Search results for: safe bearing pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6288

Search results for: safe bearing pressure

2298 Thermodynamic Modeling of Methane Injection in Gas-Condensate Reservoir Core: A Case Study

Authors: F. S. Alavi, D. Mowla, F. Esmaeilzadeh

Abstract:

In this paper, the core of Sarkhoon Gas Condensate Reservoir located in the south of Iran was thermodynamically modeled in order to study the natural depletion process and methane injection phenomena for enhanced gas-condensate recovery using the Eclipse 300 compositional simulator. Modeling was performed for three different core lengths with different production and injection flow rates in both vertical and horizontal cases. According to the results, the final condensate in place value in the natural depletion process is approximately independent of the production rate for a given pressure drop. The final condensate in place value is lower in vertical cases compared to horizontal cases. An increase in the injection flow rate leads to a decrease in the percentage of gascondensate recovery. In cores of equal length, gas condensate recovery percent is higher in vertical cases in comparison to horizontal cases. For a constant injection rate, decreasing the core length leads to a decrease in gas condensate recovery.

Keywords: reservoir simulation, methane injection, enhanced condensate recovery, reservoir core, modeling

Procedia PDF Downloads 77
2297 Identifying Controlling Factors for the Evolution of Shallow Groundwater Chemistry of Ellala Catchment, Northern Ethiopia

Authors: Grmay Kassa Brhane, Hailemariam Siyum Mekonen

Abstract:

This study was designed to identify the hydrogeochemical and anthropogenic processes controlling the evaluation of groundwater chemistry in the Ellala catchment which covers about 296.5 km2 areal extent. The chemical analysis revealed that the major ions in the groundwater are Ca2+, Mg2+, Na+, and K+ (cations) and HCO3-, PO43-, Cl-, NO3-, and SO42-(anions). Most of the groundwater samples (68.42%) revealed that the groundwater in the catchment is non-alkaline. In addition to the contribution of aquifer material, the solid materials and liquid wastes discharged from different sources can be the main sources of pH and EC in the groundwater. It is observed that the EC of the groundwater is fairly correlated with the DTS. This indicates that high mineralized water is more conductor than water with low concentration. The degree of salinity of the groundwater increases along the groundwater flow path from East to West; then, areas surrounding Mekelle City are highly saline due to the liquid and solid wastes discharged from the city and the industries. The groundwater facies in the catchment are predominated with calcium, magnesium, and bicarbonate which are labeled as Ca-Mg-HCO3 and Mg-Ca-HCO3. The main geochemical process controlling the evolution of the groundwater chemistry in the catchment is rock-water interaction, particularly carbonate dissolution. Due to the clay layer in the aquifer, the reverse is ion exchange. Non-significant silicate weathering and halite dissolution also contribute to the evolution of groundwater chemistry in the catchment. The groundwater in the catchment is dominated by the meteoritic origin although it needs further groundwater chemistry study with isotope dating analysis. The groundwater is under-saturated with calcite, dolomite, and aragonite minerals; hence, the more these minerals encounter the groundwater, the more the minerals dissolve. The main source of calcium and magnesium in groundwater is the dissolution of carbonate minerals (calcite and dolomite) since carbonate rocks are the dominant aquifer materials in the catchment. In addition to this, the weathering of dolerite rock is a possible source of magnesium ions. The relatively higher concentration of sodium over chloride indicates that the source of sodium-ion is reverse ion exchange and/or weathering of sodium-bearing materials, such as shale and dolerite rather than halite dissolution. High concentration of phosphate, nitrate, and chloride in the groundwater is the main anthropogenic source that needs treatment, quality control, and management in the catchment. From the Base Exchange Index Analysis, it is possible to understand that, in the catchment, the groundwater is dominated by the meteoritic origin, although it needs further groundwater chemistry study with isotope dating analysis.

