Search results for: real time control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28770

Search results for: real time control

24750 Hydrogen Production Using an Anion-Exchange Membrane Water Electrolyzer: Mathematical and Bond Graph Modeling

Authors: Hugo Daneluzzo, Christelle Rabbat, Alan Jean-Marie

Abstract:

Water electrolysis is one of the most advanced technologies for producing hydrogen and can be easily combined with electricity from different sources. Under the influence of electric current, water molecules can be split into oxygen and hydrogen. The production of hydrogen by water electrolysis favors the integration of renewable energy sources into the energy mix by compensating for their intermittence through the storage of the energy produced when production exceeds demand and its release during off-peak production periods. Among the various electrolysis technologies, anion exchange membrane (AEM) electrolyser cells are emerging as a reliable technology for water electrolysis. Modeling and simulation are effective tools to save time, money, and effort during the optimization of operating conditions and the investigation of the design. The modeling and simulation become even more important when dealing with multiphysics dynamic systems. One of those systems is the AEM electrolysis cell involving complex physico-chemical reactions. Once developed, models may be utilized to comprehend the mechanisms to control and detect flaws in the systems. Several modeling methods have been initiated by scientists. These methods can be separated into two main approaches, namely equation-based modeling and graph-based modeling. The former approach is less user-friendly and difficult to update as it is based on ordinary or partial differential equations to represent the systems. However, the latter approach is more user-friendly and allows a clear representation of physical phenomena. In this case, the system is depicted by connecting subsystems, so-called blocks, through ports based on their physical interactions, hence being suitable for multiphysics systems. Among the graphical modelling methods, the bond graph is receiving increasing attention as being domain-independent and relying on the energy exchange between the components of the system. At present, few studies have investigated the modelling of AEM systems. A mathematical model and a bond graph model were used in previous studies to model the electrolysis cell performance. In this study, experimental data from literature were simulated using OpenModelica using bond graphs and mathematical approaches. The polarization curves at different operating conditions obtained by both approaches were compared with experimental ones. It was stated that both models predicted satisfactorily the polarization curves with error margins lower than 2% for equation-based models and lower than 5% for the bond graph model. The activation polarization of hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) were behind the voltage loss in the AEM electrolyzer, whereas ion conduction through the membrane resulted in the ohmic loss. Therefore, highly active electro-catalysts are required for both HER and OER while high-conductivity AEMs are needed for effectively lowering the ohmic losses. The bond graph simulation of the polarisation curve for operating conditions at various temperatures has illustrated that voltage increases with temperature owing to the technology of the membrane. Simulation of the polarisation curve can be tested virtually, hence resulting in reduced cost and time involved due to experimental testing and improved design optimization. Further improvements can be made by implementing the bond graph model in a real power-to-gas-to-power scenario.

Keywords: hydrogen production, anion-exchange membrane, electrolyzer, mathematical modeling, multiphysics modeling

Procedia PDF Downloads 96
24749 Transgenerational Impact of Intrauterine Hyperglycaemia to F2 Offspring without Pre-Diabetic Exposure on F1 Male Offspring

Authors: Jun Ren, Zhen-Hua Ming, He-Feng Huang, Jian-Zhong Sheng

Abstract:

Adverse intrauterine stimulus during critical or sensitive periods in early life, may lead to health risk not only in later life span, but also further generations. Intrauterine hyperglycaemia, as a major feature of gestational diabetes mellitus (GDM), is a typical adverse environment for both F1 fetus and F1 gamete cells development. However, there is scare information of phenotypic difference of metabolic memory between somatic cells and germ cells exposed by intrauterine hyperglycaemia. The direct transmission effect of intrauterine hyperglycaemia per se has not been assessed either. In this study, we built a GDM mice model and selected male GDM offspring without pre-diabetic phenotype as our founders, to exclude postnatal diabetic influence on gametes, thereby investigate the direct transmission effect of intrauterine hyperglycaemia exposure on F2 offspring, and we further compared the metabolic difference of affected F1-GDM male offspring and F2 offspring. A GDM mouse model of intrauterine hyperglycemia was established by intraperitoneal injection of streptozotocin after pregnancy. Pups of GDM mother were fostered by normal control mothers. All the mice were fed with standard food. Male GDM offspring without metabolic dysfunction phenotype were crossed with normal female mice to obtain F2 offspring. Body weight, glucose tolerance test, insulin tolerance test and homeostasis model of insulin resistance (HOMA-IR) index were measured in both generations at 8 week of age. Some of F1-GDM male mice showed impaired glucose tolerance (p < 0.001), none of F1-GDM male mice showed impaired insulin sensitivity. Body weight of F1-GDM mice showed no significance with control mice. Some of F2-GDM offspring exhibited impaired glucose tolerance (p < 0.001), all the F2-GDM offspring exhibited higher HOMA-IR index (p < 0.01 of normal glucose tolerance individuals vs. control, p < 0.05 of glucose intolerance individuals vs. control). All the F2-GDM offspring exhibited higher ITT curve than control (p < 0.001 of normal glucose tolerance individuals, p < 0.05 of glucose intolerance individuals, vs. control). F2-GDM offspring had higher body weight than control mice (p < 0.001 of normal glucose tolerance individuals, p < 0.001 of glucose intolerance individuals, vs. control). While glucose intolerance is the only phenotype that F1-GDM male mice may exhibit, F2 male generation of healthy F1-GDM father showed insulin resistance, increased body weight and/or impaired glucose tolerance. These findings imply that intrauterine hyperglycaemia exposure affects germ cells and somatic cells differently, thus F1 and F2 offspring demonstrated distinct metabolic dysfunction phenotypes. And intrauterine hyperglycaemia exposure per se has a strong influence on F2 generation, independent of postnatal metabolic dysfunction exposure.

