Search results for: recurrent artificial neural network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6944

Search results for: recurrent artificial neural network

2924 An Experimental Investigation of Air Entrainment Due to Water Jets in Crossflows

Authors: Mina Esmi Jahromi, Mehdi Khiadani

Abstract:

Vertical water jets discharging into free surface turbulent cross flows result in the ingression of a large amount of air in the body of water and form a region of two-phase air-water flow with a considerable interfacial area. This research presents an experimental study of the two-phase bubbly flow using image processing technique. The air ingression and the trajectories of bubble swarms under different experimental conditions are evaluated. The rate of air entrainment and the bubble characteristics such as penetration depth, and dispersion pattern were found to be affected by the most influential parameters of water jet and cross flow including water jet-to-crossflow velocity ratio, water jet falling height, and cross flow depth. This research improves understanding of the underwater flow structure due to the water jet impingement in crossflow and advances the practical applications of water jets such as artificial aeration, circulation, and mixing where crossflow is present.

Keywords: air entrainment, image processing, jet in cross flow, two-phase flow

Procedia PDF Downloads 370
2923 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models

Authors: Chad Goldsworthy, B. Rajeswari Matam

Abstract:

The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.

Keywords: convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation

Procedia PDF Downloads 194
2922 Development of Three-Dimensional Bio-Reactor Using Magnetic Field Stimulation to Enhance PC12 Cell Axonal Extension

Authors: Eiji Nakamachi, Ryota Sakiyama, Koji Yamamoto, Yusuke Morita, Hidetoshi Sakamoto

Abstract:

The regeneration of injured central nerve network caused by the cerebrovascular accidents is difficult, because of poor regeneration capability of central nerve system composed of the brain and the spinal cord. Recently, new regeneration methods such as transplant of nerve cells and supply of nerve nutritional factor were proposed and examined. However, there still remain many problems with the canceration of engrafted cells and so on and it is strongly required to establish an efficacious treating method of a central nerve system. Blackman proposed the electromagnetic stimulation method to enhance the axonal nerve extension. In this study, we try to design and fabricate a new three-dimensional (3D) bio-reactor, which can load a uniform AC magnetic field stimulation on PC12 cells in the extracellular environment for enhancement of an axonal nerve extension and 3D nerve network generation. Simultaneously, we measure the morphology of PC12 cell bodies, axons, and dendrites by the multiphoton excitation fluorescence microscope (MPM) and evaluate the effectiveness of the uniform AC magnetic stimulation to enhance the axonal nerve extension. Firstly, we designed and fabricated the uniform AC magnetic field stimulation bio-reactor. For the AC magnetic stimulation system, we used the laminated silicon steel sheets for a yoke structure of 3D chamber, which had a high magnetic permeability. Next, we adopted the pole piece structure and installed similar specification coils on both sides of the yoke. We searched an optimum pole piece structure using the magnetic field finite element (FE) analyses and the response surface methodology. We confirmed that the optimum 3D chamber structure showed a uniform magnetic flux density in the PC12 cell culture area by using FE analysis. Then, we fabricated the uniform AC magnetic field stimulation bio-reactor by adopting analytically determined specifications, such as the size of chamber and electromagnetic conditions. We confirmed that measurement results of magnetic field in the chamber showed a good agreement with FE results. Secondly, we fabricated a dish, which set inside the uniform AC magnetic field stimulation of bio-reactor. PC12 cells were disseminated with collagen gel and could be 3D cultured in the dish. The collagen gel were poured in the dish. The collagen gel, which had a disk shape of 6 mm diameter and 3mm height, was set on the membrane filter, which was located at 4 mm height from the bottom of dish. The disk was full filled with the culture medium inside the dish. Finally, we evaluated the effectiveness of the uniform AC magnetic field stimulation to enhance the nurve axonal extension. We confirmed that a 6.8 increase in the average axonal extension length of PC12 under the uniform AC magnetic field stimulation at 7 days culture in our bio-reactor, and a 24.7 increase in the maximum axonal extension length. Further, we confirmed that a 60 increase in the number of dendrites of PC12 under the uniform AC magnetic field stimulation. Finally, we confirm the availability of our uniform AC magnetic stimulation bio-reactor for the nerve axonal extension and the nerve network generation.

Keywords: nerve regeneration, axonal extension , PC12 cell, magnetic field, three-dimensional bio-reactor

Procedia PDF Downloads 170
2921 Effects of Lipoic Acid Supplementation on Activities of Cyclooxygenases and Levels of Prostaglandins E2 and F2 Alpha Metabolites in the Offspring of Rats with Streptozocin-Induced Diabetes

Authors: H. Y. Al-Matubsi, G. A. Oriquat, M. Abu-Samak, O. A. Al Hanbali, M. Salim

Abstract:

Background: Uncontrolled diabetes mellitus (DM) is an etiological factor for recurrent pregnancy loss and major congenital malformations in the offspring. Antioxidant therapy has been advocated to overcome the oxidant-antioxidant disequilibrium inherent in diabetes. The aims of this study were to evaluate the protective effect of lipoic acid (LA) on fetal outcome and to elucidate changes that may be involved in the mechanism(s) implicit diabetic fetopathy. Methods: Female rats were rendered hyperglycemic using streptozocin and then mated with normal male rat. Pregnant non-diabetic (group1; n=9; and group2; n=7) or pregnant diabetic (group 3; n=10; and group 4; n=8) rats were treated daily with either lipoic acid (LA) (30 mg/kg body weight; groups 2 and 4) or vehicle (groups 1 and 3) between gestational days 0 and 15. On day 15 of gestation, the rats were sacrificed, and the fetuses, placentas and membranes dissected out of the uterine horns. Following morphological examination, the fetuses, placentas and membranes were homogenized, and used to measure cyclooxygenases (COX) activities and metabolisms of prostaglandin (PG) E2 (PGEM) and PGF2 (PGFM) levels. Maternal liver and plasma total glutathione levels were also determined. Results: Supplementation of diabetic rats with LA was found to significantly (P<0.05) reduce resorption rates in diabetic rats and increased mean fetal weight compared to diabetic group. Treatment of diabetic rats with LA leads to a significant (P<0.05) increase in liver and plasma total glutathione, in comparison with diabetic rats. Decreased levels of PGEM and elevated levels of PGFM in the fetuses, placentas and membranes were characteristic of experimental diabetic gestation associated with malformation. LA treatment to diabetic mothers failed to normalize levels of PGEM to the non-diabetic control rats. However, the levels of PGEM in malformed fetuses from LA-treated diabetic mothers was significantly (P < 0.05) higher than those in malformed fetuses from diabetic rats. Conclusions: We conclude that LA can reduce congenital malformations in the offspring of diabetic rats at day 15 of gestation. However, LA treatment did not completely prevent the occurrence of malformations, other factors, such as arachidonic acid deficiency and altered prostaglandin metabolismmay be involved in the pathogenesis of diabetes-induced congenital malformations.

Keywords: diabetes, lipoic acid, pregnancy, prostaglandins

Procedia PDF Downloads 263
2920 Collagen Hydrogels Cross-Linked by Squaric Acid

Authors: Joanna Skopinska-Wisniewska, Anna Bajek, Marta Ziegler-Borowska, Alina Sionkowska

Abstract:

Hydrogels are a class of materials widely used in medicine for many years. Proteins, such as collagen, due to the presence of a large number of functional groups are easily wettable by polar solvents and can create hydrogels. The supramolecular network capable to swelling is created by cross-linking of the biopolymers using various reagents. Many cross-linking agents has been tested for last years, however, researchers still are looking for a new, more secure reactants. Squaric acid, 3,4-dihydroxy 3-cyclobutene 1,2- dione, is a very strong acid, which possess flat and rigid structure. Due to the presence of two carboxyl groups the squaric acid willingly reacts with amino groups of collagen. The main purpose of this study was to investigate the influence of addition of squaric acid on the chemical, physical and biological properties of collagen materials. The collagen type I was extracted from rat tail tendons and 1% solution in 0.1M acetic acid was prepared. The samples were cross-linked by the addition of 5%, 10% and 20% of squaric acid. The mixtures of all reagents were incubated 30 min on magnetic stirrer and then dialyzed against deionized water. The FTIR spectra show that the collagen structure is not changed by cross-linking by squaric acid. Although the mechanical properties of the collagen material deteriorate, the temperature of thermal denaturation of collagen increases after cross-linking, what indicates that the protein network was created. The lyophilized collagen gels exhibit porous structure and the pore size decreases with the higher addition of squaric acid. Also the swelling ability is lower after the cross-linking. The in vitro study demonstrates that the materials are attractive for 3T3 cells. The addition of squaric acid causes formation of cross-ling bonds in the collagen materials and the transparent, stiff hydrogels are obtained. The changes of physicochemical properties of the material are typical for cross-linking process, except mechanical properties – it requires further experiments. However, the results let us to conclude that squaric acid is a suitable cross-linker for protein materials for medicine and tissue engineering.

Keywords: collagen, squaric acid, cross-linking, hydrogel

Procedia PDF Downloads 389
2919 Mapping Iron Content in the Brain with Magnetic Resonance Imaging and Machine Learning

Authors: Gabrielle Robertson, Matthew Downs, Joseph Dagher

Abstract:

Iron deposition in the brain has been linked with a host of neurological disorders such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis. While some treatment options exist, there are no objective measurement tools that allow for the monitoring of iron levels in the brain in vivo. An emerging Magnetic Resonance Imaging (MRI) method has been recently proposed to deduce iron concentration through quantitative measurement of magnetic susceptibility. This is a multi-step process that involves repeated modeling of physical processes via approximate numerical solutions. For example, the last two steps of this Quantitative Susceptibility Mapping (QSM) method involve I) mapping magnetic field into magnetic susceptibility and II) mapping magnetic susceptibility into iron concentration. Process I involves solving an ill-posed inverse problem by using regularization via injection of prior belief. The end result from Process II highly depends on the model used to describe the molecular content of each voxel (type of iron, water fraction, etc.) Due to these factors, the accuracy and repeatability of QSM have been an active area of research in the MRI and medical imaging community. This work aims to estimate iron concentration in the brain via a single step. A synthetic numerical model of the human head was created by automatically and manually segmenting the human head on a high-resolution grid (640x640x640, 0.4mm³) yielding detailed structures such as microvasculature and subcortical regions as well as bone, soft tissue, Cerebral Spinal Fluid, sinuses, arteries, and eyes. Each segmented region was then assigned tissue properties such as relaxation rates, proton density, electromagnetic tissue properties and iron concentration. These tissue property values were randomly selected from a Probability Distribution Function derived from a thorough literature review. In addition to having unique tissue property values, different synthetic head realizations also possess unique structural geometry created by morphing the boundary regions of different areas within normal physical constraints. This model of the human brain is then used to create synthetic MRI measurements. This is repeated thousands of times, for different head shapes, volume, tissue properties and noise realizations. Collectively, this constitutes a training-set that is similar to in vivo data, but larger than datasets available from clinical measurements. This 3D convolutional U-Net neural network architecture was used to train data-driven Deep Learning models to solve for iron concentrations from raw MRI measurements. The performance was then tested on both synthetic data not used in training as well as real in vivo data. Results showed that the model trained on synthetic MRI measurements is able to directly learn iron concentrations in areas of interest more effectively than other existing QSM reconstruction methods. For comparison, models trained on random geometric shapes (as proposed in the Deep QSM method) are less effective than models trained on realistic synthetic head models. Such an accurate method for the quantitative measurement of iron deposits in the brain would be of important value in clinical studies aiming to understand the role of iron in neurological disease.

