Search results for: wireless mesh network (WMN)
1617 Development of Surface-Enhanced Raman Spectroscopy-Active Gelatin Based Hydrogels for Label Free Detection of Bio-Analytes
Authors: Zahra Khan
Abstract:
Hydrogels are a macromolecular network of hydrophilic copolymers with physical or chemical cross-linking structures with significant water uptake capabilities. They are a promising substrate for surface-enhanced Raman spectroscopy (SERS) as they are both flexible and biocompatible materials. Conventional SERS-active substrates suffer from limitations such as instability and inflexibility, which restricts their use in broader applications. Gelatin-based hydrogels have been synthesised in a facile and relatively quick method without the use of any toxic cross-linking agents. Composite gel material was formed by combining the gelatin with simple polymers to enhance the functional properties of the gel. Gold nanoparticles prepared by a reproducible seed-mediated growth method were combined into the bulk material during gel synthesis. After gel formation, the gel was submerged in the analyte solution overnight. SERS spectra were then collected from the gel using a standard Raman spectrometer. A wide range of analytes was successfully detected on these hydrogels showing potential for further optimization and use as SERS substrates for biomedical applications.Keywords: gelatin, hydrogels, flexible materials, SERS
Procedia PDF Downloads 1161616 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image
Authors: Abe D. Desta
Abstract:
This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking
Procedia PDF Downloads 1291615 Applying Renowned Energy Simulation Engines to Neural Control System of Double Skin Façade
Authors: Zdravko Eškinja, Lovre Miljanić, Ognjen Kuljača
Abstract:
This paper is an overview of simulation tools used to model specific thermal dynamics that occurs while controlling double skin façade. Research has been conducted on simplified construction with single zone where one side is glazed. Heat flow and temperature responses are simulated in three different simulation tools: IDA-ICE, EnergyPlus and HAMBASE. The excitation of observed system, used in all simulations, was a temperature step of exterior environment. Air infiltration, insulation and other disturbances are excluded from this research. Although such isolated behaviour is not possible in reality, experiments are carried out to gain novel information about heat flow transients which are not observable under regular conditions. Results revealed new possibilities for adapting the parameters of the neural network regulator. Along numerical simulations, the same set-up has been also tested in a real-time experiment with a 1:18 scaled model and thermal chamber. The comparison analysis brings out interesting conclusion about simulation accuracy in this particular case.Keywords: double skin façade, experimental tests, heat control, heat flow, simulated tests, simulation tools
Procedia PDF Downloads 2351614 Investigating the Trends in Tourism and Hospitality Industry in Nigeria at Centenary
Authors: Pius Agbebi Alaba
Abstract:
The study emphasized on the effects of contemporary and prospect trends on the development of Hospitality and Tourism in Nigeria. Specifically, the study examined globalization, safety and security, diversity, service, technology, demographic changes and price–value as contemporary trends while prospect trends such as green and Eco-lodgings, Development of mega hotels, Boutique hotels, Intelligent hotels with advanced technology using the guest’s virtual fingerprint in order to perform all the operations, increasing employee salaries in order retain the existing Staff, More emphasis on the internet and technology, Guests’ virtual and physical social network were equally examined. The methodology for the study involved review of existing related study, books, journal and internet. The findings emanated from the exercise showed clearly that the impact of both trends on the development of Hospitality and Tourism in Nigeria would bring about rapid positive transformation of her socio-economic, political and cultural environment. The implication of the study is that it will prepare both private and corporate individuals in hospitality and tourism business for the challenges inherent in both trends.Keywords: hospitality and tourism, Nigeria's centenary, trends, implications
Procedia PDF Downloads 3391613 On Demand Transport: Feasibility Study - Local Needs and Capabilities within the Oran Wilaya
Authors: Nadjet Brahmia
Abstract:
The evolution of urban forms, the new aspects of mobility, the ways of life and economic models make public transport conventional collective low-performing on the majority of largest Algerian cities, particularly in the west of Algeria. On the other side, the information and communication technologies (ICT) open new eventualities to develop a new mode of transport which brings together both the tenders offered by the public service collective and those of the particular vehicle, suitable for urban requirements, social and environmental. Like the concrete examples made in the international countries in terms of on-demand transport systems (ODT) more particularly in the developed countries, this article has for objective the opportunity analysis to establish a service of ODT at the level of a few towns of Oran Wilaya, such a service will be subsequently spread on the totality of the Wilaya if not on the whole of Algeria. In this context, we show the different existing means of transport in the current network whose aim to illustrate the points of insufficiency accented in the present transport system, then we discuss the solutions that may exhibit a service of ODT to the problem studied all around the transport sector, to carry at the end to highlight the capabilities of ODT replying to the transformation of mobilities, this in the light of well-defined cases.Keywords: mobility, on-demand transport, public transport collective, transport system
Procedia PDF Downloads 3591612 Estimating Occupancy in Residential Context Using Bayesian Networks for Energy Management
Authors: Manar Amayri, Hussain Kazimi, Quoc-Dung Ngo, Stephane Ploix
Abstract:
A general approach is proposed to determine occupant behavior (occupancy and activity) in residential buildings and to use these estimates for improved energy management. Occupant behaviour is modelled with a Bayesian Network in an unsupervised manner. This algorithm makes use of domain knowledge gathered via questionnaires and recorded sensor data for motion detection, power, and hot water consumption as well as indoor CO₂ concentration. Two case studies are presented which show the real world applicability of estimating occupant behaviour in this way. Furthermore, experiments integrating occupancy estimation and hot water production control show that energy efficiency can be increased by roughly 5% over known optimal control techniques and more than 25% over rule-based control while maintaining the same occupant comfort standards. The efficiency gains are strongly correlated with occupant behaviour and accuracy of the occupancy estimates.Keywords: energy, management, control, optimization, Bayesian methods, learning theory, sensor networks, knowledge modelling and knowledge based systems, artificial intelligence, buildings
Procedia PDF Downloads 3721611 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis
Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu
Abstract:
Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing
Procedia PDF Downloads 1401610 Reliability Factors Based Fuzzy Logic Scheme for Spectrum Sensing
Authors: Tallataf Rasheed, Adnan Rashdi, Ahmad Naeem Akhtar
Abstract:
The accurate spectrum sensing is a fundamental requirement of dynamic spectrum access for deployment of Cognitive Radio Network (CRN). To acheive this requirement a Reliability factors based Fuzzy Logic (RFL) Scheme for Spectrum Sensing has been proposed in this paper. Cognitive Radio User (CRU) predicts the presence or absence of Primary User (PU) using energy detector and calculates the Reliability factors which are SNR of sensing node, threshold of energy detector and decision difference of each node with other nodes in a cooperative spectrum sensing environment. Then the decision of energy detector is combined with Reliability factors of sensing node using Fuzzy Logic. These Reliability Factors used in RFL Scheme describes the reliability of decision made by a CRU to improve the local spectrum sensing. This Fuzzy combining scheme provides the accuracy of decision made by sensornode. The simulation results have shown that the proposed technique provide better PU detection probability than existing Spectrum Sensing Techniques.Keywords: cognitive radio, spectrum sensing, energy detector, reliability factors, fuzzy logic
Procedia PDF Downloads 4871609 Temperature Dependence of Relative Permittivity: A Measurement Technique Using Split Ring Resonators
Authors: Sreedevi P. Chakyar, Jolly Andrews, V. P. Joseph
Abstract:
A compact method for measuring the relative permittivity of a dielectric material at different temperatures using a single circular Split Ring Resonator (SRR) metamaterial unit working as a test probe is presented in this paper. The dielectric constant of a material is dependent upon its temperature and the LC resonance of the SRR depends on its dielectric environment. Hence, the temperature of the dielectric material in contact with the resonator influences its resonant frequency. A single SRR placed between transmitting and receiving probes connected to a Vector Network Analyser (VNA) is used as a test probe. The dependence of temperature between 30 oC and 60 oC on resonant frequency of SRR is analysed. Relative permittivities ‘ε’ of test samples for different temperatures are extracted from a calibration graph drawn between the relative permittivity of samples of known dielectric constant and their corresponding resonant frequencies. This method is found to be an easy and efficient technique for analysing the temperature dependent permittivity of different materials.Keywords: metamaterials, negative permeability, permittivity measurement techniques, split ring resonators, temperature dependent dielectric constant