Keywords: Ellala catchment, factor, chemistry, geochemical, groundwater

Procedia PDF Downloads 57
2296 Reimagining the Potential of Street Lighting Infrastructure in Nairobi City

Authors: Clifford Otieno Ochieng, Nsenda Lukumwena

Abstract:

Cities worldwide and most notably those in the global south, including Nairobi City are experiencing accelerated population growth and urban sprawl, accompanied with multiple socioeconomic challenges’ which in turn increase the pressure on already limited infrastructure such as public lighting and on limited financial resources. Based on this premise, through reimaging the value of street lighting infrastructure, the study attempts to highlight the affordance and affordability of streetlights and suggests them as a tool to optimally address limited financial resources that characterize cities in the global south. As a methodology, the paper reviews and analyzes literature available online including Nairobi city budgets; reports from Kenya Power, World Health Organization and United Nations; and articles on enterprise level Internet of Things (IoT) solutions. In conclusion, this study illustrates that streetlights can go well beyond their traditional roles of illuminating cities at night. They can be as suggested in this paper charging stations, communication network terminals and disease prevention nodes.

Keywords: affordance, Nairobi, developing economies, IoT, smart street lights, smart cities

Procedia PDF Downloads 166
2295 Preliminary Study of the Hydrothermal Polymetallic Ore Deposit at the Karancs Mountain, North-East Hungary

Authors: Eszter Kulcsar, Agnes Takacs, Gabriella B. Kiss, Peter Prakfalvi

Abstract:

The Karancs Mountain is part of the Miocene Inner Carpathian Volcanic Belt and is located in N-NE Hungary, along the Hungarian-Slovakian border. The 14 Ma old andesitic-dacitic units are surrounded by Oligocene sedimentary units (sandstone, siltstone). The host rocks of the mineralisation are siliceous and/or argillaceous volcanic units, quartz veins, hydrothermal breccia, and strongly silicified vuggy rocks, found in the various altered volcanic units. The hydrothermal breccia consists of highly silicified vuggy quartz clasts in quartz matrix. The hydrothermal alteration of the host units shows structural control at the deeper levels. The main ore minerals are galena, pyrite, marcasite, sphalerite, hematite, magnetite, arsenopyrite, anglesite and argentite The mineralisation was first mentioned in 1944 and the first exploration took place between 1961 and 1962 in the area. The first ore geological studies were performed between 1984-1985. The exploration programme was limited only to surface sampling; no drilling programme was performed. Petrographical and preliminary fluid inclusion studies were performed on calcite samples from a galena-bearing vein. Despite the early discovery of the mineralisation, no detailed description is available, thus its size, characteristics, and origin have remained unknown. The aim of this study is to examine the mineralisation, describe the characteristics in detail and to test the possible gold content of the various quartz veins and breccias. Finally, we also investigate the potential relation of the hydrothermal mineralisation to the surrounding similar mineralisations with similar ages (e.g. W-Mátra Mountains in Hungary, Banska Bystrica, Banska Stiavnica in Slovakia) in order to place the mineralisation within the volcanic-hydrothermal evolution of the Miocene Inner Carpathian Belt. As first steps, the study includes field mapping, traditional petrological and ore microscopy; X-ray diffraction analysis; SEM-EDS and EMPA studies on ore minerals, to obtain mineral chemical information. Fluid inclusion petrography and microthermometry and micro-Raman-spectroscopy studies are also planned on quartz-hosted inclusions to investigate the physical and chemical properties of the ore-forming fluid.

Keywords: epithermal, Karancs Mountain, Hungary, Miocene Inner Carpathian volcanic belt, polimetallic ore deposit

Procedia PDF Downloads 120
2294 Manufacturing an Eminent Mucolytic Medicine Using an Efficient Synthesis Path

Authors: Farzaneh Ziaee, Mohammad Ziaee

Abstract:

N-acetyl-L-cysteine (NAC) is a well-known mucolytic agent, and recently its efficacy has been examined for the prevention and remediation of several diseases such as lung infections caused by Coronavirus. Also, it is administrated as the main antidote in paracetamol overdose and is effective for the treatment of idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD). This medicine is used as an antioxidant to prevent diabetic kidney disease (nephropathy). In this study, a method for the acylation of amino acids is employed to manufacture this drug in a height yield. Regarding this patented path, NAC can be made in a single batch step at ambient pressure and temperature. Moreover, this study offers a technique to make peptide bonds which is of interest for pharmaceutical and medicinal industries. The separation process was undertaken using appropriate solvents to achieve an excellent purification level. The synthesized drug was characterized via proton nuclear magnetic resonance (1H NMR), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FT-IR), elemental analysis, and melting point.

