Search results for: Design Phase
12226 Feasibility of Two Positive-Energy Schools in a Hot-Humid Tropical Climate: A Methodological Approach
Authors: Shashwat, Sandra G. L. Persiani, Yew Wah Wong, Pramod S. Kamath, Avinash H. Anantharam, Hui Ling Aw, Yann Grynberg
Abstract:
Achieving zero-energy targets in existing buildings is known to be a difficult task, hence targets are addressed at new buildings almost exclusively. Although these ultra-efficient case-studies remain essential to develop future technologies and drive the concepts of Zero-energy, the immediate need to cut the consumption of the existing building stock remains unaddressed. This work aims to present a reliable and straightforward methodology for assessing the potential of energy-efficient upgrading in existing buildings. Public Singaporean school buildings, characterized by low energy use intensity and large roof areas, were identified as potential objects for conversion to highly-efficient buildings with a positive energy balance. A first study phase included the development of a detailed energy model for two case studies (a primary and a secondary school), based on the architectural drawings provided, site-visits and calibrated using measured end-use power consumption of different spaces. The energy model was used to demonstrate compliances or predict energy consumption of proposed changes in the two buildings. As complete energy monitoring is difficult and substantially time-consuming, short-term energy data was collected in the schools by taking spot measurements of power, voltage, and current for all the blocks of school. The figures revealed that the bulk of the consumption is attributed in decreasing order of magnitude to air-conditioning, plug loads, and lighting. In a second study-phase, a number of energy-efficient technologies and strategies were evaluated through energy-modeling to identify the alternatives giving the highest energy saving potential, achieving a reduction in energy use intensity down to 19.71 kWh/m²/y and 28.46 kWh/m²/y for the primary and the secondary schools respectively. This exercise of field evaluation and computer simulation of energy saving potential aims at a preliminary assessment of the positive-energy feasibility enabling future implementation of the technologies on the buildings studied, in anticipation of a broader and more widespread adoption in Singaporean schools.Keywords: energy simulation, school building, tropical climate, zero energy buildings, positive energy
Procedia PDF Downloads 15212225 Optimal Hybrid Linear and Nonlinear Control for a Quadcopter Drone
Authors: Xinhuang Wu, Yousef Sardahi
Abstract:
A hybrid and optimal multi-loop control structure combining linear and nonlinear control algorithms are introduced in this paper to regulate the position of a quadcopter unmanned aerial vehicle (UAV) driven by four brushless DC motors. To this end, a nonlinear mathematical model of the UAV is derived and then linearized around one of its operating points. Using the nonlinear version of the model, a sliding mode control is used to derive the control laws of the motor thrust forces required to drive the UAV to a certain position. The linear model is used to design two controllers, XG-controller and YG-controller, responsible for calculating the required roll and pitch to maneuver the vehicle to the desired X and Y position. Three attitude controllers are designed to calculate the desired angular rates of rotors, assuming that the Euler angles are minimal. After that, a many-objective optimization problem involving 20 design parameters and ten objective functions is formulated and solved by HypE (Hypervolume estimation algorithm), one of the widely used many-objective optimization algorithms approaches. Both stability and performance constraints are imposed on the optimization problem. The optimization results in terms of Pareto sets and fronts are obtained and show that some of the design objectives are competing. That is, when one objective goes down, the other goes up. Also, Numerical simulations conducted on the nonlinear UAV model show that the proposed optimization method is quite effective.Keywords: optimal control, many-objective optimization, sliding mode control, linear control, cascade controllers, UAV, drones
Procedia PDF Downloads 7412224 Inclusive Design for Regaining Lost Identity: Accessible, Aesthetic and Effortless Clothing
Authors: S. Tandon, A. Oussoren
Abstract:
Clothing is a need for all humans. Besides serving the commonly understood function of protection, it also is a means of self-expression and adornment. However, most clothing for people with disabilities is developed to respond to their functional needs merely. Such clothing aggravates feelings of inadequacy and lowers their self-esteem. Investigations into apparel-related barriers faced by women with disabilities and their expectations and desires about clothing pointed to a huge void in terms of well-designed inclusive clothing. The incredible stories and experiences shared by the participants in this research highlighted the fact that people with disabilities wanted to feel, dress, and look at how they wanted to look by wearing what they wanted to wear. Clothing should be about self-expression – reflecting their moods, taste, and style and not limited to fulfilling merely their functional needs. Inclusive Design for Regaining Lost Identity was undertaken to design and develop accessible clothing that is inclusive and fashionable to foster psycho-social well-being and to enhance the self-esteem of women with disabilities. The research explored inclusive design solutions for the saree – a traditional Indian garment for women. The saree is an elaborate garment that requires precise draping, which makes the saree complicated to wear and inconvenient to carry, particularly for women with physical disabilities. For many women in India, the saree remains the customary dress, especially for work and occasions, yet minimal advancement has been made to enhance its accessibility and ease of use. The project followed a qualitative research approach whilst incorporating a combination of methods, which consisted of a questionnaire, an interview, and co-creation workshops. The research adhered to the principles of applied research such that the designed products aim to solve a problem that is functional and purposeful. In order to reduce the complications and to simplify the wrapping of the garment fabric around the body, different combinations of pre-stitching of the layers of the saree were created to investigate the outcomes. The technology of 3D drawing and printing was employed to develop feasible fasteners keeping in mind the participants’ movement limitations and to enhance their agency with these newly designed fasteners. The underlying principle of the project is that every individual should be able to access life the way they wish to and should not have to compromise their desires due to their disability.Keywords: accessibility, co-creation, design ethics, inclusive
