantly demand higher energy efficiency as well as transfer to renewable energy sources, the ratio of embodied and lifetime operational energy footprint of buildings is changing. With the drop in operational energy CO₂ emissions, embodied energy emissions present a larger and larger share in the lifecycle emissions of the building. Taken all into account, the sustainability assessment of a façade, as well as other major building elements, should include all mentioned factors during the lifecycle of an element. The challenge of such an approach is a timescale. Depending on the climatic conditions on the building site, the expected lifetime of CCF can exceed 25 years. In such a time span, some of the factors can be estimated more precisely than others. The ones depending on the socio-economic conditions are more likely to be harder to predict than the natural ones like the climatic load. This work recognizes and summarizes the relevant factors needed for the assessment of new types of CCF, considering the entire lifetime of a façade element and economic and environmental aspects.Keywords: assessment, closed cavity façade, life cycle, sustainability
Procedia PDF Downloads 192555 Effect of Upper Face Sheet Material on Flexural Strength of Polyurethane Foam Hybrid Sandwich Material
Authors: M. Atef Gabr, M. H. Abdel Latif, Ramadan El Gamsy
Abstract:
Sandwich panels comprise a thick, light-weight plastic foam such as polyurethane (PU) sandwiched between two relatively thin faces. One or both faces may be flat, lightly profiled or fully profiled. Until recently sandwich panel construction in Egypt has been widely used in cold-storage buildings, cold trucks, prefabricated buildings and insulation in construction. Recently new techniques are used in mass production of Sandwich Materials such as Reaction Injection Molding (RIM) and Vacuum bagging technique. However, in recent times their use has increased significantly due to their widespread structural applications in building systems. Structural sandwich panels generally used in Egypt comprise polyurethane foam core and thinner (0.42 mm) and high strength about 550 MPa (yield strength) flat steel faces bonded together using separate adhesives and By RIM technique. In this paper, we will use a new technique in sandwich panel preparation by using different face sheet materials in combination with polyurethane foam to form sandwich panel structures. Previously, PU Foam core with same thin 2 faces material was used, but in this work, we use different face materials and thicknesses for the upper face sheet such as Galvanized steel sheets (G.S),Aluminum sheets (Al),Fiberglass sheets (F.G) and Aluminum-Rubber composite sheets (Al/R) with polyurethane foam core 10 mm thickness and 45 Kg/m3 Density and Galvanized steel as lower face sheet. Using Aluminum-Rubber composite sheets as face sheet is considered a hybrid composite sandwich panel which is built by Hand-Layup technique by using PU glue as adhesive. This modification increases the benefits of the face sheet that will withstand different working environments with relatively small increase in its weight and will be useful in several applications. In this work, a 3-point bending test is used assistant professor to measure the most important factor in sandwich materials that is strength to weight ratio(STW) for different combinations of sandwich structures and make a comparison to study the effect of changing the face sheet material on the mechanical behavior of PU sandwich material. Also, the density of the different prepared sandwich materials will be measured to obtain the specific bending strength.Keywords: hybrid sandwich panel, mechanical behavior, PU foam, sandwich panel, 3-point bending, flexural strength
Procedia PDF Downloads 317554 Smart Irrigation Systems and Website: Based Platform for Farmer Welfare
Authors: Anusha Jain, Santosh Vishwanathan, Praveen K. Gupta, Shwetha S., Kavitha S. N.