Procedia PDF Downloads 4151608 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification
Authors: Anita Kushwaha
Abstract:
We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining
Procedia PDF Downloads 2741607 The Using of Liquefied Petroleum Gas (LPG) on a Low Heat Loss Si Engine
Authors: Hanbey Hazar, Hakan Gul
Abstract:
In this study, Thermal Barrier Coating (TBC) application is performed in order to reduce the engine emissions. Piston, exhaust, and intake valves of a single-cylinder four-cycle gasoline engine were coated with chromium carbide (Cr3C2) at a thickness of 300 µm by using the Plasma Spray coating method which is a TBC method. Gasoline engine was converted into an LPG system. The study was conducted in 4 stages. In the first stage, the piston, exhaust, and intake valves of the gasoline engine were coated with Cr3C2. In the second stage, gasoline engine was converted into the LPG system and the emission values in this engine were recorded. In the third stage, the experiments were repeated under the same conditions with a standard (uncoated) engine and the results were recorded. In the fourth stage, data obtained from both engines were loaded on Artificial Neural Networks (ANN) and estimated values were produced for every revolution. Thus, mathematical modeling of coated and uncoated engines was performed by using ANN. While there was a slight increase in exhaust gas temperature (EGT) of LPG engine due to TBC, carbon monoxide (CO) values decreased.Keywords: LPG fuel, thermal barrier coating, artificial neural network, mathematical modelling
Procedia PDF Downloads 4271606 Multi-Modal Visualization of Working Instructions for Assembly Operations
Authors: Josef Wolfartsberger, Michael Heiml, Georg Schwarz, Sabrina Egger
Abstract:
Growing individualization and higher numbers of variants in industrial assembly products raise the complexity of manufacturing processes. Technical assistance systems considering both procedural and human factors allow for an increase in product quality and a decrease in required learning times by supporting workers with precise working instructions. Due to varying needs of workers, the presentation of working instructions leads to several challenges. This paper presents an approach for a multi-modal visualization application to support assembly work of complex parts. Our approach is integrated within an interconnected assistance system network and supports the presentation of cloud-streamed textual instructions, images, videos, 3D animations and audio files along with multi-modal user interaction, customizable UI, multi-platform support (e.g. tablet-PC, TV screen, smartphone or Augmented Reality devices), automated text translation and speech synthesis. The worker benefits from more accessible and up-to-date instructions presented in an easy-to-read way.Keywords: assembly, assistive technologies, augmented reality, manufacturing, visualization
Procedia PDF Downloads 1661605 Individuals’ Inner Wellbeing during the COVID-19 Pandemic: A Quantitative Comparison of Social Connections and Close Relationships between the UK and India
Authors: Maria Spanoudaki, Pauldy C. J. Otermans, Dev Aditya
Abstract:
Relationships form an integral part of our everyday wellbeing. In this study, the focus is on Inner Wellbeing which can be described as an individuals' thoughts and feelings about what they can do and be. Relationships can come in many forms and can be divided into Social Connections (thoughts and feelings about the social network people can establish and rely on), and Close Relationships (thoughts and feeling about the emotional support people can receive from significant others or their close, intimate circle). The purpose of this study is to compare the Social Connections and Close Relationship dimensions of Inner Wellbeing during the COVID-19 pandemic between the UK and India. 392 participants in the UK and 205 participants India completed an online questionnaire using the Inner Wellbeing scale. Factor analyses showed that the construct of Inner Wellbeing can be described as one factor for the UK sample whereas it can be described as two factors (one focusing on positive items and one focusing on negative items) for the Indian sample. Results showed that Social Connections were significantly during COVID-19 in the UK compared to India, whereas there is no significant difference for Close Relationships. The implications on relationships and wellbeing are discussed in detail.Keywords: social networks, relationship maintenance, relationship satisfaction, COVID-19