Procedia PDF Downloads 11812223 Welcome to 'Almanya': Effects of Displacement among Refugee Women
Authors: Carmen Nechita
Abstract:
This research explores the world of Syrian refugee women living in Dresden and their efforts to reconstruct their lives in the state of Saxony in Germany. The focus is on the initial period of adjustment and understanding how refugee women use culture, family ties, and tradition to contest and rebuild new relationships with the host country. Faced with a new status as “the refugee”, women have to re-imagine their ethno-cultural identity in order to cope with life in Diaspora. In order to understand the coping mechanism and the displacement effects on Syrian women, interviews with twelve refugee women were conducted. Traumatic experiences of loss and oppression are at the core of their confessions. While gender violence, abuse and patriarchal framework shape their narratives, this research argues that there is a need to look at this from a cultural perspective and try to distance ourselves from the western paradigm. The way Syrian women refute and rebuild their national and ethno-cultural identity in order to negotiate for themselves new space within German borders is explored. Two discourses are bridged: one of multiculturalism and one of tradition in order to explain how Syrian women experience western notions of family, womanhood and spousal dynamics. The process is painful, traumatic and marked by feelings of low self-worth, but in the end, new codes emerge and these women come out more empowered. The paper includes the migration experience and explores the ways in which Syrian refugee women tend to tell their complex stories, and how they reconstruct their identity in a new territory while faced with a different culture that discriminates against them. During the research, four distinct phases in the acculturation period were identified: “the survival”, “the honeymoon period”, “the isolation period” and “the anger period”. Each phase is analyzed in order to understand what triggers them, how women migrate from one phase to another and what can be done to make the process easier. This paper contributes to the field of refugee studies by offering a thorough understanding of the initial phases of the acculturation process in the case of Syrian refugee women. The study examines the fleeing and settlement experience in order to understand the complex ways that refugee women cope with the traumatic experience of settlement in another country and in a different culture. *Almanya: The Arabic word for Germany.Keywords: displacement, migration, refugee women, Syria
Procedia PDF Downloads 26012222 From Customer Innovations to Manufactured Products: A Project Outlook
Authors: M. Holle, M. Roth, M. R. Gürtler, U. Lindemann
Abstract:
This paper gives insights into the research project "InnoCyFer" (in the form of an outlook) which is funded by the German Federal Ministry of Economics and Technology. Enabling the integrated customer individual product design as well as flexible manufacturing of these products are the main objectives of the project. To achieve this, a web-based open innovation-platform containing an integrated Toolkit will be developed. This toolkit enables the active integration of the customer’s creativity and potentials of innovation in the product development process. Furthermore, the project will show the chances and possibilities of customer individualized products by building and examining the continuous process from innovation through the customers to the flexible manufacturing of individual products.Keywords: customer individual product design, innovation networks, open innovation, open innovation platform, toolkit
Procedia PDF Downloads 31712221 An Association Model to Correlate the Experimentally Determined Mixture Solubilities of Methyl 10-Undecenoate with Methyl Ricinoleate in Supercritical Carbon Dioxide
Authors: V. Mani Rathnam, Giridhar Madras
Abstract:
Fossil fuels are depleting rapidly as the demand for energy, and its allied chemicals are continuously increasing in the modern world. Therefore, sustainable renewable energy sources based on non-edible oils are being explored as a viable option as they do not compete with the food commodities. Oils such as castor oil are rich in fatty acids and thus can be used for the synthesis of biodiesel, bio-lubricants, and many other fine industrial chemicals. There are several processes available for the synthesis of different chemicals obtained from the castor oil. One such process is the transesterification of castor oil, which results in a mixture of fatty acid methyl esters. The main products in the above reaction are methyl ricinoleate and methyl 10-undecenoate. To separate these compounds, supercritical carbon dioxide (SCCO₂) was used as a green solvent. SCCO₂ was chosen as a solvent due to its easy availability, non-toxic, non-flammable, and low cost. In order to design any separation process, the preliminary requirement is the solubility or phase equilibrium data. Therefore, the solubility of a mixture of methyl ricinoleate with methyl 10-undecenoate in SCCO₂ was determined in the present study. The temperature and pressure range selected for the investigation were T = 313 K to 333 K and P = 10 MPa to 18 MPa. It was observed that the solubility (mol·mol⁻¹) of methyl 10-undecenoate varied from 2.44 x 10⁻³ to 8.42 x 10⁻³ whereas it varied from 0.203 x 10⁻³ to 6.28 x 10⁻³ for methyl ricinoleate within the chosen operating conditions. These solubilities followed a retrograde behavior (characterized by the decrease in the solubility values with the increase in temperature) throughout the range of investigated operating conditions. An association theory model, coupled with regular solution theory for activity coefficients, was developed in the present study. The deviation from the experimental data using this model can be quantified using the average absolute relative deviation (AARD). The AARD% for the present compounds is 4.69 and 8.08 for methyl 10-undecenoate and methyl ricinoleate, respectively in a mixture of methyl ricinoleate and methyl 10-undecenoate. The maximum solubility enhancement of 32% was observed for the methyl ricinoleate in a mixture of methyl ricinoleate and methyl 10-undecenoate. The highest selectivity of SCCO₂ was observed to be 12 for methyl 10-undecenoate in a mixture of methyl ricinoleate and methyl 10-undecenoate.Keywords: association theory, liquid mixtures, solubilities, supercritical carbon dioxide