Abstract:
Agriculture has a major impact on the Indian economy, with the highest employment ratio than any sector of the country. Currently, most of the traditional agricultural practices and farming methods are manual, which results in farmers not realizing their maximum productivity often due to increasing in labour cost, inefficient use of water sources leading to wastage of water, inadequate soil moisture content, subsequently leading to food insecurity of the country. This research paper aims to solve this problem by developing a full-fledged web application-based platform that has the capacity to associate itself with a Microcontroller-based Automated Irrigation System which schedules the irrigation of crops based on real-time soil moisture content employing soil moisture sensors centric to the crop’s requirements using WSN (Wireless Sensor Networks) and M2M (Machine To Machine Communication) concepts, thus optimizing the use of the available limited water resource, thereby maximizing the crop yield. This robust automated irrigation system provides end-to-end automation of Irrigation of crops at any circumstances such as droughts, irregular rainfall patterns, extreme weather conditions, etc. This platform will also be capable of achieving a nationwide united farming community and ensuring the welfare of farmers. This platform is designed to equip farmers with prerequisite knowledge on tech and the latest farming practices in general. In order to achieve this, the MailChimp mailing service is used through which interested farmers/individuals' email id will be recorded and curated articles on innovations in the world of agriculture will be provided to the farmers via e-mail. In this proposed system, service is enabled on the platform where nearby crop vendors will be able to enter their pickup locations, accepted prices and other relevant information. This will enable farmers to choose their vendors wisely. Along with this, we have created a blogging service that will enable farmers and agricultural enthusiasts to share experiences, helpful knowledge, hardships, etc., with the entire farming community. These are some of the many features that the platform has to offer.Keywords: WSN (wireless sensor networks), M2M (M/C to M/C communication), automation, irrigation system, sustainability, SAAS (software as a service), soil moisture sensor
Procedia PDF Downloads 129553 The Evaporation Study of 1-ethyl-3-methylimidazolium chloride
Authors: Kirill D. Semavin, Norbert S. Chilingarov, Eugene.V. Skokan
Abstract:
The ionic liquids (ILs) based on imidazolium cation are well known nowadays. The changing anions and substituents in imidazolium ring may lead to different physical and chemical properties of ILs. It is important that such ILs with halogen as anion are characterized by a low thermal stability. The data about thermal stability of 1-ethyl-3-methylimidazolium chloride are ambiguous. In the works of last years, thermal stability of this IL was investigated by thermogravimetric analysis and obtained results are contradictory. Moreover, in the last study, it was shown that the observed temperature of the beginning of decomposition significantly depends on the experimental conditions, for example, the heating rate of the sample. The vapor pressure of this IL is not presented at the literature. In this study, the vapor pressure of 1-ethyl-3-methylimidazolium chloride was obtained by Knudsen effusion mass-spectrometry (KEMS). The samples of [ЕMIm]Cl (purity > 98%) were supplied by Sigma–Aldrich and were additionally dried at dynamic vacuum (T = 60 0C). Preliminary procedures with Il were derived into glove box. The evaporation studies of [ЕMIm]Cl were carried out by KEMS with using original research equipment based on commercial MI1201 magnetic mass spectrometer. The stainless steel effusion cell had an effective evaporation/effusion area ratio of more than 6000. The cell temperature, measured by a Pt/Pt−Rh (10%) thermocouple, was controlled by a Termodat 128K5 device with an accuracy of ±1 K. In first step of this study, the optimal temperature of experiment and heating rate of samples were customized: 449 K and 5 K/min, respectively. In these conditions the sample is decomposed, but the experimental measurements of the vapor pressures are possible. The thermodynamic activity of [ЕMIm]Cl is close to 1 and products of decomposition don’t affect it at firstly 50 hours of experiment. Therefore, it lets to determine the saturated vapor pressure of IL. The electronic ionization mass-spectra shows that the decomposition of [ЕMIm]Cl proceeds with two ways. Nonetheless, the MALDI mass spectra of the starting sample and residue in the cell were similar. It means that the main decomposition products are gaseous under experimental conditions. This result allows us to obtain information about the kinetics of [ЕMIm]Cl decomposition. Thus, the original KEMS-based procedure made it possible to determine the IL vapor pressure under decomposition conditions. Also, the loss of sample mass due to the evaporation was obtained.Keywords: ionic liquids, Knudsen effusion mass spectrometry, thermal stability, vapor pressure