Keywords: inheritance, insulin resistance, intrauterine hyperglycaemia, offspring

Procedia PDF Downloads 238
24748 Coupled Space and Time Homogenization of Viscoelastic-Viscoplastic Composites

Authors: Sarra Haouala, Issam Doghri

Abstract:

In this work, a multiscale computational strategy is proposed for the analysis of structures, which are described at a refined level both in space and in time. The proposal is applied to two-phase viscoelastic-viscoplastic (VE-VP) reinforced thermoplastics subjected to large numbers of cycles. The main aim is to predict the effective long time response while reducing the computational cost considerably. The proposed computational framework is a combination of the mean-field space homogenization based on the generalized incrementally affine formulation for VE-VP composites, and the asymptotic time homogenization approach for coupled isotropic VE-VP homogeneous solids under large numbers of cycles. The time homogenization method is based on the definition of micro and macro-chronological time scales, and on asymptotic expansions of the unknown variables. First, the original anisotropic VE-VP initial-boundary value problem of the composite material is decomposed into coupled micro-chronological (fast time scale) and macro-chronological (slow time-scale) problems. The former is purely VE, and solved once for each macro time step, whereas the latter problem is nonlinear and solved iteratively using fully implicit time integration. Second, mean-field space homogenization is used for both micro and macro-chronological problems to determine the micro and macro-chronological effective behavior of the composite material. The response of the matrix material is VE-VP with J2 flow theory assuming small strains. The formulation exploits the return-mapping algorithm for the J2 model, with its two steps: viscoelastic predictor and plastic corrections. The proposal is implemented for an extended Mori-Tanaka scheme, and verified against finite element simulations of representative volume elements, for a number of polymer composite materials subjected to large numbers of cycles.

Keywords: asymptotic expansions, cyclic loadings, inclusion-reinforced thermoplastics, mean-field homogenization, time homogenization

Procedia PDF Downloads 372
24747 Microsatellite Passive Thermal Design Using Anodized Titanium

Authors: Maged Assem Soliman Mossallam

Abstract:

Microsatellites' low available power limits the usage of active thermal control techniques in these categories of satellites. Passive thermal control techniques are preferred due to their high reliability and power saving which increase the satellite's survivability in orbit. Steady-state and transient simulations are applied to the microsatellite design in order to define severe conditions in orbit. Satellite thermal orbital three-dimensional simulation is performed using thermal orbit propagator coupled with Comsol Multiphysics finite element solver. Sensitivity study shows the dependence of the satellite temperatures on the internal heat dissipation and the thermooptical properties of anodization coatings. The critical case is defined as low power orbiting mode at the eclipse zone. Using black anodized aluminum drops the internal temperatures to severe values which exceed the permissible cold limits. Replacement with anodized titanium returns the internal subsystems' temperatures back to adequate temperature fluctuations limits.

Keywords: passive thermal control, thermooptical, anodized titanium, emissivity, absorbtiviy

Procedia PDF Downloads 146
24746 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 131
24745 Identifying Degradation Patterns of LI-Ion Batteries from Impedance Spectroscopy Using Machine Learning

Authors: Yunwei Zhang, Qiaochu Tang, Yao Zhang, Jiabin Wang, Ulrich Stimming, Alpha Lee

Abstract:

Forecasting the state of health and remaining useful life of Li-ion batteries is an unsolved challenge that limits technologies such as consumer electronics and electric vehicles. Here we build an accurate battery forecasting system by combining electrochemical impedance spectroscopy (EIS) -- a real-time, non-invasive and information-rich measurement that is hitherto underused in battery diagnosis -- with Gaussian process machine learning. We collect over 20,000 EIS spectra of commercial Li-ion batteries at different states of health, states of charge and temperatures -- the largest dataset to our knowledge of its kind. Our Gaussian process model takes the entire spectrum as input, without further feature engineering, and automatically determines which spectral features predict degradation. Our model accurately predicts the remaining useful life, even without complete knowledge of past operating conditions of the battery. Our results demonstrate the value of EIS signals in battery management systems.