Procedia PDF Downloads 13912220 Case Study of Ground Improvement Solution for a Power Plant
Authors: Eleonora Di Mario
Abstract:
This paper describes the application of ground improvement to replace a typical piled foundation scheme in a power plant in Singapore. Several buildings within the plant were founded on vibro-compacted sand, including a turbine unit which had extremely stringent requirements on the allowable settlement. The achieved savings in terms of cost and schedule are presented. The monitoring data collected during the operation of the turbine are compared to the design predictions to validate the design approach, and the quality of the ground improvement works. In addition, the calculated carbon footprint of the ground improvement works are compared to the piled solution, showing that the vibro-compaction has a significantly lower carbon footprint.Keywords: ground improvement, vibro-compaction, case study, sustainability, carbon footprint
Procedia PDF Downloads 11512219 Numerical Analysis of End Plate Bolted Connection with Corrugated Beam
Authors: M. A. Sadeghian, J. Yang, Q. F. Liu
Abstract:
Steel extended end plate bolted connections are recommended to be widely utilized in special moment-resisting frame subjected to monotonic loading. Improper design of steel beam to column connection can lead to the collapse and fatality of structures. Therefore comprehensive research studies of beam to column connection design should be carried out. Also the performance and effect of corrugated on the strength of beam column end plate connection up to failure under monotonic loading in horizontal direction is presented in this paper. The non-linear elastic–plastic behavior has been considered through a finite element analysis using the multi-purpose software package LUSAS. The effect of vertically and horizontally types of corrugated web was also investigated.Keywords: corrugated beam, monotonic loading, finite element analysis, end plate connection
Procedia PDF Downloads 32312218 SkyCar Rapid Transit System: An Integrated Approach of Modern Transportation Solutions in the New Queen Elizabeth Quay, Perth, Western Australia
Authors: Arfanara Najnin, Michael W. Roach, Jr., Dr. Jianhong Cecilia Xia
Abstract:
The SkyCar Rapid Transit System (SRT) is an innovative intelligent transport system for the sustainable urban transport system. This system will increase the urban area network connectivity and decrease urban area traffic congestion. The SRT system is designed as a suspended Personal Rapid Transit (PRT) system that travels under a guideway 5m above the ground. A driver-less passenger is via pod-cars that hang from slender beams supported by columns that replace existing lamp posts. The beams are setup in a series of interconnecting loops providing non-stop travel from beginning to end to assure journey time. The SRT forward movement is effected by magnetic motors built into the guideway. Passenger stops are at either at line level 5m above the ground or ground level via a spur guideway that curves off the main thoroughfare. The main objective of this paper is to propose an integrated Automated Transit Network (ATN) technology for the future intelligent transport system in the urban built environment. To fulfil the objective a 4D simulated model in the urban built environment has been proposed by using the concept of SRT-ATN system. The methodology for the design, construction and testing parameters of a Technology Demonstrator (TD) for proof of concept and a Simulator (S) has been demonstrated. The completed TD and S will provide an excellent proving ground for the next development stage, the SRT Prototype (PT) and Pilot System (PS). This paper covered by a 4D simulated model in the virtual built environment is to effectively show how the SRT-ATN system works. OpenSim software has been used to develop the model in a virtual environment, and the scenario has been simulated to understand and visualize the proposed SkyCar Rapid Transit Network model. The SkyCar system will be fabricated in a modular form which is easily transported. The system would be installed in increasingly congested city centers throughout the world, as well as in airports, tourist resorts, race tracks and other special purpose for the urban community. This paper shares the lessons learnt from the proposed innovation and provides recommendations on how to improve the future transport system in urban built environment. Safety and security of passengers are prime factors to be considered for this transit system. Design requirements to meet the safety needs to be part of the research and development phase of the project. Operational safety aspects would also be developed during this period. The vehicles, the track and beam systems and stations are the main components that need to be examined in detail for safety and security of patrons. Measures will also be required to protect columns adjoining intersections from errant vehicles in vehicular traffic collisions. The SkyCar Rapid Transit takes advantage of all current disruptive technologies; batteries, sensors and 4G/5G communication and solar energy technologies which will continue to reduce the costs and make the systems more profitable. SkyCar's energy consumption is extremely low compared to other transport systems.Keywords: SkyCar, rapid transit, Intelligent Transport System (ITS), Automated Transit Network (ATN), urban built environment, 4D Visualization, smart city
Procedia PDF Downloads 22312217 Design of a Universal Wireless Battery Charger
Authors: Ahmad B. Musamih, Ahmad A. Albloushi, Ahmed H. Alshemeili, Abdulaziz Y. Alfili, Ala A. Hussien
Abstract:
This paper proposes a universal wireless battery charger design for portable electronic devices. As the number of portable electronics devices increases, the demand for more flexible and reliable charging techniques is becoming more urgent. A wireless battery charger differs from a traditional charger in the way the power transferred to the battery. In the latter, the power is transferred through electrical wires that connect the charger terminals to the battery terminals, while in the former; the power is transferred by induction without electrical connections. With a detection algorithm that detects the battery size and chemistry, the proposed charger will be able to accommodate a wide range of applications, and will allow a more flexible and reliable option to most of today’s portable electronics.Keywords: efficiency, magnetically-coupled resonators, resonance frequency, wireless power transfer
Procedia PDF Downloads 45712216 Blast Load Resistance of Bridge Columns
Authors: Amir Kavousifard, Lan Lin
Abstract:
The objective of this study is to evaluate the effects of the detailing in the seismic design of reinforced concrete (RC) bridge columns on the blast load resistance. A generic two-span continuous RC bridge located in Victoria, British Columbia, which represents the highest seismicity in Canada, was examined in the study. The bridge superstructure consists of a single cell box girder while the substructure consists of two circular columns. The bridge was designed according to the 2006 Canadian Highway Bridge Design Code. More specifically, response spectrum analysis was performed to determine the seismic demands using CSI Bridge. The 3D blast load analysis is carried out in the platform of LS-DYNA. Two charge heights, i.e., one at the mid-height of the column and the other at the bottom of the column, are considered. For each height, three cases are analyzed in order to investigate the effects of standoff and charge weight on the structural response. The blast load resistance of the column is assessed in terms of the concrete failure mechanism, steel stress distribution, and column lateral displacement. The results from the study indicate that a column designed in accordance with the code requirements could survive during the blast attack. Spiral columns perform much better than tied columns. The results also show that the charge weight has more impact on the structural response than the standoff. These results are beneficial for the development of the Canadian standards for the design of bridges under blast loads.Keywords: blast, bridge, charge, height, seismic, standoff
Procedia PDF Downloads 2612215 Meta-Magnetic Properties of LaFe₁₂B₆ Type Compounds
Authors: Baptiste Vallet-Simond, Léopold V. B. Diop, Olivier Isnard
Abstract:
The antiferromagnetic itinerant-electron compound LaFe₁₂B₆ occupies a special place among rare-earth iron-rich intermetallic; it presents exotic magnetic and physical properties. The unusual amplitude-modulated spin configuration defined by a propagation vector k = (¼, ¼, ¼), remarkably weak Fe magnetic moment (0.43 μB) in the antiferromagnetic ground state, especially low magnetic ordering temperature TN = 36 K for an Fe-rich phase, a multicritical point in the complex magnetic phase diagram, both normal and inverse magnetocaloric effects, and huge hydrostatic pressure effects can be highlighted as the most relevant. Both antiferromagnetic (AFM) and paramagnetic (PM) states can be transformed into the ferromagnetic (FM) state via a field-induced first-order metamagnetic transition. Of particular interest is the low-temperature magnetization process. This process is discontinuous and evolves unexpected huge metamagnetic transitions consisting of a succession of steep magnetization jumps separated by plateaus, giving rise to an unusual avalanche-like behavior. The metamagnetic transition is accompanied by giant magnetoresistance and large magnetostriction. In the present work, we report on the intrinsic magnetic properties of the La₁₋ₓPrₓFe₁₂B₆ series of compounds exhibiting sharp metamagnetic transitions. The study of the structural, magnetic, magneto-transport, and magnetostrictive properties of the La₁₋ₓPrₓFe₁₂B₆ system was performed by combining a wide variety of measurement techniques. Magnetic measurements were performed up to µ0H = 10 T. It was found that the proportion of Pr had a strong influence on the magnetic properties of this series of compounds. At x=0.05, the ground state at 2K is that of an antiferromagnet, but the critical transition field Hc has been lowered from Hc = 6T at x = 0 to Hc = 2.5 Tat x=0.05. And starting from x=0.10, the ground state of this series of compounds is a coexistence of AFM and FM parts. At x=0.30, the AFM order has completely vanished, and only the FM part is left. However, we still observe meta-magnetic transitions at higher temperatures (above 100 K for x=0.30) from the paramagnetic (P) state to a forced FM state. And, of course, such transitions are accompanied by strong magneto-caloric, magnetostrictive, and magnetoresistance effects. The Curie temperatures for the probed compositions going from x=0.05 to x=0.30 were spread over the temperature range of 40 K up to 100 K.Keywords: metamagnetism, RMB intermetallic, magneto-transport effect, metamagnetic transitions
Procedia PDF Downloads 7412214 Design and Construction of Vehicle Tracking System with Global Positioning System/Global System for Mobile Communication Technology
Authors: Bala Adamu Malami
Abstract:
The necessity of low-cost electronic vehicle/car security designed in coordination with other security measures is always there in our society to reduce the risk of vehicle intrusion. Keeping this problem in mind, we are designing an automatic GPS system which is technology to build an integrated and fully customized vehicle to detect the movement of the vehicle and also serve as a security system at a reasonable cost. Users can locate the vehicle's position via GPS by using the Google Maps application to show vehicle coordinates on a smartphone. The tracking system uses a Global System for Mobile Communication (GSM) modem for communication between the mobile station and the microcontroller to send and receive commands. Further design can be improved to capture the vehicle movement range and alert the vehicle owner when the vehicle is out of range.Keywords: electronic, GPS, GSM modem, communication, vehicle
Procedia PDF Downloads 10512213 Tectonics in Sustainable Contemporary Architecture: An Approach to the Intersection between Design and Construction in the Work of Norman Foster