Procedia PDF Downloads 187552 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger
Authors: Hany Elsaid Fawaz Abdallah
Abstract:
This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations
Procedia PDF Downloads 87551 Alkali Activated Materials Based on Natural Clay from Raciszyn
Authors: Michal Lach, Maria Hebdowska-Krupa, Justyna Stefanek, Artur Stanek, Anna Stefanska, Janusz Mikula, Marek Hebda
Abstract:
Limited resources of raw materials determine the necessity of obtaining materials from other sources. In this area, the most known and widespread are recycling processes, which are mainly focused on the reuse of material. Another possible solution used in various companies to achieve improvement in sustainable development is waste-free production. It involves the production exclusively from such materials, whose waste is included in the group of renewable raw materials. This means that they can: (i) be recycled directly during the manufacturing process of further products or (ii) be raw material obtained by other companies for the production of alternative products. The article presents the possibility of using post-production clay from the Jurassic limestone deposit "Raciszyn II" as a raw material for the production of alkali activated materials (AAM). Such products are currently increasingly used, mostly in various building applications. However, their final properties depend significantly on many factors; the most important of them are: chemical composition of the raw material, particle size, specific surface area, type and concentration of the activator and the temperature range of the heat treatment. Conducted mineralogical and chemical analyzes of clay from the “Raciszyn II” deposit confirmed that this material, due to its high content of aluminosilicates, can be used as raw material for the production of AAM. In order to obtain the product with the best properties, the optimization of the clay calcining process was also carried out. Based on the obtained results, it was found that this process should occur in the range between 750 oC and 800 oC. The use of a lower temperature causes getting a raw material with low metakaolin content which is the main component of materials suitable for alkaline activation processes. On the other hand, higher heat treatment temperatures cause thermal dissociation of large amounts of calcite, which is associated with the release of large amounts of CO2 and the formation of calcium oxide. This compound significantly accelerates the binding process, which consequently often prevents the correct formation of geopolymer mass. The effect of the use of various activators: (i) NaOH, (ii) KOH and (iii) a mixture of KOH to NaOH in a ratio of 10%, 25% and 50% by volume on the compressive strength of the AAM was also analyzed. Obtained results depending on the activator used were in the range from 25 MPa to 40 MPa. These values are comparable with the results obtained for materials produced on the basis of Portland cement, which is one of the most popular building materials.Keywords: alkaline activation, aluminosilicates, calcination, compressive strength
Procedia PDF Downloads 153550 Properties of Sustainable Artificial Lightweight Aggregate
Authors: Wasan Ismail Khalil, Hisham Khalid Ahmed, Zainab Ali
Abstract:
Structural Lightweight Aggregate Concrete (SLWAC) has been developed in recent years because it reduces the dead load, cost, thermal conductivity and coefficient of thermal expansion of the structure. So SLWAC has the advantage of being a relatively green building material. Lightweight Aggregate (LWA) is either occurs as natural material such as pumice, scoria, etc. or as artificial material produced from different raw materials such as expanded shale, clay, slate, etc. The use of SLWAC in Iraq is limited due to the lack in natural LWA. The existence of Iraqi clay deposit with different types and characteristics leads to the idea of producing artificial expanded clay aggregate. The main aim in this work is to present of the properties of artificial LWA produced in the laboratory. Available local bentonite clay which occurs in the Western region of Iraq was used as raw material to produce the LWA. Sodium silicate as liquid industrial waste material from glass plant was mixed with bentonite clay in mix proportion 1:1 by weight. The manufacturing method of the lightweight aggregate including, preparation and mixing of clay and sodium silicate, burning of the mixture in the furnace at the temperature between 750-800˚C for two hours, and finally gradually cooling process. The produced LWA was then crushed to small pieces then screened on standard sieve series and prepared with grading which conforms to the specifications of LWA. The maximum aggregate size used in this investigation is 10 mm. The chemical composition and the physical properties of the produced LWA are investigated. The results indicate that the specific gravity of the produced LWA is 1.5 with the density of 543kg/m3 and water absorption of 20.7% which is in conformity with the international standard of LWA. Many trail mixes were carried out in order to produce LWAC containing the artificial LWA produced in this research. The selected mix proportion is 1:1.5:2 (cement: sand: aggregate) by weight with water to cement ratio of 0.45. The experimental results show that LWAC has oven dry density of 1720 kg/m3, water absorption of 8.5%, the thermal conductivity of 0.723 W/m.K and compressive strength of 23 N/mm2. The SLWAC produced in this research can be used in the construction of different thermal insulated buildings and masonry units. It can be concluded that the SLWA produced in this study contributes to sustainable development by, using industrial waste materials, conserving energy, enhancing the thermal and structural efficiency of concrete.Keywords: expanded clay, lightweight aggregate, structural lightweight aggregate concrete, sustainable