Keywords: battery degradation, machine learning method, electrochemical impedance spectroscopy, battery diagnosis

Procedia PDF Downloads 151
24744 DNA Damage and Apoptosis Induced in Drosophila melanogaster Exposed to Different Duration of 2400 MHz Radio Frequency-Electromagnetic Fields Radiation

Authors: Neha Singh, Anuj Ranjan, Tanu Jindal

Abstract:

Over the last decade, the exponential growth of mobile communication has been accompanied by a parallel increase in density of electromagnetic fields (EMF). The continued expansion of mobile phone usage raises important questions as EMF, especially radio frequency (RF), have long been suspected of having biological effects. In the present experiments, we studied the effects of RF-EMF on cell death (apoptosis) and DNA damage of a well- tested biological model, Drosophila melanogaster exposed to 2400 MHz frequency for different time duration i.e. 2 hrs, 4 hrs, 6 hrs,8 hrs, 10 hrs, and 12 hrs each day for five continuous days in ambient temperature and humidity conditions inside an exposure chamber. The flies were grouped into control, sham-exposed, and exposed with 100 flies in each group. In this study, well-known techniques like Comet Assay and TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) Assay were used to detect DNA damage and for apoptosis studies, respectively. Experiments results showed DNA damage in the brain cells of Drosophila which increases as the duration of exposure increases when observed under the observed when we compared results of control, sham-exposed, and exposed group which indicates that EMF radiation-induced stress in the organism that leads to DNA damage and cell death. The process of apoptosis and mutation follows similar pathway for all eukaryotic cells; therefore, studying apoptosis and genotoxicity in Drosophila makes similar relevance for human beings as well.

Keywords: cell death, apoptosis, Comet Assay, DNA damage, Drosophila, electromagnetic fields, EMF, radio frequency, RF, TUNEL assay

Procedia PDF Downloads 171
24743 Development and Investigation of Sustainable Wireless Sensor Networks for forest Ecosystems

Authors: Shathya Duobiene, Gediminas Račiukaitis

Abstract:

Solar-powered wireless sensor nodes work best when they operate continuously with minimal energy consumption. Wireless Sensor Networks (WSNs) are a new technology opens up wide studies, and advancements are expanding the prevalence of numerous monitoring applications and real-time aid for environments. The Selective Surface Activation Induced by Laser (SSAIL) technology is an exciting development that gives the design of WSNs more flexibility in terms of their shape, dimensions, and materials. This research work proposes a methodology for using SSAIL technology for forest ecosystem monitoring by wireless sensor networks. WSN monitoring the temperature and humidity were deployed, and their architectures are discussed. The paper presents the experimental outcomes of deploying newly built sensor nodes in forested areas. Finally, a practical method is offered to extend the WSN's lifespan and ensure its continued operation. When operational, the node is independent of the base station's power supply and uses only as much energy as necessary to sense and transmit data.

Keywords: internet of things (IoT), wireless sensor network, sensor nodes, SSAIL technology, forest ecosystem

Procedia PDF Downloads 76
24742 Traverse Surveying Table Simple and Sure

Authors: Hamid Fallah

Abstract:

Creating surveying stations is the first thing that a surveyor learns; they can use it for control and implementation in projects such as buildings, roads, tunnels, monitoring, etc., whatever is related to the preparation of maps. In this article, the method of calculation through the traverse table and by checking several examples of errors of several publishers of surveying books in the calculations of this table, we also control the results of several software in a simple way. Surveyors measure angles and lengths in creating surveying stations, so the most important task of a surveyor is to be able to correctly remove the error of angles and lengths from the calculations and to determine whether the amount of error is within the permissible limit for delete it or not.

Keywords: UTM, localization, scale factor, cartesian, traverse

Procedia PDF Downloads 85
24741 A Prospective Study on the Evaluation of Statins Usage on HbA1c Control among Type 2 Diabetes Mellitus in an Outpatients Setting

Authors: Mohamed A. Hammad, Dzul Azri Mohamed Noor, Syed Azhar Syed Sulaiman, Abeer Kharshid, Nor Azizah Aziz, Tarek M. Elsayed

Abstract:

Medication safety is always an issue. In 2015, the National Pharmaceutical Control Bureau released a statement requesting all statins manufacturers in Malaysia to include the risk of diabetes information in the drug information leaflet in response to United States Food and Drug Administration (U.S. FDA) report. However, the data regarding this warning label in Malaysia is limited, so there is still some uncertainty whether such risk can also be observed in the Malaysian population or not. The study aims to determine the effect of statins on HbA1c% in type 2 diabetic outpatients in endocrine clinics at Hospital Pulau Pinang between June 2015 and May 2016 in Malaysia. In a prospective cohort study, records of 400 type 2 diabetic patients (control group 104 patients not using statin and treatment group 296 patients using statin) were reviewed to identify demographic criteria and lab tests. The prevalence of glycemic control (Glycated hemoglobin, HbA1C ≤ 7% for patient < 65 years, and < 8% for patient ≥ 65 years) was estimated, according to American Diabetes Association guidelines 2015. The results were presented as descriptive statistics. From 296 patients with Type 2 diabetes using statins cohort with a mean age of 57.52 ± 12.2 years, only 81 (27.4%) cases had controlled glycemia, and 215 (72.6%) had uncontrolled glycemia, CI: 95% (6.3–11.1). While the control group 104 diabetic patients had a mean age 46.1 ± 18 years and distributed among 59 (56.7%) patients with controlled diabetes and 45 (43.3%) cases, had uncontrolled glycemia, CI: 95% (5.2–10.3). The relative risk (RR) of uncontrolled glycemia in diabetic patients used statins was 1.68, and the excessive relative risk (ERR) was 68%. The absolute risk (AR) was 29.3%, and the number needed to harm (NNH) was 4. Diabetic patients using statins have more risk of uncontrolled glycemia than the patients with Type 2 diabetes non-using statins.