Keywords: magnetic resonance imaging, MRI, iron deposition, machine learning, quantitative susceptibility mapping

Procedia PDF Downloads 138
2918 Development of Power System Stability by Reactive Power Planning in Wind Power Plant With Doubley Fed Induction Generators Generator

Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Oriol Gomis Bellmunt, Vinicius Albernaz Lacerda Freitas

Abstract:

The use of distributed and renewable sources in power systems has grown significantly, recently. One the most popular sources are wind farms which have grown massively. However, ¬wind farms are connected to the grid, this can cause problems such as reduced voltage stability, frequency fluctuations and reduced dynamic stability. Variable speed generators (asynchronous) are used due to the uncontrollability of wind speed specially Doubley Fed Induction Generators (DFIG). The most important disadvantage of DFIGs is its sensitivity to voltage drop. In the case of faults, a large volume of reactive power is induced therefore, use of FACTS devices such as SVC and STATCOM are suitable for improving system output performance. They increase the capacity of lines and also passes network fault conditions. In this paper, in addition to modeling the reactive power control system in a DFIG with converter, FACTS devices have been used in a DFIG wind turbine to improve the stability of the power system containing two synchronous sources. In the following paper, recent optimal control systems have been designed to minimize fluctuations caused by system disturbances, for FACTS devices employed. For this purpose, a suitable method for the selection of nine parameters for MPSH-phase-post-phase compensators of reactive power compensators is proposed. The design algorithm is formulated ¬¬as an optimization problem searching for optimal parameters in the controller. Simulation results show that the proposed controller Improves the stability of the network and the fluctuations are at desired speed.

Keywords: renewable energy sources, optimization wind power plant, stability, reactive power compensator, double-feed induction generator, optimal control, genetic algorithm

Procedia PDF Downloads 97
2917 The Effect of Artificial Intelligence on Human Rights Legislations and Evolution

Authors: Nawal Yacoub Halim Abdelmasih

Abstract:

The link between terrorism and human rights has grown to be a chief challenge in the combat against terrorism around the sector. This is primarily based on the truth that terrorism and human rights are so closely related that after the former starts, the latter is violated. This direct connection is identified in the Vienna Declaration and program of movement adopted by way of the sector Convention on Human Rights in Vienna on June 25, 1993, which acknowledges that acts of terrorism in all their paperwork and manifestations intended to damage the human rights of people. Terrorism, therefore, represents an assault on our maximum fundamental human rights. To this stop, the first part of this article makes a specialty of the connections between terrorism and human rights and seeks to spotlight the interdependence between those two standards. The second part discusses the rising idea of cyberterrorism and its manifestations. An evaluation of the fight against cyberterrorism inside the context of human rights is likewise performed.

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security.

Procedia PDF Downloads 13
2916 TMIF: Transformer-Based Multi-Modal Interactive Fusion for Rumor Detection

Authors: Jiandong Lv, Xingang Wang, Cuiling Shao

Abstract:

The rapid development of social media platforms has made it one of the important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact in view of the slow speed and poor consistency of artificial rumor detection. We propose an end-to-end rumor detection model-TIMF, which captures the dependencies between multimodal data based on the interactive attention mechanism, uses a transformer for cross-modal feature sequence mapping and combines hybrid fusion strategies to obtain decision results. This paper verifies two multi-modal rumor detection datasets and proves the superior performance and early detection performance of the proposed model.

Keywords: hybrid fusion, multimodal fusion, rumor detection, social media, transformer

Procedia PDF Downloads 250
2915 Named Entity Recognition System for Tigrinya Language

Authors: Sham Kidane, Fitsum Gaim, Ibrahim Abdella, Sirak Asmerom, Yoel Ghebrihiwot, Simon Mulugeta, Natnael Ambassager

Abstract:

The lack of annotated datasets is a bottleneck to the progress of NLP in low-resourced languages. The work presented here consists of large-scale annotated datasets and models for the named entity recognition (NER) system for the Tigrinya language. Our manually constructed corpus comprises over 340K words tagged for NER, with over 118K of the tokens also having parts-of-speech (POS) tags, annotated with 12 distinct classes of entities, represented using several types of tagging schemes. We conducted extensive experiments covering convolutional neural networks and transformer models; the highest performance achieved is 88.8% weighted F1-score. These results are especially noteworthy given the unique challenges posed by Tigrinya’s distinct grammatical structure and complex word morphologies. The system can be an essential building block for the advancement of NLP systems in Tigrinya and other related low-resourced languages and serve as a bridge for cross-referencing against higher-resourced languages.

Keywords: Tigrinya NER corpus, TiBERT, TiRoBERTa, BiLSTM-CRF

Procedia PDF Downloads 133
2914 Energy Efficiency Analysis of Electrical Submersible Pump on Mature Oil Field Offshore Java Sea

Authors: Marda Vidrianto, Tania Surya Utami

Abstract:

Electrical Submersible Pump (ESP) is an artificial lift of choice to produce oil on Offshore Java Sea. It is selected based on the production rate capacity and running life expectation. ESP performance in a mature field is highly affected by oil well conditions. The presence of sand, scale, gas, and low influx will create unstable ESP operation hence lowering the run life expectation and system efficiency. This paper reviews the current energy usage and efficiency on every part of the ESP system. The hydraulic and electrical losses, as well as system efficiency for each well, are calculated to identify energy losses and the possibility for improvement. It is shown that high back pressure on the system and low-efficiency pump are the major contributors to energy losses. It was found that optimized production rate and the use of advanced technology on pump and motor unit could improve energy efficiency.