Procedia PDF Downloads 1631604 3D Virtualization through Data Collected from Measurements of Mobile Signal Reception Power Levels (LTE) Band at Escuela Superior Politécnica de Chimborazo in Riobamba-Ecuador
Authors: Sandra Cuenca, Steven Chango, Fabian Chamba, Alexandra Vaca
Abstract:
This project addresses a representation of a virtual environment based on the analysis of the RSRP (Reference Signal Received Power) obtained by the Network Cell Info Lite application at the Escuela Superior Politécnica de Chimborazo (ESPOCH) considering the open areas of the Business Administration Department in the 4G LTE Frequency (band 2) of Claro Telephony at a frequency of 1967. 5 MHz, where measurements were performed from 17:00 UTC-05:00. The indicators required for the simulation of the environment designed in sketchup were focused especially on the power levels obtained where it was possible to represent the scenario with real power values obtained in each concentric radius of a total of 3 campaigns of 200 samples each, where the values vary between 84.6 dBm to 115.5 dBm having average power values for each of the 23 radiuses which are introduced in a virtual environment, allowing users to immerse themselves in it, where they can explore 3D virtual environments, generating a color scale from 0 to 10 with red being the weakest signal and green the signal with the best intensity.Keywords: virtualization, LTE, radios, power intensity levels colors, mobile signal reception power
Procedia PDF Downloads 911603 In Search of Seaplanes in Andhra Pradesh: In View of UDAN
Authors: Priyadarshini Alok
Abstract:
The present situation in India envisages that because of the surge in population and the economy, cities are expected to spill over to hinterland areas. The consumption-led factors such as land, labor, etc. will be boosted. Hence, the need for regional connectivity becomes obligatory. But, there is enormous pressure upon the land; proving itself through rising traffic congestion, roads, and railway accidents. Air transport is practical, but due to decreasing availability of land, this will not be a wise solution. What with the introduction of seaplanes in the country which was once the vital asset in the world prior to Second World War. Maldives has proved it. Seaplanes offer natural landing site and are time and cost-efficient. Seaplanes in accordance with UDAN can prove to be the solution in linking various regions with other states. This research paper aims to offer the feasibility analysis along with site justification of the potential areas in the state of Andhra Pradesh, India; for the operation of seaplanes. The standards are taken from the US Department of Transportation, Federal Aviation Administration for the analysis. The conflation of Seaplanes with UDAN will offer an alternate mode of air connectivity, strengthen the transport network by simulation of connectivity to unserved and under-served areas and boost the nation's economy.Keywords: connectivity, seaplanes, transport, UDAN
Procedia PDF Downloads 1711602 Flood Susceptibility Assessment of Mandaluyong City Using Analytic Hierarchy Process
Authors: Keigh D. Guinto, Ma. Romina M. Santos
Abstract:
One of the most catastrophic natural disasters in the Philippines is floods. Twelve (12) million people reside in Metro Manila, National Capital Region (NCR), prone to flooding. A flood can cause widespread devastation resulting in damaged properties and infrastructures and loss of life. By using the analytical hierarchy process, six (6) parameters were selected, namely elevation, slope, lithology, distance from the river, river network density, and flow accumulation. Ranking of these parameters demonstrates that distance from the river with 25.31% and river density with 17.30% ranked the highest causative factor to flooding. This is followed by flow accumulation with 16.72%, elevation with 15.33%, slope with 13.53%, and the least flood causative factor is lithology with 11.8%. The generated flood susceptibility map of Mandaluyong has three (3) classes: high susceptibility, moderate susceptibility, and low susceptibility. The flood susceptibility map generated in this study can be used as an aid for planning flood mitigation, land use planning, and general public awareness. This study can also be used for emergency management and can be applied in the disaster risk management of Mandaluyong.Keywords: analytical hierarchy process, assessment, flood, geographic information system
Procedia PDF Downloads 2071601 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier
Authors: Atanu K Samanta, Asim Ali Khan
Abstract:
Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.Keywords: brain tumor, computer-aided diagnostic (CAD) system, gray-level co-occurrence matrix (GLCM), tumor segmentation, level set method
Procedia PDF Downloads 5141600 1D Convolutional Networks to Compute Mel-Spectrogram, Chromagram, and Cochleogram for Audio Networks
Authors: Elias Nemer, Greg Vines
Abstract:
Time-frequency transformation and spectral representations of audio signals are commonly used in various machine learning applications. Training networks on frequency features such as the Mel-Spectrogram or Cochleogram have been proven more effective and convenient than training on-time samples. In practical realizations, these features are created on a different processor and/or pre-computed and stored on disk, requiring additional efforts and making it difficult to experiment with different features. In this paper, we provide a PyTorch framework for creating various spectral features as well as time-frequency transformation and time-domain filter-banks using the built-in trainable conv1d() layer. This allows computing these features on the fly as part of a larger network and enabling easier experimentation with various combinations and parameters. Our work extends the work in the literature developed for that end: First, by adding more of these features and also by allowing the possibility of either starting from initialized kernels or training them from random values. The code is written as a template of classes and scripts that users may integrate into their own PyTorch classes or simply use as is and add more layers for various applications.Keywords: neural networks Mel-Spectrogram, chromagram, cochleogram, discrete Fourrier transform, PyTorch conv1d()
Procedia PDF Downloads 2371599 Heterogeneous Reactions to Digital Opportunities: A Field Study
Authors: Bangaly Kaba
Abstract:
In the global information society, the importance of the Internet cannot be overemphasized. Africa needs access to the powerful information and communication tools of the Internet in order to obtain the resources and efficiency essential for sustainable development. Unfortunately, in 2013, the data from Internetworldstats showed only 15% of African populations have access to Internet. This relative low Internet penetration rate signals a problem that may threaten the economic development, governmental efficiency, and ultimately the global competitiveness of African countries. Many initiatives were undertaken to bring the benefits of the global information revolution to the people of Africa, through connection to the Internet and other Global Information Infrastructure technologies. The purpose is to understand differences between socio-economically advantaged and disadvantaged internet users. From that, we will determine what prevents disadvantaged groups from benefiting from Internet usage. Data were collected through a survey from Internet users in Ivory Coast. The results reveal that Personal network exposure, Self-efficacy and Availability are the key drivers of continued use intention for the socio-economically disadvantaged group. The theoretical and practical implications are also described.Keywords: digital inequality, internet, integrative model, socio-economically advantaged and disadvantaged, use continuance, Africa
Procedia PDF Downloads 4701598 A New Learning Automata-Based Algorithm to the Priority-Based Target Coverage Problem in Directional Sensor Networks
Authors: Shaharuddin Salleh, Sara Marouf, Hosein Mohammadi
Abstract:
Directional sensor networks (DSNs) have recently attracted a great deal of attention due to their extensive applications in a wide range of situations. One of the most important problems associated with DSNs is covering a set of targets in a given area and, at the same time, maximizing the network lifetime. This is due to limitation in sensing angle and battery power of the directional sensors. This problem gets more complicated by the possibility that targets may have different coverage requirements. In the present study, this problem is referred to as priority-based target coverage (PTC). As sensors are often densely deployed, organizing the sensors into several cover sets and then activating these cover sets successively is a promising solution to this problem. In this paper, we propose a learning automata-based algorithm to organize the directional sensors into several cover sets in such a way that each cover set could satisfy coverage requirements of all the targets. Several experiments are conducted to evaluate the performance of the proposed algorithm. The results demonstrated that the algorithms were able to contribute to solving the problem.Keywords: directional sensor networks, target coverage problem, cover set formation, learning automata
Procedia PDF Downloads 4161597 Available Transmission Transfer Efficiency (ATTE) as an Index Measurement for Power Transmission Grid Performance