Keywords: diabetes mellitus, HbA1c, Malaysia, outpatients, statin, type 2, uncontrolled glycemia

Procedia PDF Downloads 285
24740 An Introduction to Corporate Financial Reporting Practices in India

Authors: Pradip Kumar Das

Abstract:

India is a developing country and is also one of the most industrialized developing countries of the world. In post-independence period, industry has grown rapidly in India and with industrialization corporate sector in the country has been growing day after day. Nowadays, the investment is not limited to be shareholders alone, apart from the shareholders the common people of the society have also started investing in shares of the corporate sectors. Thus, the responsibilities of the corporate sectors have increased much. Corporate financial reporting refers to a system which provides valuable information to different types of users in the society for taking resourceful decisions with regards to investment policy, organization credit worthiness, profitability, liquidity, provision of taxation etc. The quality of information available to different users fosters the efficient allocation of resources which are very urgent for economic development of a country like India. It is the responsibility of the management of the corporate sector to convey reliable and authentic information with the help of generally accepted accounting principles. Corporate sectors which disclose information through annual reports should be sufficient enough for the purpose of bringing out the salient features relating to business performances and other activities. However, the disclosures practices of the corporate sectors though annual reports have undergone several major changes from time to time. Many a time, these vital changes are in the fashion of presenting information in the annual reports and addition of so many non-statutory disclosures of the company. Very often managements of the corporate sectors are blamed for concealing true picture which is not desirable at all. The corporate financial reporting practice which in the current period has gained a place of prime importance suffers from certain limitations and invites question from the public about its reliability. Thus, the wide gap created by management between the exhibited picture and the real picture sometimes attains to such extent that the purpose of the reporting practice loses its importance. The requirement of full and adequate disclosure of information including information relating to human resources in the annual report in free trade economy of India helps the prospective investors to select the best portfolio of their investments. This paper is a reflection of a modest attempt of the author to highlight the corporate reporting practices followed in India. A cursory glance of the conceptual study shows limitations along with reliability of the reporting practices and suggests measures to overcome the shortcomings of the financial reporting practices.

Keywords: corporate enterprise, cursory glance, portfolio, yawning gap

Procedia PDF Downloads 418
24739 Effect of Hypoxia on AOX2 Expression in Chlamydomonas reinhardtii

Authors: Maria Ostroukhova, Zhanneta Zalutskaya, Elena Ermilova

Abstract:

The alternative oxidase (AOX) mediates cyanide-resistant respiration, which bypasses proton-pumping complexes III and IV of the cytochrome pathway to directly transfer electrons from reduced ubiquinone to molecular oxygen. In Chlamydomonas reinhardtii, AOX is a monomeric protein that is encoded by two genes of discrete subfamilies, AOX1 and AOX2. Although AOX has been proposed to play essential roles in stress tolerance of organisms, the role of subfamily AOX2 is largely unknown. In C. reinhardtii, AOX2 was initially identified as one of constitutively low expressed genes. Like other photosynthetic organisms C. reinhardtii cells frequently experience periods of hypoxia. To examine AOX2 transcriptional regulation and role of AOX2 in hypoxia adaptation, real-time PCR analysis and artificial microRNA method were employed. Two experimental approaches have been used to induce the anoxic conditions: dark-anaerobic and light-anaerobic conditions. C. reinhardtii cells exposed to the oxygen deprivation have shown increased AOX2 mRNA levels. By contrast, AOX1 was not an anoxia-responsive gene. In C. reinhardtii, a subset of genes is regulated by transcription factor CRR1 in anaerobic conditions. Notable, the AOX2 promoter region contains the potential motif for CRR1 binding. Therefore, the role of CRR1 in the control of AOX2 transcription was tested. The CRR1-underexpressing strains, that were generated and characterized in this work, exhibited low levels of AOX2 transcripts under anoxic conditions. However, the transformants still slightly induced AOX2 gene expression in the darkness. These confirmed our suggestions that darkness is a regulatory stimulus for AOX genes in C. reinhardtii. Thus, other factors must contribute to AOX2 promoter activity under dark-anoxic conditions. Moreover, knock-down of CRR1 caused a complete reduction of AOX2 expression under light-anoxic conditions. These results indicate that (1) CRR1 is required for AOX2 expression during hypoxia, and (2) AOX2 gene is regulated by CRR1 together with yet-unknown regulatory factor(s). In addition, the AOX2-underexpressing strains were generated. The analysis of amiRNA-AOX2 strains suggested a role of this alternative oxidase in hypoxia adaptation of the alga. In conclusion, the results reported here show that C. reinhardtii AOX2 gene is stress inducible. CRR1 transcriptional factor is involved in the regulation of the AOX2 gene expression in the absence of oxygen. Moreover, AOX2 but not AOX1 functions under oxygen deprivation. This work was supported by Russian Science Foundation (research grant № 16-14-10004).

Keywords: alternative oxidase 2, artificial microRNA approach, chlamydomonas reinhardtii, hypoxia

Procedia PDF Downloads 243
24738 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction

Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic

Abstract:

Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.