Procedia PDF Downloads 328549 The Composition and Activity of Germinated Broccoli Seeds and Their Extract
Authors: Boris Nemzer, Tania Reyes-Izquierdo, Zbigniew Pietrzkowski
Abstract:
Glucosinolate is a family of glucosides that can be found in a family of brassica vegetables. Upon the damage of the plant, glucosinolate breakdown by an internal enzyme myrosinase (thioglucosidase; EC 3.2.3.1) into isothiocyanates, such as sulforaphane. Sulforaphane is formed by glucoraphanin cleaving the sugar off by myrosinase and rearranged. Sulforaphane nitrile is formed in the same reaction as sulforaphane with the active of epithiospecifier protein (ESP). Most common food processing procedure would break the plant and mix the glucoraphanin and myrosinase together, and the formed sulforaphane would be further degraded. The purpose of this study is to understand the glucoraphanin/sulforaphane and the myrosinase activity of broccoli seeds germinated at a different time and technological processing conditions that keep the activity of the enzyme to form sulforaphane. Broccoli seeds were germinated in the house. Myrosinase activities were tested as the glucose content using glucose assay kit and measured UV-Vis spectrophotometer. Glucosinolates were measured by HPLC/DAD. Sulforaphane was measured using HPLC-DAD and GC/MS. The 6 hr germinated sprouts have a myrosinase activity 32.2 mg glucose/g, which is comparable with 12 and 24 hour germinated seeds and higher than dry seeds. The glucoraphanin content in 6 hour germinated sprouts is 13935 µg/g which is comparable to 24 hour germinated seeds and lower than the dry seeds. GC/MS results show that the amount of sulforaphane is higher than the amount of sulforaphane nitrile in seeds, 6 hour and 24 hour germinated seeds. The ratio of sulforaphane and sulforaphane nitrile is high in 6 hour germinated seeds, which indicates the inactivated ESP in the reaction. After evaluating the results, the short time germinated seeds can be used as the source of glucoraphanin and myrosinase supply to form potential higher sulforaphane content. Broccoli contains glucosinolates, glucoraphanin (4-methylsulfinylbutyl glucosinolate), which is an important metabolite with health-promoting effects. In the pilot clinical study, we observed the effects of a glucosinolates/glucoraphanin-rich extract from short time germinated broccoli seeds on blood adenosine triphosphate (ATP), reactive oxygen species (ROS) and lactate levels. A single dose of 50 mg of broccoli sprouts extract increased blood levels of ATP up to 61% (p=0.0092) during the first 2 hours after the ingestion. Interestingly, this effect was not associated with an increase in blood ROS or lactate. When compared to the placebo group, levels of lactate were reduced by 10% (p=0.006). These results indicate that broccoli germinated seed extract may positively affect the generation of ATP in humans. Due to the preliminary nature of this work and promising results, larger clinical trials are justified.Keywords: broccoli glucosinolates, glucoraphanin, germinated seeds, myrosinase, adenosine triphosphate
Procedia PDF Downloads 290548 Experimental Study on Heat and Mass Transfer of Humidifier for Fuel Cell
Authors: You-Kai Jhang, Yang-Cheng Lu
Abstract:
Major contributions of this study are threefold: designing a new model of planar-membrane humidifier for Proton Exchange Membrane Fuel Cell (PEMFC), an index to measure the Effectiveness (εT) of that humidifier, and an air compressor system to replicate related planar-membrane humidifier experiments. PEMFC as a kind of renewable energy has become more and more important in recent years due to its reliability and durability. To maintain the efficiency of the fuel cell, the membrane of PEMFC need to be controlled in a good hydration condition. How to maintain proper membrane humidity is one of the key issues to optimize PEMFC. We developed new humidifier to recycle water vapor from cathode air outlet so as to keep the moisture content of cathode air inlet in a PEMFC. By measuring parameters such as dry side air outlet dew point temperature, dry side air inlet temperature and humidity, wet side air inlet temperature and humidity, and differential pressure between dry side and wet side, we calculated indices obtained by dew point approach temperature (DPAT), water flux (J), water recovery ratio (WRR), effectiveness (εT), and differential pressure (ΔP). We discussed six topics including sealing effect, flow rate effect, flow