Authors: Ahmad Abubakar Sadiq, Nwohu Ndubuka Mark, Jacob Tsado, Ahmad Adam Asharaf, Agbachi E. Okenna, Enesi E. Yahaya, Ambafi James Garba
Abstract:
Transmission system performance analysis is vital to proper planning and operations of power systems in the presence of deregulation. Key performance indicators (KPIs) are often used as measure of degree of performance. This paper gives a novel method to determine the transmission efficiency by evaluating the ratio of real power losses incurred from a specified transfer direction. Available Transmission Transfer Efficiency (ATTE) expresses the percentage of real power received resulting from inter-area available power transfer. The Tie line (Rated system path) performance is seen to differ from system wide (Network response) performance and ATTE values obtained are transfer direction specific. The required sending end quantities with specified receiving end ATC and the receiving end power circle diagram are obtained for the tie line analysis. The amount of real power loss load relative to the available transfer capability gives a measure of the transmission grid efficiency.Keywords: performance, transmission system, real power efficiency, available transfer capability
Procedia PDF Downloads 6511596 Spare Part Inventory Optimization Policy: A Study Literature
Authors: Zukhrof Romadhon, Nani Kurniati
Abstract:
Availability of Spare parts is critical to support maintenance tasks and the production system. Managing spare part inventory deals with some parameters and objective functions, as well as the tradeoff between inventory costs and spare parts availability. Several mathematical models and methods have been developed to optimize the spare part policy. Many researchers who proposed optimization models need to be considered to identify other potential models. This work presents a review of several pertinent literature on spare part inventory optimization and analyzes the gaps for future research. Initial investigation on scholars and many journal database systems under specific keywords related to spare parts found about 17K papers. Filtering was conducted based on five main aspects, i.e., replenishment policy, objective function, echelon network, lead time, model solving, and additional aspects of part classification. Future topics could be identified based on the number of papers that haven’t addressed specific aspects, including joint optimization of spare part inventory and maintenance.Keywords: spare part, spare part inventory, inventory model, optimization, maintenance
Procedia PDF Downloads 661595 How to Integrate Sustainability in Technological Degrees: Robotics at UPC
Authors: Antoni Grau, Yolanda Bolea, Alberto Sanfeliu
Abstract:
Embedding Sustainability in technological curricula has become a crucial factor for educating engineers with competences in sustainability. The Technical University of Catalonia UPC, in 2008, designed the Sustainable Technology Excellence Program STEP 2015 in order to assure a successful Sustainability Embedding. This Program takes advantage of the opportunity that the redesign of all Bachelor and Master Degrees in Spain by 2010 under the European Higher Education Area framework offered. The STEP program goals are: to design compulsory courses in each degree; to develop the conceptual base and identify reference models in sustainability for all specialties at UPC; to create an internal interdisciplinary network of faculty from all the schools; to initiate new transdisciplinary research activities in technology-sustainability-education; to spread the know/how attained; to achieve international scientific excellence in technology-sustainability-education and to graduate the first engineers/architects of the new EHEA bachelors with sustainability as a generic competence. Specifically, in this paper authors explain their experience in leading the STEP program, and two examples are presented: Industrial Robotics subject and the curriculum for the School of Architecture.Keywords: sustainability, curricula improvement, robotics, STEP program
Procedia PDF Downloads 4111594 Near-Peer Mentoring/Curriculum and Community Enterprise for Environmental Restoration Science
Authors: Lauren B. Birney
Abstract:
The BOP-CCERS (Billion Oyster Project- Curriculum and Community Enterprise for Restoration Science) Near-Peer Mentoring Program provides the long-term (five-year) support network to motivate and guide students toward restoration science-based CTE pathways. Students are selected from middle schools with actively participating BOP-CCERS teachers. Teachers will nominate students from grades 6-8 to join cohorts of between 10 and 15 students each. Cohorts are comprised primarily of students from the same school in order to facilitate mentors' travel logistics as well as to sustain connections with students and their families. Each cohort is matched with an exceptional undergraduate or graduate student, either a BOP research associate or STEM mentor recruited from collaborating City University of New York (CUNY) partner programs. In rare cases, an exceptional high school junior or senior may be matched with a cohort in addition to a research associate or graduate student. In no case is a high school student or minor be placed individually with a cohort. Mentors meet with students at least once per month and provide at least one offsite field visit per month, either to a local STEM Hub or research lab. Keeping with its five-year trajectory, the near-peer mentoring program will seek to retain students in the same cohort with the same mentor for the full duration of middle school and for at least two additional years of high school. Upon reaching the final quarter of 8th grade, the mentor will develop a meeting plan for each individual mentee. The mentee and the mentor will be required to meet individually or in small groups once per month. Once per quarter, individual meetings will be substituted for full cohort professional outings. The mentor will organize the entire cohort on a field visit or educational workshop with a museum or aquarium partner. In addition to the mentor-mentee relationship, each participating student will also be asked to conduct and present his or her own BOP field research. This research is ideally carried out with the support of the students’ regular high school STEM subject teacher; however, in cases where the teacher or school does not permit independent study, the student will be asked to conduct the research on an extracurricular basis. Near-peer mentoring affects students’ social identities and helps them to connect to role models from similar groups, ultimately giving them a sense of belonging. Qualitative and quantitative analytics were performed throughout the study. Interviews and focus groups also ensued. Additionally, an external evaluator was utilized to ensure project efficacy, efficiency, and effectiveness throughout the entire project. The BOP-CCERS Near Peer Mentoring program is a peer support network in which high school students with interest or experience in BOP (Billion Oyster Project) topics and activities (such as classroom oyster tanks, STEM Hubs, or digital platform research) provide mentorship and support for middle school or high school freshmen mentees. Peer mentoring not only empowers those students being taught but also increases the content knowledge and engagement of mentors. This support provides the necessary resources, structure, and tools to assist students in finding success.Keywords: STEM education, environmental science, citizen science, near peer mentoring
Procedia PDF Downloads 921593 Planning of Construction Material Flow Using Hybrid Simulation Modeling
Authors: A. M. Naraghi, V. Gonzalez, M. O'Sullivan, C. G. Walker, M. Poshdar, F. Ying, M. Abdelmegid
Abstract:
Discrete Event Simulation (DES) and Agent Based Simulation (ABS) are two simulation approaches that have been proposed to support decision-making in the construction industry. Despite the wide use of these simulation approaches in the construction field, their applications for production and material planning is still limited. This is largely due to the dynamic and complex nature of construction material supply chain systems. Moreover, managing the flow of construction material is not well integrated with site logistics in traditional construction planning methods. This paper presents a hybrid of DES and ABS to simulate on-site and off-site material supply processes. DES is applied to determine the best production scenarios with information of on-site production systems, while ABS is used to optimize the supply chain network. A case study of a construction piling project in New Zealand is presented illustrating the potential benefits of using the proposed hybrid simulation model in construction material flow planning. The hybrid model presented can be used to evaluate the impact of different decisions on construction supply chain management.Keywords: construction supply-chain management, simulation modeling, decision-support tools, hybrid simulation
Procedia PDF Downloads 2081592 Threat of Islamic State of Khorasan in Pakistan and Afghanistan Region: Impact on Regional Security
Authors: Irfan U. Din
Abstract:
The growing presence and operational capacity of Islamic State aka Daesh, which emerged in Pak-Afghan region in 2015, poses a serious threat to the already fragile state of the security situation in the region. This paper will shed light on the current state of IS-K network in the Pak-Afghan region and will explain how its presence and operational capacity in the northern and central Afghanistan has increased despite intensive military operations against the group in Nangarhar province – the stronghold of IS-K. It will also explore the role of Pakistani Taliban in the emergence and expansion of IS-K in the region and will unveil the security implication of growing nexus of IS-K and transnational organized groups for the region in Post NATO withdrawal scenario. The study will be qualitative and will rely on secondary and primary data to explore the topic. For secondary data existing literature on the topic will be extensively reviewed while for primary data in-depth interviews will be conducted with subject experts, Taliban commanders, and field researchers.Keywords: Islamic State of Khorasan (IS-K), North Atlantic Treaty Organization (NATO), Pak-Afghan Region, Transnational Organized Crime (TNOC)
Procedia PDF Downloads 2901591 Deep-Learning to Generation of Weights for Image Captioning Using Part-of-Speech Approach
Authors: Tiago do Carmo Nogueira, Cássio Dener Noronha Vinhal, Gélson da Cruz Júnior, Matheus Rudolfo Diedrich Ullmann
Abstract:
Generating automatic image descriptions through natural language is a challenging task. Image captioning is a task that consistently describes an image by combining computer vision and natural language processing techniques. To accomplish this task, cutting-edge models use encoder-decoder structures. Thus, Convolutional Neural Networks (CNN) are used to extract the characteristics of the images, and Recurrent Neural Networks (RNN) generate the descriptive sentences of the images. However, cutting-edge approaches still suffer from problems of generating incorrect captions and accumulating errors in the decoders. To solve this problem, we propose a model based on the encoder-decoder structure, introducing a module that generates the weights according to the importance of the word to form the sentence, using the part-of-speech (PoS). Thus, the results demonstrate that our model surpasses state-of-the-art models.Keywords: gated recurrent units, caption generation, convolutional neural network, part-of-speech
Procedia PDF Downloads 1041590 Neural Network Approach to Classifying Truck Traffic
Authors: Ren Moses
Abstract:
The process of classifying vehicles on a highway is hereby viewed as a pattern recognition problem in which connectionist techniques such as artificial neural networks (ANN) can be used to assign vehicles to their correct classes and hence to establish optimum axle spacing thresholds. In the United States, vehicles are typically classified into 13 classes using a methodology commonly referred to as “Scheme F”. In this research, the ANN model was developed, trained, and applied to field data of vehicles. The data comprised of three vehicular features—axle spacing, number of axles per vehicle, and overall vehicle weight. The ANN reduced the classification error rate from 9.5 percent to 6.2 percent when compared to an existing classification algorithm that is not ANN-based and which uses two vehicular features for classification, that is, axle spacing and number of axles. The inclusion of overall vehicle weight as a third classification variable further reduced the error rate from 6.2 percent to only 3.0 percent. The promising results from the neural networks were used to set up new thresholds that reduce classification error rate.Keywords: artificial neural networks, vehicle classification, traffic flow, traffic analysis, and highway opera-tions
Procedia PDF Downloads 3121589 A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm
Authors: Haozhe Xiang
Abstract:
With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results.Keywords: deep learning, graph convolutional network, attention mechanism, LSTM
Procedia PDF Downloads 731588 Performance Analysis of LINUX Operating System Connected in LAN Using Gumbel-Hougaard Family Copula Distribution
Authors: V. V. Singh
Abstract:
In this paper we have focused on the study of a Linux operating system connected in a LAN (local area network). We have considered two different topologies STAR topology (subsystem-1) and BUS topology (subsystem-2) which are placed at two different places and connected to a server through a hub. In both topologies BUS topology and STAR topology, we have assumed 'n' clients. The system has two types of failure partial failure and complete failure. Further the partial failure has been categorized as minor partial failure and major partial failure. It is assumed that minor partial failure degrades the subsystem and the major partial failure brings the subsystem to break down mode. The system can completely failed due to failure of server hacking and blocking etc. The system is studied by supplementary variable technique and Laplace transform by taking different types of failure and two types of repairs. The various measures of reliability like availability of system, MTTF, profit function for different parametric values has been discussed.Keywords: star topology, bus topology, hacking, blocking, linux operating system, Gumbel-Hougaard family copula, supplementary variable
Procedia PDF Downloads 579