Keywords: bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks

Procedia PDF Downloads 391
24737 Multi-Sensor Image Fusion for Visible and Infrared Thermal Images

Authors: Amit Kumar Happy

Abstract:

This paper is motivated by the importance of multi-sensor image fusion with a specific focus on infrared (IR) and visual image (VI) fusion for various applications, including military reconnaissance. Image fusion can be defined as the process of combining two or more source images into a single composite image with extended information content that improves visual perception or feature extraction. These images can be from different modalities like visible camera & IR thermal imager. While visible images are captured by reflected radiations in the visible spectrum, the thermal images are formed from thermal radiation (infrared) that may be reflected or self-emitted. A digital color camera captures the visible source image, and a thermal infrared camera acquires the thermal source image. In this paper, some image fusion algorithms based upon multi-scale transform (MST) and region-based selection rule with consistency verification have been proposed and presented. This research includes the implementation of the proposed image fusion algorithm in MATLAB along with a comparative analysis to decide the optimum number of levels for MST and the coefficient fusion rule. The results are presented, and several commonly used evaluation metrics are used to assess the suggested method's validity. Experiments show that the proposed approach is capable of producing good fusion results. While deploying our image fusion algorithm approaches, we observe several challenges from the popular image fusion methods. While high computational cost and complex processing steps of image fusion algorithms provide accurate fused results, they also make it hard to become deployed in systems and applications that require a real-time operation, high flexibility, and low computation ability. So, the methods presented in this paper offer good results with minimum time complexity.

Keywords: image fusion, IR thermal imager, multi-sensor, multi-scale transform

Procedia PDF Downloads 117
24736 The Impact of the Parking Spot’ Surroundings on Charging Decision: A Data-Driven Approach

Authors: Xizhen Zhou, Yanjie Ji

Abstract:

The charging behavior of drivers provides a reference for the planning and management of charging facilities. Based on the real trajectory data of electric vehicles, this study explored the influence of the surrounding environments of the parking spot on charging decisions. The built environment, the condition of vehicles, and the nearest charging station were all considered. And the mixed binary logit model was used to capture the impact of unobserved heterogeneity. The results show that the number of fast chargers in the charging station, parking price, dwell time, and shopping services all significantly impact the charging decision, while the leisure services, scenic spots, and mileage since the last charging are opposite. Besides, factors related to unobserved heterogeneity include the number of fast chargers, parking and charging prices, residential areas, etc. The interaction effects of random parameters further illustrate the complexity of charging choice behavior. The results provide insights for planning and managing charging facilities.

Keywords: charging decision, trajectory, electric vehicle, infrastructure, mixed logit

Procedia PDF Downloads 74
24735 An Improved Tracking Approach Using Particle Filter and Background Subtraction

Authors: Amir Mukhtar, Dr. Likun Xia

Abstract:

An improved, robust and efficient visual target tracking algorithm using particle filtering is proposed. Particle filtering has been proven very successful in estimating non-Gaussian and non-linear problems. In this paper, the particle filter is used with color feature to estimate the target state with time. Color distributions are applied as this feature is scale and rotational invariant, shows robustness to partial occlusion and computationally efficient. The performance is made more robust by choosing the different (YIQ) color scheme. Tracking is performed by comparison of chrominance histograms of target and candidate positions (particles). Color based particle filter tracking often leads to inaccurate results when light intensity changes during a video stream. Furthermore, background subtraction technique is used for size estimation of the target. The qualitative evaluation of proposed algorithm is performed on several real-world videos. The experimental results demonstrate that the improved algorithm can track the moving objects very well under illumination changes, occlusion and moving background.

Keywords: tracking, particle filter, histogram, corner points, occlusion, illumination

Procedia PDF Downloads 383
24734 Stock Price Prediction Using Time Series Algorithms

Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava

Abstract:

This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.

Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series

Procedia PDF Downloads 145
24733 Effectiveness of Intraoperative Heparinization in Neonatal and Pediatric Patients with Congenital Heart Diseases: Focus in Heparin Resistance

Authors: Karakhalis N. B.

Abstract:

This study aimed to determine the prevalence of heparin resistance among cardiac surgical pediatric and neonatal patients and identify associated risk factors. Materials and Methods: The study included 306 pediatric and neonatal patients undergoing on-pump cardiac surgery. Patients whose activated clotting time (ACT) targets were achieved after the first administration of heparin formed the 1st group (n=280); the 2nd group (n=26) included patients with heparin resistance. The initial assessment of the haemostasiological profile included determining the PT, aPPT, FG, AT III activity, and INR. Intraoperative control of heparinization was carried out with a definition of ACT using a kaolin activator. A weight-associated protocol at the rate of 300 U/kg with target values of ACT >480 sec was used for intraoperative heparinization. Results: The heparin resistance was verified in 8.5% of patients included in the study. Repeated heparin administration at the maximum dose of≥600 U/kg is required in 80.77% of cases. Despite additional heparinization, 19.23% of patients had FFP infusion. There was reduced antithrombin activity in the heparin resistance group (p=0.01). Most patients with heparin resistance (57.7%) were pretreated with low molecular weight heparins during the preoperative period. Conclusion: Determining the initial level of antithrombin activity can predict the risk of developing heparin resistance. The factor analysis verified hidden risk factors for heparin resistance to the heparin pretreatment, chronic hypoxia, and chronic heart failure.