Keywords: advance technology, energy efficiency, ESP, mature field, production rate

Procedia PDF Downloads 343
2913 Synthesis and Characterization of Fibrin/Polyethylene Glycol-Based Interpenetrating Polymer Networks for Dermal Tissue Engineering

Authors: O. Gsib, U. Peirera, C. Egles, S. A. Bencherif

Abstract:

In skin regenerative medicine, one of the critical issues is to produce a three-dimensional scaffold with optimized porosity for dermal fibroblast infiltration and neovascularization, which exhibits high mechanical properties and displays sufficient wound healing characteristics. In this study, we report on the synthesis and characterization of macroporous sequential interpenetrating polymer networks (IPNs) combining skin wound healing properties of fibrin with the excellent physical properties of polyethylene glycol (PEG). Fibrin fibers serve as a provisional biologically active network to promote cell adhesion and proliferation while PEG provides the mechanical stability to maintain the entire 3D construct. After having modified both PEG and Serum Albumin (used for promoting enzymatic degradability) by adding methacrylate residues (PEGDM and SAM, respectively), Fibrin/PEGDM-SAM sequential IPNs were synthesized as follows: Macroporous sponges were first produced from PEGDM-SAM hydrogels by a freeze-drying technique and then rehydrated by adding the fibrin precursors. Environmental Scanning Electron Microscopy (ESEM) and Confocal Laser Scanning Microscopy (CLSM) were used to characterize their microstructure. Human dermal fibroblasts were cultivated during one week in the constructs and different cell culture parameters (viability, morphology, proliferation) were evaluated. Subcutaneous implantations of the scaffolds were conducted on five-week old male nude mice to investigate their biocompatibility in vivo. We successfully synthesized interconnected and macroporous Fibrin/PEGDM-SAM sequential IPNs. The viability of primary dermal fibroblasts was well maintained (above 90%) after 2 days of culture. Cells were able to adhere, spread and proliferate in the scaffolds suggesting the suitable porosity and intrinsic biologic properties of the constructs. The fibrin network adopted a spider web shape that covered partially the pores allowing easier cell infiltration into the macroporous structure. To further characterize the in vitro cell behavior, cell proliferation (EdU incorporation, MTS assay) is being studied. Preliminary histological analysis of animal studies indicated the persistence of hydrogels even after one-month post implantation and confirmed the absence of inflammation response, good biocompatibility and biointegration of our scaffolds within the surrounding tissues. These results suggest that our Fibrin/PEGDM-SAM IPNs could be considered as potential candidates for dermis regenerative medicine. Histological analysis will be completed to further assess scaffold remodeling including de novo extracellular matrix protein synthesis and early stage angiogenesis analysis. Compression measurements will be conducted to investigate the mechanical properties.

Keywords: fibrin, hydrogels for dermal reconstruction, polyethylene glycol, semi-interpenetrating polymer network

Procedia PDF Downloads 237
2912 Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review

Authors: Mohsin Talib Mohammed, Zahid A. Khan, Arshad N. Siddiquee

Abstract:

Biometallic materials are the most important materials for use in biomedical applications especially in manufacturing a variety of biological artificial replacements in a modern worlds, e.g. hip, knee or shoulder joints, due to their advanced characteristics. Titanium (Ti) and its alloys are used extensively in biomedical applications based on their high specific strength and excellent corrosion resistance. Beta-Ti alloys containing completely biocompatible elements are exceptionally prospective materials for manufacturing of bioimplants. They have superior mechanical, chemical and electrochemical properties for use as biomaterials. These biomaterials have the ability to introduce the most important property of biochemical compatibility which is low elastic modulus. This review examines current information on the recent developments in alloying elements leading to improvements of beta Ti alloys for use as biomaterials. Moreover, this paper focuses mainly on the evolution, evaluation and development of the modulus of elasticity as an effective factor on the performance of beta alloys.

Keywords: beta alloys, biomedical applications, titanium alloys, Young's modulus

Procedia PDF Downloads 326
2911 A Study to Assess the Employment Ambitions of Graduating Students from College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia

Authors: J. George, M. Al Mutairi, W. Aljuryyad, A. Alhussanan, A. Alkashan, T. Aldoghiri, Z. Alamari, A. Albakr

Abstract:

Introduction: Students make plans for their career and are keen in exploring options of employment in those carriers. They make their employment choice based on their desires and preferences. This study aims to identify if students of King Saud Bin Abdulaziz for Health Sciences, College of Applied Medical Sciences after obtaining appropriate education prefer to work as clinicians, university faculty, or full-time researchers. There are limited studies in Saudi Arabia exploring the university student’s employment choices and preferences. This study would help employers to build the required job positions and prevent misleading employers from opening undesired positions in the job market. Methodology: The study included 394 students from third and fourth years both male and female among the eighth programs of college of applied medical sciences, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh campus. A prospective quantitative cross-sectional study was conducted; data were collected by distributing a seven item questionnaire and analyzed using SPSS. Results: Among the participants, 358 (90.9%) of them chose one of the three listed career choices, 263 (66.8%) decided to work as hospital staff after their education, 75 students (19.0%) chose to work as a faculty member in a university after obtaining appropriate degree, 20 students (5.1%) preferred to work as full-time researcher after obtaining appropriate degree, the remaining 36 students (9.1%) had different career goals, such as obtaining a master degree after graduating, to obtain a bachelor of medicine and bachelor in surgery degree, and working in the private sector. The most recurrent reason behind the participants' choice was "career goal", where 276 (70.1%) chose it as a reason. Conclusion: The findings of the study showed that most student’s preferred to work in hospitals as clinicians, followed by choice of working as a faculty in a university, the least choice was to be working as full-time researchers.