Authors: Mafalda Fabiene Ferreira Pantoja, Joao Da Costa Pantoja, Rui Humberto Costa De Fernandes Povoas
Abstract:
The present paper seeks to present a theoretical and practical reflection about examples of contemporary architecture in the world context where concerns about the planet become prominent and increasingly necessary. Firstly, a brief introduction will be made on the conceptual principles of tectonics in architecture in order to apply such concepts in a perspective of analysis of the intersection between design and construction in contemporary examples of Norman Foster’s architecture, once his work has demonstrated attitudes of composition that concerns about the place, technology, materials, and building life. Foster's compositions are usually focused on the role of technology in the process of architectural design, making his works a mixture of place, program, construction, and formal structures. The main purpose of the present paper is the reflection on the tools of theoretical and practical analysis about tectonics, optimizing the resources that allow cultural anchoring and creation of identity. Also establishing relation between resources, building life cycle and employment of correct materials, in order to find out how the tectonic concept can elevate the status of contemporary architecture, making it qualitative in a more sustainable context and adapted to current needs.Keywords: contemporary architecture, norman foster, tectonic, sustainable architecture
Procedia PDF Downloads 12512212 Enhanced Dielectric Properties of La Substituted CoFe2O4 Magnetic Nanoparticles
Authors: M. Vadivel, R. Ramesh Babu
Abstract:
Spinel ferrite magnetic nanomaterials have received a great deal of attention in recent years due to their wide range of potential applications in various fields such as magnetic data storage and microwave device applications. Among the family of spinel ferrites, cobalt ferrite (CoFe2O4) has been widely used in the field of high-frequency applications because of its remarkable material qualities such as moderate saturation magnetization, high coercivity, large permeability at higher frequency and high electrical resistivity. For aforementioned applications, the materials should have an improved electrical property, especially enhancement in the dielectric properties. It is well known that the substitution of rare earth metal cations in Fe3+ site of CoFe2O4 nanoparticles leads to structural distortion and thus significantly influences the structural and morphological properties whereas greatly modifies the electrical and magnetic properties of a material. In the present investigation, we report on the influence of lanthanum (La3+) ion substitution on the structural, morphological, dielectric and magnetic properties of CoFe2O4 magnetic nanoparticles prepared by co-precipitation method. Powder X-ray diffraction patterns reveal the formation of inverse cubic spinel structure with the signature of LaFeO3 phase at higher La3+ ion concentrations. Raman and Fourier transform infrared spectral analysis also confirms the formation of inverse cubic spinel structure and Fe-O symmetrical stretching vibrations of CoFe2O4 nanoparticles, respectively. Transmission electron microscopy study reveals that the size of the particles gradually increases with increasing La3+ ion concentrations whereas the agglomeration gets slightly reduced for La3+ ion substituted CoFe2O4 nanoparticles than that of undoped CoFe2O4 nanoparticles. Dielectric properties such as dielectric constant and dielectric loss were recorded as a function of frequency and temperature which reveals that the dielectric constant gradually increases with increasing temperatures as well as La3+ ion concentrations. The increased dielectric constant might be the reason that the formation of LaFeO3 secondary phase at higher La3+ ion concentrations. Magnetic measurement demonstrates that the saturation magnetization gradually decreases from 61.45 to 25.13 emu/g with increasing La3+ ion concentrations which is due to the nonmagnetic nature of La3+ ions substitution.Keywords: cobalt ferrite, co-precipitation, dielectric properties, saturation magnetization
Procedia PDF Downloads 32012211 A Simple Thermal Control Technique for the First Egyptian Pico Satellite
Authors: Maged Assem Soliman Mossallam
Abstract:
One of the main prospectives on the demand of space exploration is to reduce the costs and efforts for satellite design. Concerning this issue satellite down scaling attracts space scientists and engineers. Picosatellite is the smallest category of satellites. The overall mass is less than 1 kg and dimensions are 10x10x3 cm3. Thermal control target is to keep the Pico-satellite board temperature within the permissible limits of temperature. Thermal design is completely passive which relies mainly on the enhancement of the thermo-optical properties of aluminum using anodization. Transient analysis is given for two different orbits, ISS orbit and 600 km altitude orbit. Results show that board temperature lies within 3 oC to 22 oC using black anodization which is a permissible limit for the satellite internal electronic board.Keywords: satellite thermal control, small satellites, thermooptical properties , transient orbit analysis
Procedia PDF Downloads 11912210 BIM-Based Tool for Sustainability Assessment and Certification Documents Provision
Authors: Taki Eddine Seghier, Mohd Hamdan Ahmad, Yaik-Wah Lim, Samuel Opeyemi Williams
Abstract:
The assessment of building sustainability to achieve a specific green benchmark and the preparation of the required documents in order to receive a green building certification, both are considered as major challenging tasks for green building design team. However, this labor and time-consuming process can take advantage of the available Building Information Modeling (BIM) features such as material take-off and scheduling. Furthermore, the workflow can be automated in order to track potentially achievable credit points and provide rating feedback for several design options by using integrated Visual Programing (VP) to handle the stored parameters within the BIM model. Hence, this study proposes a BIM-based tool that uses Green Building Index (GBI) rating system requirements as a unique input case to evaluate the building sustainability in the design stage of the building project life cycle. The tool covers two key models for data extraction, firstly, a model for data extraction, calculation and the classification of achievable credit points in a green template, secondly, a model for the generation of the required documents for green building certification. The tool was validated on a BIM model of residential building and it serves as proof of concept that building sustainability assessment of GBI certification can be automatically evaluated and documented through BIM.Keywords: green building rating system, GBRS, building information modeling, BIM, visual programming, VP, sustainability assessment