Keywords: congenital heart disease, heparin, antithrombin, activated clotting time, heparin resistance

Procedia PDF Downloads 83
24732 Cratoxy Formosum (Jack) Dyer Leaf Extract-Induced Human Breast and Liver Cancer Cells Death

Authors: Benjaporn Buranrat, Nootchanat Mairuae

Abstract:

Cratoxylum formosum (Jack) Dyer (CF) has been used for the traditional medicines in South East Asian and Thailand. Normally, northeast Thai vegetables have proven cytotoxic to many cancer cells. Therefore, the present study aims to explore the molecular mechanisms underlying CF-induced cancer cell death and apoptosis on breast and liver cancer cells. The cytotoxicity and antiproliferative effects of CF on the human breast MCF-7 and liver HepG2 cancer cell lines were evaluated using sulforhodamine B assay and colony formation assay. Cell migration assay was measured using wound healing assay. The apoptosis induction mechanisms were investigated through reactive oxygen species formation, caspase 3 activity, and JC-1 activity. Gene expression by real-time PCR and apoptosis related protein levels by Western blot analysis. CF induced MCF-7 and HepG2 cell death by time- and dose-dependent manner. Furthermore, CF had the greater cytotoxic potency on MCF-7 more than HepG2 cells with IC50 values of 85.70+4.52 μM and 219.03±9.96 μM respectively, at 24 h. Treatment with CF also caused a dose-dependent decrease in colony forming ability and cell migration, especially on MCF-7 cells. CF induced ROS formation, increased caspase 3 activities, and decreased the mitochondrial membrane potential, and causing apoptotic body production and DNA fragmentation. CF significantly decreased expression of the cell cycle regulatory protein RAC1 and downstream proteins, cdk6. Additionally, CF enhanced p21 and reduced cyclin D1 protein levels. CF leaf extract induced cell death, apoptosis, antimigration in both of MCF-7 and HepG2 cells. CF could be useful for developing to anticancer drug candidate for breast and liver cancer therapy.

Keywords: cratoxylum formosum (jack) dyer, breast cancer, liver cancer, cell death

Procedia PDF Downloads 213
24731 Efficacy of Eutectic Mixture of Local Anaesthetics and Diclofenac Spray in Attenuating Intravenous Cannulation Pain- Paeallel Randomized Trial

Authors: Anju Rani, Geeta, Sudha Rani, Choudhary, Puhal

Abstract:

Method- A total of 300 patients were studied, with 100 patients in each group. Patients aged 16-60 years, ASA grade I and II undergoing elective general surgical, urology and orthopedic procedures were included in the study. The patients were randomly allocated to any of the three groups by Using Sealed envelopes. 1. Group A: EMLA (eutectic mixture of 2.5% lidocaine with 2.5% prilocaine) - Patients receiving eutectic Lidocaine/ Prilocaine cream (2gm/10cm2) of Prilox cream), for 60- 70 min under occlusive dressing. 2. Group B - Patients receiving topical diclofenac 4 % spray gel for 60- 70 min, covering an absorption area of 50 cm2 3. Group C: control – Direct cannulation was done without any intervention. Results - Group B showed significantly least number of patients complaining pain on IV cannulation in comparison to group A and group C. The Mean VAS scores were found to be maximum in GROUP C: control-8.76 ± 4.14, then in GROUP A: EMLA- 2.54 ± 4.21.and least in GROUP B: Diclofenac 4% spray-1.13 ± 3.05. Erythema, induration and edema were significantly reported to be higher for the control group. Also group A patients reported adverse skin reactions more than patients in group B. Conclusion - It can be concluded that diclofenac spray 4 % and EMLA cream are effective in reducing the incidence and severity of venous cannulation pain as compared to the control group. However, a higher incidence of skin blanching, erythema, and oedema associated with EMLA cream and a lower incidence of these adverse effects favours the use of diclofenac spray 4%. They are promising agents for the treatment of venous cannulation pain.

Keywords: diclofenac spray, EMLA, intravenous, pain

Procedia PDF Downloads 160
24730 A Case Study of Limited Dynamic Voltage Frequency Scaling in Low-Power Processors

Authors: Hwan Su Jung, Ahn Jun Gil, Jong Tae Kim

Abstract:

Power management techniques are necessary to save power in the microprocessor. By changing the frequency and/or operating voltage of processor, DVFS can control power consumption. In this paper, we perform a case study to find optimal power state transition for DVFS. We propose the equation to find the optimal ratio between executions of states while taking into account the deadline of processing time and the power state transition delay overhead. The experiment is performed on the Cortex-M4 processor, and average 6.5% power saving is observed when DVFS is applied under the deadline condition.