Keywords: College of Applied Medical Sciences, employment ambitions, graduating students, King Saud bin Abdulaziz University for Health Sciences

Procedia PDF Downloads 162
2910 Transboundary Pollution after Natural Disasters: Scenario Analyses for Uranium at Kyrgyzstan-Uzbekistan Border

Authors: Fengqing Li, Petra Schneider

Abstract:

Failure of tailings management facilities (TMF) of radioactive residues is an enormous challenge worldwide and can result in major catastrophes. Particularly in transboundary regions, such failure is most likely to lead to international conflict. This risk occurs in Kyrgyzstan and Uzbekistan, where the current major challenge is the quantification of impacts due to pollution from uranium legacy sites and especially the impact on river basins after natural hazards (i.e., landslides). By means of GoldSim, a probabilistic simulation model, the amount of tailing material that flows into the river networks of Mailuu Suu in Kyrgyzstan after pond failure was simulated for three scenarios, namely 10%, 20%, and 30% of material inputs. Based on Muskingum-Cunge flood routing procedure, the peak value of uranium flood wave along the river network was simulated. Among the 23 TMF, 19 ponds are close to the river networks. The spatiotemporal distributions of uranium along the river networks were then simulated for all the 19 ponds under three scenarios. Taking the TP7 which is 30 km far from the Kyrgyzstan-Uzbekistan border as one example, the uranium concentration decreased continuously along the longitudinal gradient of the river network, the concentration of uranium was observed at the border after 45 min of the pond failure and the highest value was detected after 69 min. The highest concentration of uranium at the border were 16.5, 33, and 47.5 mg/L under scenarios of 10%, 20%, and 30% of material inputs, respectively. In comparison to the guideline value of uranium in drinking water (i.e., 30 µg/L) provided by the World Health Organization, the observed concentrations of uranium at the border were 550‒1583 times higher. In order to mitigate the transboundary impact of a radioactive pollutant release, an integrated framework consisting of three major strategies were proposed. Among, the short-term strategy can be used in case of emergency event, the medium-term strategy allows both countries handling the TMF efficiently based on the benefit-sharing concept, and the long-term strategy intends to rehabilitate the site through the relocation of all TMF.

Keywords: Central Asia, contaminant transport modelling, radioactive residue, transboundary conflict

Procedia PDF Downloads 120
2909 Treatment of Neuronal Defects by Bone Marrow Stem Cells Differentiation to Neuronal Cells Cultured on Gelatin-PLGA Scaffolds Coated with Nano-Particles

Authors: Alireza Shams, Ali Zamanian, Atefehe Shamosi, Farnaz Ghorbani

Abstract:

Introduction: Although the application of a new strategy remains a remarkable challenge for treatment of disabilities due to neuronal defects, progress in Nanomedicine and tissue engineering, suggesting the new medical methods. One of the promising strategies for reconstruction and regeneration of nervous tissue is replacing of lost or damaged cells by specific scaffolds after Compressive, ischemic and traumatic injuries of central nervous system. Furthermore, ultrastructure, composition, and arrangement of tissue scaffolds are effective on cell grafts. We followed implantation and differentiation of mesenchyme stem cells to neural cells on Gelatin Polylactic-co-glycolic acid (PLGA) scaffolds coated with iron nanoparticles. The aim of this study was to evaluate the capability of stem cells to differentiate into motor neuron-like cells under topographical cues and morphogenic factors. Methods and Materials: Bone marrow mesenchymal stem cells (BMMSCs) was obtained by primary cell culturing of adult rat bone marrow got from femur bone by flushing method. BMMSCs were incubated with DMEM/F12 (Gibco), 15% FBS and 100 U/ml pen/strep as media. Then, BMMSCs seeded on Gel/PLGA scaffolds and tissue culture (TCP) polystyrene embedded and incorporated by Fe Nano particles (FeNPs) (Fe3o4 oxide (M w= 270.30 gr/mol.). For neuronal differentiation, 2×10 5 BMMSCs were seeded on Gel/PLGA/FeNPs scaffolds was cultured for 7 days and 0.5 µ mol. Retinoic acid, 100 µ mol. Ascorbic acid,10 ng/ml. Basic fibroblast growth factor (Sigma, USA), 250 μM Iso butyl methyl xanthine, 100 μM 2-mercaptoethanol, and 0.2 % B27 (Invitrogen, USA) added to media. Proliferation of BMMSCs was assessed by using MTT assay for cell survival. The morphology of BMMSCs and scaffolds was investigated by scanning electron microscopy analysis. Expression of neuron-specific markers was studied by immunohistochemistry method. Data were analyzed by analysis of variance, and statistical significance was determined by Turkey’s test. Results: Our results revealed that differentiation and survival of BMMSCs into motor neuron-like cells on Gel/PLGA/FeNPs as a biocompatible and biodegradable scaffolds were better than those cultured in Gel/PLGA in absence of FeNPs and TCP scaffolds. FeNPs had raised physical power but decreased capacity absorption of scaffolds. Well defined oriented pores in scaffolds due to FeNPs may activate differentiation and synchronized cells as a mechanoreceptor. Induction effects of magnetic FeNPs by One way flow of channels in scaffolds help to lead the cells and can facilitate direction of their growth processes. Discussion: Progression of biological properties of BMMSCs and the effects of FeNPs spreading under magnetic field was evaluated in this investigation. In vitro study showed that the Gel/PLGA/FeNPs scaffold provided a suitable structure for motor neuron-like cells differentiation. This could be a promising candidate for enhancing repair and regeneration in neural defects. Dynamic and static magnetic field for inducing and construction of cells can provide better results for further experimental studies.