Procedia PDF Downloads 32912209 Fabric Drapemeter Development towards the Analysis of Its Behavior in 3-D Design
Authors: Aida Sheeta, M. Nashat Fors, Sherwet El Gholmy, Marwa Issa
Abstract:
Globalization has raised the customer preferences not only towards the high-quality garments but also the right fitting, comfort and aesthetic apparels. This only can be accomplished by the good interaction between fabric mechanical and physical properties as well as the required style. Consequently, this paper provides an integrated review of the fabric drape terminology because it is considered as an essential feature in which the fabric can form folds with the help of the gravity. Moreover, an instrument has been fabricated in order to analyze the static and dynamic drape behaviors using different fabric types. In addition, the obtained results find out the parameters affecting the drape coefficient using digital image processing for various kind of commercial fabrics. This was found to be an essential first step in order to analyze the behavior of this fabric when it is fabricated in a certain 3-D garment design.Keywords: cloth fitting, fabric drape nodes, garment silhouette, image processing
Procedia PDF Downloads 19112208 Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System
Authors: Ya Lv
Abstract:
This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design.Keywords: semi-analytic method, fast prediction model, thermal influence of boundary parameters, energy storage system
Procedia PDF Downloads 15912207 Calibration of the Radical Installation Limit Error of the Accelerometer in the Gravity Gradient Instrument
Authors: Danni Cong, Meiping Wu, Xiaofeng He, Junxiang Lian, Juliang Cao, Shaokuncai, Hao Qin
Abstract:
Gravity gradient instrument (GGI) is the core of the gravity gradiometer, so the structural error of the sensor has a great impact on the measurement results. In order not to affect the aimed measurement accuracy, limit error is required in the installation of the accelerometer. In this paper, based on the established measuring principle model, the radial installation limit error is calibrated, which is taken as an example to provide a method to calculate the other limit error of the installation under the premise of ensuring the accuracy of the measurement result. This method provides the idea for deriving the limit error of the geometry structure of the sensor, laying the foundation for the mechanical precision design and physical design.Keywords: gravity gradient sensor, radial installation limit error, accelerometer, uniaxial rotational modulation
Procedia PDF Downloads 42612206 Sharp Estimates of Oscillatory Singular Integrals with Rough Kernels
Authors: H. Al-Qassem, L. Cheng, Y. Pan
Abstract:
In this paper, we establish sharp bounds for oscillatory singular integrals with an arbitrary real polynomial phase P. Our kernels are allowed to be rough both on the unit sphere and in the radial direction. We show that the bounds grow no faster than log (deg(P)), which is optimal and was first obtained by Parissis and Papadimitrakis for kernels without any radial roughness. Our results substantially improve many previously known results. Among key ingredients of our methods are an L¹→L² sharp estimate and using extrapolation.Keywords: oscillatory singular integral, rough kernel, singular integral, orlicz spaces, block spaces, extrapolation, L^{p} boundedness
Procedia PDF Downloads 46112205 Fabric Printing Design: An Inspiration from Thai Kites
Authors: Suwit Sadsunk
Abstract:
This research paper was aimed to study different motifs found on Thai kites in order to be create new fabric printing designs. The objectives of the study were (1) to examine different motifs of Thai kites; and (2) to create appropriate printing designs for fabric based on an examination of motifs of Thai kites from primary and secondary sources. The study found that designs, motifs and colors found on Thai kites were various based on individual artisans’ imagination in each period. From the historical review, there have been 4 kinds of Thai kites namely I-Loom Kite, Pak Pao Kite, Chula Kite and Dui Dui Kite. Nowadays, the kite designs have been developed to be more various by shape and color such as snake- shaped kite, owl-shaped kite and peacock-shaped kite.Keywords: Thai kites, fabric printing design
Procedia PDF Downloads 33012204 Multiscale Process Modeling of Ceramic Matrix Composites
Authors: Marianna Maiaru, Gregory M. Odegard, Josh Kemppainen, Ivan Gallegos, Michael Olaya
Abstract:
Ceramic matrix composites (CMCs) are typically used in applications that require long-term mechanical integrity at elevated temperatures. CMCs are usually fabricated using a polymer precursor that is initially polymerized in situ with fiber reinforcement, followed by a series of cycles of pyrolysis to transform the polymer matrix into a rigid glass or ceramic. The pyrolysis step typically generates volatile gasses, which creates porosity within the polymer matrix phase of the composite. Subsequent cycles of monomer infusion, polymerization, and pyrolysis are often used to reduce the porosity and thus increase the durability of the composite. Because of the significant expense of such iterative processing cycles, new generations of CMCs with improved durability and manufacturability are difficult and expensive to develop using standard Edisonian approaches. The goal of this research is to develop a computational process-modeling-based approach that can be used to design the next generation of CMC materials with optimized material and processing parameters for maximum strength and efficient manufacturing. The process modeling incorporates computational modeling tools, including molecular dynamics (MD), to simulate the material at multiple length scales. Results from MD simulation are used to inform the continuum-level models to link molecular-level characteristics (material structure, temperature) to bulk-level performance (strength, residual stresses). Processing parameters are optimized such that process-induced residual stresses are minimized and laminate strength is maximized. The multiscale process modeling method developed with this research can play a key role in the development of future CMCs for high-temperature and high-strength applications. By combining multiscale computational tools and process modeling, new manufacturing parameters can be established for optimal fabrication and performance of CMCs for a wide range of applications.Keywords: digital engineering, finite elements, manufacturing, molecular dynamics