Keywords: deadline, dynamic voltage frequency scaling, power state transition

Procedia PDF Downloads 460
24729 Design of Aesthetic Acoustic Metamaterials Window Panel Based on Sierpiński Fractal Triangle for Sound-Silencing with Free Airflow

Authors: Sanjeet Kumar Singh, Shantanu Bhatacharya

Abstract:

Design of high-efficiency low, frequency (<1000Hz) soundproof window or wall absorber which is transparent to airflow is presented. Due to the massive rise in human population and modernization, environmental noise has significantly risen globally. Prolonged noise exposure can cause severe physiological and psychological symptoms like nausea, headaches, fatigue, and insomnia. There has been continuous growth in building construction and infrastructure like offices, bus stops, and airports due to the urban population. Generally, a ventilated window is used for getting fresh air into the room, but at the same time, unwanted noise comes along. Researchers used traditional approaches like noise barrier mats in front of the window or designed the entire window using sound-absorbing materials. However, this solution is not aesthetically pleasing, and at the same time, it's heavy and not adequate for low-frequency noise shielding. To address this challenge, we design a transparent hexagonal panel based on the Sierpiński fractal triangle, which is aesthetically pleasing and demonstrates a normal incident sound absorption coefficient of more than 0.96 around 700 Hz and transmission loss of around 23 dB while maintaining e air circulation through the triangular cutout. Next, we present a concept of fabrication of large acoustic panels for large-scale applications, which leads to suppressing urban noise pollution.

Keywords: acoustic metamaterials, ventilation, urban noise pollution, noise control

Procedia PDF Downloads 110
24728 Numerical Simulation and Optimal Control in Gas Dynamic Laser GDLs

Authors: Laggoun Chouki

Abstract:

In this paper we present the design and mechanisms of the physics process and discuss the performances of continuous gas laser dynamics, based on molecules N2(v=1)→C02(001)(v=3). The main objectives of work in this area are, obtaining the high laser energies in short time durations needed for the feasibility studies the physical principles that can be used to make laser sources capable of delivering high average powers. We note that, in order to reach both objectives, one has to convert electrical or chemical energy into laser energy, using gaseous media. The process generating the wave excited, on the basis of the excited level vibration, Theoretical predictions are compared with experimental results. The feasibility and effectiveness of the proposed method is demonstrated by computer simulation.

Keywords: modelling, lasers, gas, numerical, nozzle

Procedia PDF Downloads 84
24727 Cross-Cultural Competence Development through 'Learning by Reflection': A Case Study of Chinese International Students Learning through Taking Part-Time Jobs in the UK

Authors: Xin Zhao

Abstract:

The project aims to expand the notion of narrative learning and address the importance of learning by reflection in our learning and teaching context at a British university. Drawing on the key concepts such as development ZPD, transition and reflection-in and –on-action, this project analyses the learning experiences of a small sample of Chinese postgraduate students in a British University, who use part-time job experience to develop cross-cultural communication skills. The project adopts a mixed methods approach. Questionnaires and focus group interviews are used to examine the way in which students adapt (or not adapt) to the culture of learning in a British university and develop a renewed sense of self in transitions from one culture to the other. The project also looks at how the students appropriate opportunities for learning not just from classrooms but outside classrooms from everyday encounters. The project aims to address the implication of learning by reflection as development in transition. Time in and for learning, or duration, is taken for granted in theorising narrative learning. The project shall explore this very issue of time in relation to learning by reflection in considering time in/of/for learning as duration.

Keywords: cross-cultural competence, learning by refection, international student transition, part-time work experience

Procedia PDF Downloads 187
24726 Enhancing Human Mobility Exoskeleton Comfort Using Admittance Controller

Authors: Alexandre Rabaseda, Emelie Seguin, Marc Doumit

Abstract:

Human mobility exoskeletons have been in development for several years and are becoming increasingly efficient. Unfortunately, user comfort was not always a priority design criterion throughout their development. To further improve this technology, exoskeletons should operate and deliver assistance without causing discomfort to the user. For this, improvements are necessary from an ergonomic point of view. The device’s control method is important when endeavoring to enhance user comfort. Exoskeleton or rehabilitation device controllers use methods of control called interaction controls (admittance and impedance controls). This paper proposes an extended version of an admittance controller to enhance user comfort. The control method used consists of adding an inner loop that is controlled by a proportional-integral-derivative (PID) controller. This allows the interaction force to be kept as close as possible to the desired force trajectory. The force-tracking admittance controller modifies the actuation force of the system in order to follow both the desired motion trajectory and the desired relative force between the user and the exoskeleton.

Keywords: mobility assistive device, exoskeleton, force-tracking admittance controller, user comfort

Procedia PDF Downloads 159
24725 Erectile Dysfunction among Bangladeshi Men with Diabetes

Authors: Shahjada Selim

Abstract:

Background: Erectile dysfunction (ED) is an important impediment to quality of life of men. ED is approximate, three times more common in diabetic than non-diabetic men, and diabetic men develop ED earlier than age-matched non-diabetic subjects. Glycemic control and other factors may contribute in developing and or deteriorating ED. Aim: The aim of the study was to determine the prevalence of ED and its risk factors in type 2 diabetic (T2DM) men in Bangladesh. Methods: During 2013-2014, 3980 diabetic men aged 30-69 years were interviewed at the out-patient departments of seven diabetic centers in Dhaka by using the validated Bengali version of the questionnaire of the International index of erectile function (IIEF) for evaluation of baseline erectile function (EF). The indexes indicate a very high correlation between the items and the questionnaire is consistently reliable. Data were analyzed with Chi-squared (χ²) test using SPSS software. P ≤ 0.05 was considered significant. Results: Out of 3790, ED was found in 2046 (53.98%) of T2DM men. The prevalence of ED was increased with age from 10.5% in men aged 30-39 years to 33.6% in those aged over 60 years (P < 0.001). In comparison with patients with reported diabetes lasting ≤ 5 years (26.4%), the prevalence of ED was less than in those with diabetes of 6-11 years (35.3%) and of 12-30 years (42.5%, P <0.001). ED increased significantly in those who had poor glycemic control. The prevalence of ED in patients with good, fair and poor glycemic control was 22.8%, 42.5% and 47.9% respectively (P = 0.004). Treatment modalities (medical nutrition therapy, oral agents, insulin, and insulin plus oral agents) had significant association with ED and its severity (P < 0.001). Conclusion: Prevalence of ED is very high among T2DM men in Bangladesh and can be reduced the burden by improving glycemic status. Glycemic control, duration of diabetes, treatment modalities, increasing age are associated with ED.