Keywords: differentiation, mesenchymal stem cells, nano particles, neuronal defects, Scaffolds

Procedia PDF Downloads 167
2908 Linearization and Process Standardization of Construction Design Engineering Workflows

Authors: T. R. Sreeram, S. Natarajan, C. Jena

Abstract:

Civil engineering construction is a network of tasks involving varying degree of complexity and streamlining, and standardization is the only way to establish a systemic approach to design. While there are off the shelf tools such as AutoCAD that play a role in the realization of design, the repeatable process in which these tools are deployed often is ignored. The present paper addresses this challenge through a sustainable design process and effective standardizations at all stages in the design workflow. The same is demonstrated through a case study in the context of construction, and further improvement points are highlighted.

Keywords: syste, lean, value stream, process improvement

Procedia PDF Downloads 124
2907 Risk Assessment on Construction Management with “Fuzzy Logy“

Authors: Mehrdad Abkenari, Orod Zarrinkafsh, Mohsen Ramezan Shirazi

Abstract:

Construction projects initiate in complicated dynamic environments and, due to the close relationships between project parameters and the unknown outer environment, they are faced with several uncertainties and risks. Success in time, cost and quality in large scale construction projects is uncertain in consequence of technological constraints, large number of stakeholders, too much time required, great capital requirements and poor definition of the extent and scope of the project. Projects that are faced with such environments and uncertainties can be well managed through utilization of the concept of risk management in project’s life cycle. Although the concept of risk is dependent on the opinion and idea of management, it suggests the risks of not achieving the project objectives as well. Furthermore, project’s risk analysis discusses the risks of development of inappropriate reactions. Since evaluation and prioritization of construction projects has been a difficult task, the network structure is considered to be an appropriate approach to analyze complex systems; therefore, we have used this structure for analyzing and modeling the issue. On the other hand, we face inadequacy of data in deterministic circumstances, and additionally the expert’s opinions are usually mathematically vague and are introduced in the form of linguistic variables instead of numerical expression. Owing to the fact that fuzzy logic is used for expressing the vagueness and uncertainty, formulation of expert’s opinion in the form of fuzzy numbers can be an appropriate approach. In other words, the evaluation and prioritization of construction projects on the basis of risk factors in real world is a complicated issue with lots of ambiguous qualitative characteristics. In this study, evaluated and prioritization the risk parameters and factors with fuzzy logy method by combination of three method DEMATEL (Decision Making Trial and Evaluation), ANP (Analytic Network Process) and TOPSIS (Technique for Order-Preference by Similarity Ideal Solution) on Construction Management.

Keywords: fuzzy logy, risk, prioritization, assessment

Procedia PDF Downloads 595
2906 A Fully Interpretable Deep Reinforcement Learning-Based Motion Control for Legged Robots

Authors: Haodong Huang, Zida Zhao, Shilong Sun, Chiyao Li, Wenfu Xu

Abstract:

The control methods for legged robots based on deep reinforcement learning have seen widespread application; however, the inherent black-box nature of neural networks presents challenges in understanding the decision-making motives of the robots. To address this issue, we propose a fully interpretable deep reinforcement learning training method to elucidate the underlying principles of legged robot motion. We incorporate the dynamics of legged robots into the policy, where observations serve as inputs and actions as outputs of the dynamics model. By embedding the dynamics equations within the multi-layer perceptron (MLP) computation process and making the parameters trainable, we enhance interpretability. Additionally, Bayesian optimization is introduced to train these parameters. We validate the proposed fully interpretable motion control algorithm on a legged robot, opening new research avenues for motion control and learning algorithms for legged robots within the deep learning framework.

Keywords: deep reinforcement learning, interpretation, motion control, legged robots

Procedia PDF Downloads 24
2905 Tram Track Deterioration Modeling

Authors: Mohammad Yousefikia, Sara Moridpour, Ehsan Mazloumi

Abstract:

Perceiving track geometry deterioration decisively influences the optimization of track maintenance operations. The effective management of this deterioration and increasingly utilized system with limited financial resources is a significant challenge. This paper provides a review of degradation models relevant for railroad tracks. Furthermore, due to the lack of long term information on the condition development of tram infrastructures, presents the methodology which will be used to derive degradation models from the data of Melbourne tram network.

Keywords: deterioration modeling, asset management, railway, tram

Procedia PDF Downloads 381
2904 Building a Parametric Link between Mapping and Planning: A Sunlight-Adaptive Urban Green System Plan Formation Process

Authors: Chenhao Zhu

Abstract:

Quantitative mapping is playing a growing role in guiding urban planning, such as using a heat map created by CFX, CFD2000, or Envi-met, to adjust the master plan. However, there is no effective quantitative link between the mappings and planning formation. So, in many cases, the decision-making is still based on the planner's subjective interpretation and understanding of these mappings, which limits the improvement of scientific and accuracy brought by the quantitative mapping. Therefore, in this paper, an effort has been made to give a methodology of building a parametric link between the mapping and planning formation. A parametric planning process based on radiant mapping has been proposed for creating an urban green system. In the first step, a script is written in Grasshopper to build a road network and form the block, while the Ladybug Plug-in is used to conduct a radiant analysis in the form of mapping. Then, the research creatively transforms the radiant mapping from a polygon into a data point matrix, because polygon is hard to engage in the design formation. Next, another script is created to select the main green spaces from the road network based on the criteria of radiant intensity and connect the green spaces' central points to generate a green corridor. After that, a control parameter is introduced to adjust the corridor's form based on the radiant intensity. Finally, a green system containing greenspace and green corridor is generated under the quantitative control of the data matrix. The designer only needs to modify the control parameter according to the relevant research results and actual conditions to realize the optimization of the green system. This method can also be applied to much other mapping-based analysis, such as wind environment analysis, thermal environment analysis, and even environmental sensitivity analysis. The parameterized link between the mapping and planning will bring about a more accurate, objective, and scientific planning.