Procedia PDF Downloads 10012203 String as a Design Element: The Work of Students for International Architecture Biennale, Antalya and Lohberg Coal Mine, Germany
Authors: Ayşe Duygu Kaçar
Abstract:
Industrial regions and buildings that have stopped their primary functions are in the interest of the discipline of architecture in the last decades. The renewal of these spaces of production for different functions is a common aspect for contemporary world countries. Totally different functions can be added to the existing as well, which can help improving the social, cultural and aesthetic character of these beings and sustaining their uniqueness. Therefore, these sites linking the past and future can be used as museums, exhibition centers, art ateliers, city parks, recreational centers, botanic gardens, sculpture parks, theatres, etc. in order to continue their place in the collective memory of the cities. The present paper depicts a way of shedding light on the Cotton Textile Industry (İplik ve Dokuma Fabrikası A.Ş), a local industrial site in Antalya, the most popular tourism center of Turkey, as a part of International Architecture Biennale, 2011 and on Lohberg coal mine, a local industrial site in the Ruhr region of Germany. As a transparent, fragile, temporary and economical material, the string was used as a design element in both experiential architecture works with architecture students and the outcomes will be discussed and presented through the theme 'rejecting / reversing architecture'.Keywords: industrial sites, the Cotton Textile Industry Antalya, Lohberg coal mine, architectural design, identity
Procedia PDF Downloads 31312202 Embodied Carbon Footprint of Existing Malaysian Green Homes
Authors: Fahanim Abdul Rashid, Muhammad Azzam Ismail
Abstract:
Part and parcel of building green homes (GHs) with favorable thermal comfort (TC) is to design and build with reduced carbon footprint (CF) from embodied energy in the building envelope and reduced operational CF overall. Together, the environmental impact of GHs can be reduced significantly. Nevertheless, there is still a need to identify the base CF value for Malaysian GHs and this can be done by assessing existing ones which can then be compared to conventional and vernacular houses which are built differently with different building materials. This paper underlines the research design and introduces the case studies. For now, the operational CF of the case studies is beyond the scope of this study. Findings from this research could identify the best building material and construction technique combination to build GHs depending on the available skills, financial constraints and the condition of the immediate environment.Keywords: embodied carbon footprint, Malaysian green homes
Procedia PDF Downloads 34712201 Measurement and Prediction of Speed of Sound in Petroleum Fluids
Authors: S. Ghafoori, A. Al-Harbi, B. Al-Ajmi, A. Al-Shaalan, A. Al-Ajmi, M. Ali Juma
Abstract:
Seismic methods play an important role in the exploration for hydrocarbon reservoirs. However, the success of the method depends strongly on the reliability of the measured or predicted information regarding the velocity of sound in the media. Speed of sound has been used to study the thermodynamic properties of fluids. In this study, experimental data are reported and analyzed on the speed of sound in toluene and octane binary mixture. Three-factor three-level Box-Benhkam design is used to determine the significance of each factor, the synergetic effects of the factors, and the most significant factors on speed of sound. The developed mathematical model and statistical analysis provided a critical analysis of the simultaneous interactive effects of the independent variables indicating that the developed quadratic models were highly accurate and predictive.Keywords: experimental design, octane, speed of sound, toluene
Procedia PDF Downloads 27812200 Development and Verification of the Idom Shielding Optimization Tool
Authors: Omar Bouhassoun, Cristian Garrido, César Hueso
Abstract:
The radiation shielding design is an optimization problem with multiple -constrained- objective functions (radiation dose, weight, price, etc.) that depend on several parameters (material, thickness, position, etc.). The classical approach for shielding design consists of a brute force trial-and-error process subject to previous designer experience. Therefore, the result is an empirical solution but not optimal, which can degrade the overall performance of the shielding. In order to automate the shielding design procedure, the IDOM Shielding Optimization Tool (ISOT) has been developed. This software combines optimization algorithms with the capabilities to read/write input files, run calculations, as well as parse output files for different radiation transport codes. In the first stage, the software was established to adjust the input files for two well-known Monte Carlo codes (MCNP and Serpent) and optimize the result (weight, volume, price, dose rate) using multi-objective genetic algorithms. Nevertheless, its modular implementation easily allows the inclusion of more radiation transport codes and optimization algorithms. The work related to the development of ISOT and its verification on a simple 3D multi-layer shielding problem using both MCNP and Serpent will be presented. ISOT looks very promising for achieving an optimal solution to complex shielding problems.Keywords: optimization, shielding, nuclear, genetic algorithm
Procedia PDF Downloads 11312199 Designing Automated Embedded Assessment to Assess Student Learning in a 3D Educational Video Game
Authors: Mehmet Oren, Susan Pedersen, Sevket C. Cetin
Abstract:
Despite the frequently criticized disadvantages of the traditional used paper and pencil assessment, it is the most frequently used method in our schools. Although assessments do an acceptable measurement, they are not capable of measuring all the aspects and the richness of learning and knowledge. Also, many assessments used in schools decontextualize the assessment from the learning, and they focus on learners’ standing on a particular topic but do not concentrate on how student learning changes over time. For these reasons, many scholars advocate that using simulations and games (S&G) as a tool for assessment has significant potentials to overcome the problems in traditionally used methods. S&G can benefit from the change in technology and provide a contextualized medium for assessment and teaching. Furthermore, S&G can serve as an instructional tool rather than a method to test students’ learning at a particular time point. To investigate the potentials of using educational games as an assessment and teaching tool, this study presents the implementation and the validation of an automated embedded assessment (AEA), which can constantly monitor student learning in the game and assess their performance without intervening their learning. The experiment was conducted on an undergraduate level engineering course (Digital Circuit Design) with 99 participant students over a period of five weeks in Spring 2016 school semester. The purpose of this research study is to examine if the proposed method of AEA is valid to assess student learning in a 3D Educational game and present the implementation steps. To address this question, this study inspects three aspects of the AEA for the validation. First, the evidence-centered design model was used to lay out the design and measurement steps of the assessment. Then, a confirmatory factor analysis was conducted to test if the assessment can measure the targeted latent constructs. Finally, the scores of the assessment were compared with an external measure (a validated test measuring student learning on digital circuit design) to evaluate the convergent validity of the assessment. The results of the confirmatory factor analysis showed that the fit of the model with three latent factors with one higher order factor was acceptable (RMSEA < 0.00, CFI =1, TLI=1.013, WRMR=0.390). All of the observed variables significantly loaded to the latent factors in the latent factor model. In the second analysis, a multiple regression analysis was used to test if the external measure significantly predicts students’ performance in the game. The results of the regression indicated the two predictors explained 36.3% of the variance (R2=.36, F(2,96)=27.42.56, p<.00). It was found that students’ posttest scores significantly predicted game performance (β = .60, p < .000). The statistical results of the analyses show that the AEA can distinctly measure three major components of the digital circuit design course. It was aimed that this study can help researchers understand how to design an AEA, and showcase an implementation by providing an example methodology to validate this type of assessment.Keywords: educational video games, automated embedded assessment, assessment validation, game-based assessment, assessment design
Procedia PDF Downloads 42312198 The Role of Sustainable Development in the Design and Planning of Smart Cities Using GIS Techniques: Models of Arab Cities
Authors: Ahmed M. Jihad
Abstract:
The paper presents the concept of sustainable development, and the role of geographic techniques in the design, planning and presentation of maps of smart cities with geographical vision, and the identification of programs and tools, and models of maps of Arab cities, is the problem of research in how to apply, process and experience these programs? What is the role of geographic techniques in planning and mapping the optimal place for these cities? The paper proposes an addition to the designs of Iraqi cities, as it can be developed in the future to serve as a model for interactive smart cities by developing its services. The importance of this paper stems from the concept of sustainable development dynamic which has become a method of development imposed by the present era in rapid development to achieve social balance and specialized programs in draw paper argues that ensuring sustainable development is achieved through the use of information technology. The paper will follow the theoretical presentation of the importance of the concept of development, design tools and programs. The paper follows the method of analysis of modern systems (System Analysis Approach) through the latest programs will provide results can be said that the new Iraqi cities can be developed with smart technologies, like some of the Arab and European cities that were newly created through the introduction of international investment, and therefore Plans can be made to select the best programs in manufacturing and producing maps and smart cities in the future.Keywords: geographic techniques, planning the cities, smart cities, sustainable development
Procedia PDF Downloads 21112197 2 Stage CMOS Regulated Cascode Distributed Amplifier Design Based On Inductive Coupling Technique in Submicron CMOS Process
Authors: Kittipong Tripetch, Nobuhiko Nakano
Abstract:
This paper proposes one stage and two stage CMOS Complementary Regulated Cascode Distributed Amplifier (CRCDA) design based on Inductive and Transformer coupling techniques. Usually, Distributed amplifier is based on inductor coupling between gate and gate of MOSFET and between drain and drain of MOSFET. But this paper propose some new idea, by coupling with differential primary windings of transformer between gate and gate of MOSFET first stage and second stage of regulated cascade amplifier and by coupling with differential secondary windings transformer of MOSFET between drain and drain of MOSFET first stage and second stage of regulated cascade amplifier. This paper also proposes polynomial modeling of Silicon Transformer passive equivalent circuit from Nanyang Technological University which is used to extract frequency response of transformer. Cadence simulation results are used to verify validity of transformer polynomial modeling which can be used to design distributed amplifier without Cadence. 4 parameters of scattering matrix of 2 port of the propose circuit is derived as a function of 4 parameters of impedance matrix.Keywords: CMOS regulated cascode distributed amplifier, silicon transformer modeling with polynomial, low power consumption, distribute amplification technique
Procedia PDF Downloads 514