Keywords: erectile dysfunction, diabetes, men, Bangladesh

Procedia PDF Downloads 268
24724 Effects of Organic Amendments on Primary Nutrients (N, P and K) in a Sandy Soil

Authors: Nejib Turki, Karima Kouki Khalfallah

Abstract:

The effect of six treatments of organic amendments were evaluated on a sandy soil in the region of Soukra in Tunisia. T1: cattle manure 55 t.ha-1, T2: commercial compost from Germany to 1 t.ha-1, T3: a mixture of 27.5 t.ha-1 of T1 with 0.5 t. ha-1 of T2, T4: commercial compost from France 2 t.ha-1, T5: a Tunisian commercial compost to 10 t.ha-1 and T0: control without treatment. The nitrogen in the soil increase to 0.029 g.kg-1 of soil treatment for the T1 and 0.021 g. kg-1 of soil treatment for the T3. The highest content of P2O5 has been registered by the T3 treatment that 0.44 g kg-1 soil with respect to the control (T0), which shows a content of 0.36 g.kg-1 soil. The soil was initially characterized by a potassium content of 0.8 g kg-1 soil, K2O exchangeable rate varied between 0.63 g.Kg-1 and 0.71 g.kg-1 soil respectively T2 and T1.

Keywords: compost, organic amendement, Ntot, P2O5, K2O

Procedia PDF Downloads 637
24723 Evaluation of Hand Grip Strength and EMG Signal on Visual Reaction

Authors: Sung-Wook Shin, Sung-Taek Chung

Abstract:

Hand grip strength has been utilized as an indicator to evaluate the motor ability of hands, responsible for performing multiple body functions. It is, however, difficult to evaluate other factors (other than hand muscular strength) utilizing the hand grip strength only. In this study, we analyzed the motor ability of hands using EMG and the hand grip strength, simultaneously in order to evaluate concentration, muscular strength reaction time, instantaneous muscular strength change, and agility in response to visual reaction. In results, the average time (and their standard deviations) of muscular strength reaction EMG signal and hand grip strength was found to be 209.6 ± 56.2 ms and 354.3 ± 54.6 ms, respectively. In addition, the onset time which represents acceleration time to reach 90% of maximum hand grip strength, was 382.9 ± 129.9 ms.

Keywords: hand grip strength, EMG, visual reaction, endurance

Procedia PDF Downloads 466
24722 Diffraction-Based Immunosensor for Dengue NS1 Virus

Authors: Harriet Jane R. Caleja, Joel I. Ballesteros, Florian R. Del Mundo

Abstract:

The dengue fever belongs to the world’s major cause of death, especially in the tropical areas. In the Philippines, the number of dengue cases during the first half of 2015 amounted to more than 50,000. In 2012, the total number of cases of dengue infection reached 132,046 of which 701 patients died. Dengue Nonstructural 1 virus (Dengue NS1 virus) is a recently discovered biomarker for the early detection of dengue virus. It is present in the serum of the dengue virus infected patients even during the earliest stages prior to the formation of dengue virus antibodies. A biosensor for the dengue detection using NS1 virus was developed for faster and accurate diagnostic tool. Biotinylated anti-dengue virus NS1 was used as the receptor for dengue virus NS1. Using the Diffractive Optics Technology (dotTM) technique, real time binding of the NS1 virus to the biotinylated anti-NS1 antibody is observed. The dot®-Avidin sensor recognizes the biotinylated anti-NS1 and this served as the capture molecule to the analyte, NS1 virus. The increase in the signal of the diffractive intensity signifies the binding of the capture and the analyte. The LOD was found to be 3.87 ng/mL while the LOQ is 12.9 ng/mL. The developed biosensor was also found to be specific for the NS1 virus.

Keywords: avidin-biotin, diffractive optics technology, immunosensor, NS1

Procedia PDF Downloads 333
24721 Number of Parametrization of Discrete-Time Systems without Unit-Delay Element: Single-Input Single-Output Case

Authors: Kazuyoshi Mori

Abstract:

In this paper, we consider the parametrization of the discrete-time systems without the unit-delay element within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters. We consider single-input single-output systems in this paper. By the investigation, we find, on the discrete-time systems without the unit-delay element, three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three.

Keywords: factorization approach, discrete-time system, parameterization of stabilizing controllers, system without unit-delay

Procedia PDF Downloads 242