Keywords: parametric link, mapping, urban green system, radiant intensity, planning strategy, grasshopper

Procedia PDF Downloads 143
2903 Investigation of Delivery of Triple Play Data in GE-PON Fiber to the Home Network

Authors: Ashima Anurag Sharma

Abstract:

Optical fiber based networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This research paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparison between various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 529
2902 Targeted Photodynamic Therapy for Intraperitoneal Ovarian Cancer, A Way to Stimulate Anti-Tumoral Immune Response

Authors: Lea Boidin, Martha Baydoun, Bertrand Leroux, Olivier Morales, Samir Acherar, Celine Frochot, Nadira Delhem

Abstract:

Ovarian cancer (OC) is one of the most defying diseases in gynecologic oncology. Even though surgery remains crucial in the therapy of patients with primary ovarian cancer, recurrent recidivism calls for the development of new therapy protocols to propose for patients dealing with this cancer. FRα is described as a tumor‐associated antigen in OC, where FRα expression is usually linked with more poorly differentiated, aggressive tumors. The Photodynamic treatment (PDT) available data have shown improvements in the uptake of small tumors and in the induction of a proper anti-tumoral immune response. In order to target specifically peritoneal metastatis, which overexpress FRα, a new-patented PS coupled with folic acid has been developed in our team. Herein we propose PDT using this new patented PS for PDT applied in an in vivo mice model. The efficacy of the treatment was evaluated in mice without and with PBMC reconstitution. Mice were divided into four groups: Non-Treated, PS, Light Only, and PDT Treated and subjected to illumination by laser set at 668nm with a duration of illumination of 45 minutes (or 1 min of illumination followed by 2 minutes of pause repeated 45 times). When mice were not reconstituted and after fractionized PDT protocol, a significant decrease in the tumor volume was noticed. An induction in the anti-tumoral cytokine IFNγ chaperoned this decrease while a subsequent inhibition in the cytokine TGFβ. Even more crucial, when mice were reconstituted and upon PDT, the fold of tumor decrease was even higher. An immune response was activated decoded with an increase in NK, CD3 +, LT helper and Cytotoxic T cells. Thereafter, an increase in the expression of the cytokines IFNγ and TNFα were noticed while an inhibition in TGFβ, IL8 and IL10 accompanied this immune response activation. Therefore, our work has shown for the first time that a fractionized PDT protocol using a folate-targeted PDT is effective for treatment of ovarian cancer. The interest in using PDT in this case, goes beyond the local induction of tumor apoptosis only, but can promote subsequent anti-tumor response. Most of the therapies currently used to treat ovarian cancer, have an uncooperative outcomes on the host immune response. The readiness of a tumor adjuvant treatment like PDT adequate in eliminating the tumor and in concert stimulating anti-tumor immunity would be weighty.

Keywords: folate receptor, ovarian cancer, photodynamic therapy, humanized mice model

Procedia PDF Downloads 112
2901 Effect of Different Porous Media Models on Drug Delivery to Solid Tumors: Mathematical Approach

Authors: Mostafa Sefidgar, Sohrab Zendehboudi, Hossein Bazmara, Madjid Soltani

Abstract:

Based on findings from clinical applications, most drug treatments fail to eliminate malignant tumors completely even though drug delivery through systemic administration may inhibit their growth. Therefore, better understanding of tumor formation is crucial in developing more effective therapeutics. For this purpose, nowadays, solid tumor modeling and simulation results are used to predict how therapeutic drugs are transported to tumor cells by blood flow through capillaries and tissues. A solid tumor is investigated as a porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multi scale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. In this work, the mathematical model in our previous studies is developed by considering two model of momentum equation for porous media: Darcy and Brinkman. The mathematical method involves processes such as fluid flow through solid tumor as porous media, extravasation of blood flow from vessels, blood flow through vessels and solute diffusion, convective transport in extracellular matrix. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model does.

Keywords: solid tumor, porous media, Darcy model, Brinkman model, drug delivery

Procedia PDF Downloads 308
2900 Copula Autoregressive Methodology for Simulation of Solar Irradiance and Air Temperature Time Series for Solar Energy Forecasting

Authors: Andres F. Ramirez, Carlos F. Valencia

Abstract:

The increasing interest in renewable energies strategies application and the path for diminishing the use of carbon related energy sources have encouraged the development of novel strategies for integration of solar energy into the electricity network. A correct inclusion of the fluctuating energy output of a photovoltaic (PV) energy system into an electric grid requires improvements in the forecasting and simulation methodologies for solar energy potential, and the understanding not only of the mean value of the series but the associated underlying stochastic process. We present a methodology for synthetic generation of solar irradiance (shortwave flux) and air temperature bivariate time series based on copula functions to represent the cross-dependence and temporal structure of the data. We explore the advantages of using this nonlinear time series method over traditional approaches that use a transformation of the data to normal distributions as an intermediate step. The use of copulas gives flexibility to represent the serial variability of the real data on the simulation and allows having more control on the desired properties of the data. We use discrete zero mass density distributions to assess the nature of solar irradiance, alongside vector generalized linear models for the bivariate time series time dependent distributions. We found that the copula autoregressive methodology used, including the zero mass characteristics of the solar irradiance time series, generates a significant improvement over state of the art strategies. These results will help to better understand the fluctuating nature of solar energy forecasting, the underlying stochastic process, and quantify the potential of a photovoltaic (PV) energy generating system integration into a country electricity network. Experimental analysis and real data application substantiate the usage and convenience of the proposed methodology to forecast solar irradiance time series and solar energy across northern hemisphere, southern hemisphere, and equatorial zones.