direction effect, channel effect, temperature effect, and humidity effect by using these indices. Gas cylinders are used as sources of air supply in many studies of humidifiers. Gas cylinder depletes quickly during experiment at 1kW air flow rate, and it causes replication difficult. In order to ensure high stable air quality and better replication of experimental data, this study designs an air supply system to overcome this difficulty. The experimental result shows that the best rate of pressure loss of humidifier is 0.133×10³ Pa(g)/min at the torque of 25 (N.m). The best humidifier performance ranges from 30-40 (LPM) of air flow rates. The counter flow configured humidifies moisturizes the dry side inlet air more effectively than the parallel flow humidifier. From the performance measurements of the channel plates various rib widths studied in this study, it is found that the narrower the rib width is, the more the performance of humidifier improves. Raising channel width in same hydraulic diameter (Dh ) will obtain higher εT and lower ΔP. Moreover, increasing the dry side air inlet temperature or humidity will lead to lower εT. In addition, when the dry side air inlet temperature exceeds 50°C, the effect becomes even more obvious.Keywords: PEM fuel cell, water management, membrane humidifier, heat and mass transfer, humidifier performance
Procedia PDF Downloads 176547 The Study of Intangible Assets at Various Firm States
Authors: Gulnara Galeeva, Yulia Kasperskaya
Abstract:
The study deals with the relevant problem related to the formation of the efficient investment portfolio of an enterprise. The structure of the investment portfolio is connected to the degree of influence of intangible assets on the enterprise’s income. This determines the importance of research on the content of intangible assets. However, intangible assets studies do not take into consideration how the enterprise state can affect the content and the importance of intangible assets for the enterprise`s income. This affects accurateness of the calculations. In order to study this problem, the research was divided into several stages. In the first stage, intangible assets were classified based on their synergies as the underlying intangibles and the additional intangibles. In the second stage, this classification was applied. It showed that the lifecycle model and the theory of abrupt development of the enterprise, that are taken into account while designing investment projects, constitute limit cases of a more general theory of bifurcations. The research identified that the qualitative content of intangible assets significant depends on how close the enterprise is to being in crisis. In the third stage, the author developed and applied the Wide Pairwise Comparison Matrix method. This allowed to establish that using the ratio of the standard deviation to the mean value of the elements of the vector of priority of intangible assets makes it possible to estimate the probability of a full-blown crisis of the enterprise. The author has identified a criterion, which allows making fundamental decisions on investment feasibility. The study also developed an additional rapid method of assessing the enterprise overall status based on using the questionnaire survey with its Director. The questionnaire consists only of two questions. The research specifically focused on the fundamental role of stochastic resonance in the emergence of bifurcation (crisis) in the economic development of the enterprise. The synergetic approach made it possible to describe the mechanism of the crisis start in details and also to identify a range of universal ways of overcoming the crisis. It was outlined that the structure of intangible assets transforms into a more organized state with the strengthened synchronization of all processes as a result of the impact of the sporadic (white) noise. Obtained results offer managers and business owners a simple and an affordable method of investment portfolio optimization, which takes into account how close the enterprise is to a state of a full-blown crisis.Keywords: analytic hierarchy process, bifurcation, investment portfolio, intangible assets, wide matrix
Procedia PDF Downloads 208546 Estimation of Ribb Dam Catchment Sediment Yield and Reservoir Effective Life Using Soil and Water Assessment Tool Model and Empirical Methods
Authors: Getalem E. Haylia
Abstract:
The Ribb dam is one of the irrigation projects in the Upper Blue Nile basin, Ethiopia, to irrigate the Fogera plain. Reservoir sedimentation is a major problem because it reduces the useful reservoir capacity by the accumulation of sediments coming from the watersheds. Estimates of sediment yield are needed for studies of reservoir sedimentation and planning of soil and water conservation measures. The objective of this study was to simulate the Ribb dam catchment sediment yield using SWAT model and to estimate Ribb reservoir effective life according to trap efficiency methods. The Ribb dam catchment is found in North Western part of Ethiopia highlands, and it belongs to the upper Blue Nile and Lake Tana basins. Soil and Water Assessment Tool (SWAT) was selected to simulate flow