Keywords: copula autoregressive, solar irradiance forecasting, solar energy forecasting, time series generation

Procedia PDF Downloads 324
2899 Collaborative Governance for Social Change and Environmental Sustainability: A Case Study of Campania Region

Authors: Zubair Ahmad

Abstract:

The emphasis on collaborative governance and effective leadership to bring any social change is gaining prominence among researchers. This article aims to investigate the role of leadership and collaborative governance in bringing social change concerning waste management in the Campania region. The single-case study of a multi-site, qualitative approach is used in this study. Interviews of relevant politicians, public managers, citizens, waste management organizations and academics were conducted (2023-2024). This research uses the lens of multiple theoretical frameworks such as collaborative governance, network agency and transformational leadership to explore different dynamics of the research. Moreover, several obstacles in the way of achieving social change in Campania concerning waste management and environmental sustainability are identified. The findings of this study added to the theoretical understanding of collaborative governance and social change. Practically, it highlights five interconnected forms from interviews of leadership that civic leaders and managers must establish to promote positive social change: Difficulties in leadership effectiveness, civic potential unused, media mobilization, hope for a miracle, and stakeholder engagement diversification. The public value framework is used to analyze the potential role of leadership in bringing change in society. The research findings are replicable and can be applied to a similar set of circumstances. This research shows how can states effectively improve a social challenge to achieve a greater public good and how leadership help in achieving sustainability. Italy's government has green-lighted projects to make these activities more visible while downplaying their negative impacts on the environment and public health. This study provides an overview of the growing body of research on (un)sustainability practices by demonstrating how states might successfully tackle sustainability-related business difficulties in the service of a higher public good.

Keywords: collaborative governance, transformational leadership, network agency, public value framework, social change, waste management

Procedia PDF Downloads 10
2898 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 75
2897 Analyzing the Street Pattern Characteristics on Young People’s Choice to Walk or Not: A Study Based on Accelerometer and Global Positioning Systems Data

Authors: Ebru Cubukcu, Gozde Eksioglu Cetintahra, Burcin Hepguzel Hatip, Mert Cubukcu

Abstract:

Obesity and overweight cause serious health problems. Public and private organizations aim to encourage walking in various ways in order to cope with the problem of obesity and overweight. This study aims to understand how the spatial characteristics of urban street pattern, connectivity and complexity influence young people’s choice to walk or not. 185 public university students in Izmir, the third largest city in Turkey, participated in the study. Each participant had worn an accelerometer and a global positioning (GPS) device for a week. The accelerometer device records data on the intensity of the participant’s activity at a specified time interval, and the GPS device on the activities’ locations. Combining the two datasets, activity maps are derived. These maps are then used to differentiate the participants’ walk trips and motor vehicle trips. Given that, the frequency of walk and motor vehicle trips are calculated at the street segment level, and the street segments are then categorized into two as ‘preferred by pedestrians’ and ‘preferred by motor vehicles’. Graph Theory-based accessibility indices are calculated to quantify the spatial characteristics of the streets in the sample. Six different indices are used: (I) edge density, (II) edge sinuosity, (III) eta index, (IV) node density, (V) order of a node, and (VI) beta index. T-tests show that the index values for the ‘preferred by pedestrians’ and ‘preferred by motor vehicles’ are significantly different. The findings indicate that the spatial characteristics of the street network have a measurable effect on young people’s choice to walk or not. Policy implications are discussed. This study is funded by the Scientific and Technological Research Council of Turkey, Project No: 116K358.

Keywords: graph theory, walkability, accessibility, street network

Procedia PDF Downloads 229
2896 The Impact of Artificial Intelligence on Qualty Conrol and Quality

Authors: Mary Moner Botros Fanawel

Abstract:

Many companies use the statistical tool named as statistical quality control, and which can have a high cost for the companies interested on these statistical tools. The evaluation of the quality of products and services is an important topic, but the reduction of the cost of the implantation of the statistical quality control also has important benefits for the companies. For this reason, it is important to implement a economic design for the various steps included into the statistical quality control. In this paper, we describe some relevant aspects related to the economic design of a quality control chart for the proportion of defective items. They are very important because the suggested issues can reduce the cost of implementing a quality control chart for the proportion of defective items. Note that the main purpose of this chart is to evaluate and control the proportion of defective items of a production process.

Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives proportion, type I error, economic plan, distribution function bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics

Procedia PDF Downloads 64
2895 The Optimal Irrigation in the Mitidja Plain

Authors: Gherbi Khadidja

Abstract:

In the Mediterranean region, water resources are limited and very unevenly distributed in space and time. The main objective of this project is the development of a wireless network for the management of water resources in northern Algeria, the Mitidja plain, which helps farmers to irrigate in the most optimized way and solve the problem of water shortage in the region. Therefore, we will develop an aid tool that can modernize and replace some traditional techniques, according to the real needs of the crops and according to the soil conditions as well as the climatic conditions (soil moisture, precipitation, characteristics of the unsaturated zone), These data are collected in real-time by sensors and analyzed by an algorithm and displayed on a mobile application and the website. The results are essential information and alerts with recommendations for action to farmers to ensure the sustainability of the agricultural sector under water shortage conditions. In the first part: We want to set up a wireless sensor network, for precise management of water resources, by presenting another type of equipment that allows us to measure the water content of the soil, such as the Watermark probe connected to the sensor via the acquisition card and an Arduino Uno, which allows collecting the captured data and then program them transmitted via a GSM module that will send these data to a web site and store them in a database for a later study. In a second part: We want to display the results on a website or a mobile application using the database to remotely manage our smart irrigation system, which allows the farmer to use this technology and offers the possibility to the growers to access remotely via wireless communication to see the field conditions and the irrigation operation, at home or at the office. The tool to be developed will be based on satellite imagery as regards land use and soil moisture. These tools will make it possible to follow the evolution of the needs of the cultures in time, but also to time, and also to predict the impact on water resources. According to the references consulted, if such a tool is used, it can reduce irrigation volumes by up to up to 40%, which represents more than 100 million m3 of savings per year for the Mitidja. This volume is equivalent to a medium-size dam.

Keywords: optimal irrigation, soil moisture, smart irrigation, water management

Procedia PDF Downloads 111