and sediment yield in the Ribb dam catchment. The model sensitivity, calibration, and validation analysis at Ambo Bahir site were performed with Sequential Uncertainty Fitting (SUFI-2). The flow data at this site was obtained by transforming the Lower Ribb gauge station (2002-2013) flow data using Area Ratio Method. The sediment load was derived based on the sediment concentration yield curve of Ambo site. Stream flow results showed that the Nash-Sutcliffe efficiency coefficient (NSE) was 0.81 and the coefficient of determination (R²) was 0.86 in calibration period (2004-2010) and, 0.74 and 0.77 in validation period (2011-2013), respectively. Using the same periods, the NS and R² for the sediment load calibration were 0.85 and 0.79 and, for the validation, it became 0.83 and 0.78, respectively. The simulated average daily flow rate and sediment yield generated from Ribb dam watershed were 3.38 m³/s and 1772.96 tons/km²/yr, respectively. The effective life of Ribb reservoir was estimated using the developed empirical methods of the Brune (1953), Churchill (1948) and Brown (1958) methods and found to be 30, 38 and 29 years respectively. To conclude, massive sediment comes from the steep slope agricultural areas, and approximately 98-100% of this incoming annual sediment loads have been trapped by the Ribb reservoir. In Ribb catchment, as well as reservoir systematic and thorough consideration of technical, social, environmental, and catchment managements and practices should be made to lengthen the useful life of Ribb reservoir.Keywords: catchment, reservoir effective life, reservoir sedimentation, Ribb, sediment yield, SWAT model
Procedia PDF Downloads 187545 The Optimum Biodiesel Blend in Low Sulfur Diesel and Its Physico-Chemical Properties and Economic Aspect
Authors: Ketsada Sutthiumporn, Sittichot Thongkaw, Malee Santikunaporn
Abstract:
In Thailand, biodiesel has been utilized as an attractive substitute of petroleum diesel and the government imposes a mandatory biodiesel blending requirement in transport sector to improve energy security, support agricultural sector and reduce emissions. Though biodiesel blend has many advantages over diesel fuel such as improved lubricity, low sulfur content and higher flash point, there are still some technical problems such as oxidative stability, poor cold- flow properties and impurity. Such problems were related to the fatty acid composition in feedstock. Moreover, Thailand has announced the use of low sulfur diesel as a base diesel and will be continually upgrading to EURO 5 in 2023. With ultra low sulfur content, it may affect the diesel fuel properties especially lubricity as well. Therefore, in this study, the physical and chemical properties of palm oil-based biodiesel in low sulfur diesel blends from different producers will be investigated by standard methods per ASTM and EN. Also, its economic benefits based on diesel price structure in Thailand will be highlighted. The appropriate biodiesel blend ratio can affect the physico-chemical properties and reasonable price in the country. Properties of biodiesel, including specific gravity, kinematic viscosity, FAME composition, flash point, sulfur, water, oxidation stability and lubricity were measured by standard methods of ASTM and EN. The results show that the FAME composition of biodiesel has the fatty acid of C12:0 to C20:1, mostly in C16:0, C18:0, C18:1, and C18:2, which were main characteristic compositions of palm biodiesel. The physical and chemical properties of biodiesel blended diesel was found to be increases with an increasing amount of biodiesel such as specific gravity, flash point and kinematic viscosity while sulfur value was decreased. Moreover, in this study, the various properties of each biodiesel blends were plotted to determine the appropriate proportional range of biodiesel-blended diesel with an optimum fuel price.It can be seen that the amount of B100 can be filled from 1% up to 7% in which the quality was in accordance with Notification of the department of Energy business.The understanding of relation between physico-chemical properties of palm oil-based biodiesel and pricing is beneficial to guide the better development of desired feedstock in Thailand and to implement biodiesel blends with comparative price and diesel engine performance.Keywords: fatty acid methyl ester, biodiesel, fuel price structure, palm oil in Thailand
Procedia PDF Downloads 116544 Durability of Functionally Graded Concrete
Authors: Prasanna Kumar Acharya, Mausam Kumari Yadav
Abstract:
Cement concrete has emerged as the most consumed construction material. It has also dominated all other construction materials because of its versatility. Apart from numerous advantages it has a disadvantage concerning durability. The large structures constructed with cement concrete involving the consumption of huge natural materials remain in serviceable condition for 5 – 7 decades only while structures made with stones stand for many centuries. The short life span of structures not only affects the economy but also affects the ecology greatly. As such, the improvement of durability of cement concrete is a global concern and scientists around the globe are trying for this purpose. Functionally graded concrete (FGC) is an exciting development. In contrast to conventional concrete, FGC demonstrates different characteristics depending on its thickness, which enables it to conform to particular structural specifications. The purpose of FGC is to improve the performance and longevity of conventional concrete structures with cutting-edge building materials. By carefully distributing various kinds and amounts of reinforcements, additives, mix designs and/or aggregates throughout the concrete matrix, this variety is produced. A key component of functionally graded concrete's performance is its durability, which affects the material's capacity to tolerate aggressive environmental influences and load-bearing circumstances. This paper reports the durability of FGC made using Portland slag cement (PSC). For this purpose, control concretes (CC) of M20, M30 and M40 grades were designed. Single-layered samples were prepared using each grade of concrete. Further using combinations of M20 + M30, M30 + M40 and M40 + M20, doubled layered concrete samples in a depth ratio of 1:1 was prepared those are herein called FGC samples. The efficiency of FGC samples was compared with that of the higher-grade concrete of parent materials in terms of compressive strength, water absorption, sorptivity, acid resistance, sulphate resistance, chloride resistance and abrasion resistance. The properties were checked at the age of 28 and 91 days. Apart from strength and durability parameters, the microstructure of CC and FGC were studied in terms of X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray. The result of the study revealed that there is an increase in the efficiency of concrete evaluated in terms of strength and durability when it is made functionally graded using a layered technology having different grades of concrete in layers. The results may help to enhance the efficiency of structural concrete and its durability.Keywords: fresh on compacted, functionally graded concrete, acid, chloride, sulphate test, sorptivity, abrasion, water absorption test
Procedia PDF Downloads 18543 The Structure and Development of a Wing Tip Vortex under the Effect of Synthetic Jet Actuation
Authors: Marouen Dghim, Mohsen Ferchichi
Abstract:
The effect of synthetic jet actuation on the roll-up and the development of a wing tip vortex downstream a square-tipped rectangular wing was investigated experimentally using hotwire anemometry. The wing is equipped with a hallow cavity designed to generate a high aspect ratio synthetic jets blowing at an angles with respect to the spanwise direction. The structure of the wing tip vortex under the effect of fluidic actuation was examined at a chord Reynolds number Re_c=8×10^4. An extensive qualitative study on the effect of actuation on the spanwise pressure distribution at c⁄4 was achieved using pressure scanner measurements in order to determine the optimal actuation parameters namely, the blowing momentum coefficient, Cμ, and the non-dimensionalized actuation frequency, F^+. A qualitative study on the effect of actuation parameters on the spanwise pressure distribution showed that optimal actuation frequencies of the synthetic jet were found within the range amplified by both long and short wave instabilities where spanwise pressure coefficients exhibited a considerable decrease by up to 60%. The vortex appeared larger and more diffuse than that of the natural vortex case. Operating the synthetic jet seemed to introduce unsteadiness and turbulence into the vortex core. Based on the ‘a priori’ optimal selected parameters, results of the hotwire wake survey indicated that the actuation achieved a reduction and broadening of the axial velocity deficit. A decrease in the peak tangential velocity associated with an increase in the vortex core radius was reported as a result of the accelerated radial transport of angular momentum. Peak vorticity level near the core was also found to be largely diffused as a direct result of the increased turbulent mixing within the vortex. The wing tip vortex a exhibited a reduced strength and a diffused core as a direct result of increased turbulent mixing due to the presence of turbulent small scale vortices within its core. It is believed that the increased turbulence within the vortex due to the synthetic jet control was the main mechanism associated with the decreased strength and increased size of the wing tip vortex as it evolves downstream. A comparison with a ‘non-optimal’ case was included to demonstrate the effectiveness of selecting the appropriate control parameters. The Synthetic Jet will be operated at various actuation configurations and an extensive parametric study is projected to determine the optimal actuation parameters.Keywords: flow control, hotwire anemometry, synthetic jet, wing tip vortex
Procedia PDF Downloads 436542 Effects of Nanoencapsulated Echinacea purpurea Ethanol Extract on the Male Reproductive Function in Streptozotocin-Induced Diabetic Rats
Authors: Jia-Ling Ho, Xiu-Ru Zhang, Zwe-Ling Kong
Abstract:
Diabetes mellitus (DM) is a major health problem that affects patients’ life quality throughout the world due to its many complications. It characterized by chronic hyperglycemia with oxidative stress, which impaired male reproductive function. Fibroblast growth factor 21 (FGF21) is a metabolic regulator that is required for normal spermatogenesis and protects against diabetes-induced germ cell apoptosis. Echinacea purpurea ethanol extract (EE), which contain phenolic acid and isobutylamide, had been proven to have antidiabetic property. Silica-chitosan nanoparticles (Nano-CS) has drug delivery and controlled release properties. This study aims to investigate whether silica-chitosan nanoparticles encapsulated EE (Nano-EE) had more ameliorating male infertility by analyzing the effect of testicular FGF21. The Nano-EE was characterized before used to treatment the diabetic rat model. Male Sprague-Dawley (SD) rats were obtained and divided into seven groups. A group was no induced Streptozotocin (STZ), marked as normal group. Diabetic rats were induced into diabetes by STZ (33 mg/kg). A diabetic group was no treatment with sample (diabetic control group), and other groups were treatment by Nano-CS (465 mg/kg), Nano-EE (93, 279, 465 mg/kg), and metformin (Met) (200 mg/kg) used as reference drug for 7 weeks. Our results indicated that the average nanoparticle size and zeta potential of Nano-EE were 2630 nm and -21.3 mV, respectively. The encapsulation ratio of Nano-EE was about 70%. It also confirmed the antioxidative activity was unchanged by comparing the DPPH and ABTS scavenging of Nano-EE and EE. In vivo test, Nano-EE can improve the STZ induced hyperglycemia, insulin resistance, and plasma FGF21 levels. Nano-EE has increased sperm motility, mitochondria membrane potential (MMP), plasma testosterone level, and reduction of abnormal sperm, nitric oxide (NO), superoxide production as well as reactive oxygen species (ROS). In addition, in plasma antioxidant enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD) was increased whereas pro-inflammatory cytokines TNF-α, and IL-1β were decreased. Further, in testis, protein content of FGF21, PGC-1α, and SIRT1 were improved. Nano-EE might improve diabetes-induced down-regulation of testicular FGF21 and SIRT1/PGC-1α signaling hence maintain spermatogenesis.Keywords: diabetes mellitus, Echinacea purpurea, reproductive dysfunction, silica-chitosan nanoparticles
Procedia PDF Downloads 192541 Uncertainty Quantification of Fuel Compositions on Premixed Bio-Syngas Combustion at High-Pressure
Abstract:
Effect of fuel variabilities on premixed combustion of bio-syngas mixtures is of great importance in bio-syngas utilisation. The uncertainties of concentrations of fuel constituents such as H2, CO and CH4 may lead to unpredictable combustion performances, combustion instabilities and hot spots which may deteriorate and damage the combustion hardware. Numerical modelling and simulations can assist in understanding the behaviour of bio-syngas combustion with pre-defined species concentrations, while the evaluation of variabilities of concentrations is expensive. To be more specific, questions such as ‘what is the burning velocity of bio-syngas at specific equivalence ratio?’ have been answered either experimentally or numerically, while questions such as ‘what is the likelihood of burning velocity when precise concentrations of bio-syngas compositions are unknown, but the concentration ranges are pre-described?’ have not yet been answered. Uncertainty quantification (UQ) methods can be used to tackle such questions and assess the effects of fuel compositions. An efficient probabilistic UQ method based on Polynomial Chaos Expansion (PCE) techniques is employed in this study. The method relies on representing random variables (combustion performances) with orthogonal polynomials such as Legendre or Gaussian polynomials. The constructed PCE via Galerkin Projection provides easy access to global sensitivities such as main, joint and total Sobol indices. In this study, impacts of fuel compositions on combustion (adiabatic flame temperature and laminar flame speed) of bio-syngas fuel mixtures are presented invoking this PCE technique at several equivalence ratios. High-pressure effects on bio-syngas combustion instability are obtained using detailed chemical mechanism - the San Diego Mechanism. Guidance on reducing combustion instability from upstream biomass gasification process is provided by quantifying the significant contributions of composition variations to variance of physicochemical properties of bio-syngas combustion. It was found that flame speed is very sensitive to hydrogen variability in bio-syngas, and reducing hydrogen uncertainty from upstream biomass gasification processes can greatly reduce bio-syngas combustion instability. Variation of methane concentration, although thought to be important, has limited impacts on laminar flame instabilities especially for lean combustion. Further studies on the UQ of percentage concentration of hydrogen in bio-syngas can be conducted to guide the safer use of bio-syngas.Keywords: bio-syngas combustion, clean energy utilisation, fuel variability, PCE, targeted uncertainty reduction, uncertainty quantification
Procedia PDF Downloads 275