Keywords: N-acetylcysteine, synthesis, mucolytic medication, lung anti-inflammatory, COVID-19, antioxidant, pharmaceutical supplement, characterization

Procedia PDF Downloads 179
2293 Recovery of Essential Oil from Zingiber Officinale Var. Bentong Using Ultrasound Assisted-Supercritical Carbon Dioxide Extraction

Authors: Norhidayah Suleiman, Afza Zulfaka

Abstract:

Zingiber officinale var. Bentong has been identified as the source of high added value compound specifically gingerol-related compounds. The extraction of the high-value compound using conventional method resulted in low yield and time consumption. Hence, the motivation for this work is to investigate the effect of the extraction technique on the essential oil from Zingiber officinale var. Bentong rhizome for commercialization purpose in many industries namely, functional food, pharmaceutical, and cosmeceutical. The investigation begins with a pre-treatment using ultrasound assisted in order to enhance the recovery of essential oil. It was conducted at a fixed frequency (20 kHz) of ultrasound with various time (10, 20, 40 min). The extraction using supercritical carbon dioxide (scCO2) were carried out afterward at a specific condition of temperature (50 °C) and pressure (30 MPa). scCO2 extraction seems to be a promising sustainable green method for the extraction of essential oil due to the benefits that CO2 possesses. The expected results demonstrated the ultrasound-assisted-scCO2 produces a higher yield of essential oil compared to solely scCO2 extraction. This research will provide important features for its application in food supplements or phytochemical preparations.

Keywords: essential oil, scCO2, ultrasound assisted, Zingiber officinale Var. Bentong

Procedia PDF Downloads 120
2292 Assessment of Frying Material by Deep-Fat Frying Method

Authors: Brinda Sharma, Saakshi S. Sarpotdar

Abstract:

Deep-fat frying is popular standard method that has been studied basically to clarify the complicated mechanisms of fat decomposition at high temperatures and to assess their effects on human health. The aim of this paper is to point out the application of method engineering that has been recently improved our understanding of the fundamental principles and mechanisms concerned at different scales and different times throughout the process: pretreatment, frying, and cooling. It covers the several aspects of deep-fat drying. New results regarding the understanding of the frying method that are obtained as a results of major breakthroughs in on-line instrumentation (heat, steam flux, and native pressure sensors), within the methodology of microstructural and imaging analysis (NMR, MRI, SEM) and in software system tools for the simulation of coupled transfer and transport phenomena. Such advances have opened the approach for the creation of significant information of the behavior of varied materials and to the event of latest tools to manage frying operations via final product quality in real conditions. Lastly, this paper promotes an integrated approach to the frying method as well as numerous competencies like those of chemists, engineers, toxicologists, nutritionists, and materials scientists also as of the occupation and industrial sectors.

Keywords: frying, cooling, imaging analysis (NMR, MRI, SEM), deep-fat frying

Procedia PDF Downloads 418
2291 Design and Analysis of Formula One Car Halo

Authors: Indira priyadarshini, B. Tulja Lal, K. Anusha, P. Sai Varun

Abstract:

Formula One cars are the fastest road course racing cars in the world, owing to very high cornering speeds achieved through the generation of large amounts of aerodynamic downforce. The main intentions and goals of this paper are to reduce the accidents and improving the safety without affecting the visibility of the driver by redesigning Halo that was developed by Mercedes in conjunction with the FIA to deflect flying debris, such as a loose wheel, away from a driver’s head while the hinged locking mechanism can quickly be removed for easy access. Halo design has been modified in order to reduce the weight without affecting the aerodynamics of the car. CFD simulation is carried out to observe the flow over the Halo. The velocity profile and pressure contours were analyzed. Halo is designed using SOLIDWORKS Furthermore, using the software ANSYS FLUENT 3D simulation of the airflow contour around the Halo in order to make changes in the geometry to improve the design by reducing air resistance and improving aerodynamics. According to our assumption, new 3D Halo model has better aerodynamic properties in order to analyse possible improvements compared to the initial design. Structural analysis is also done by using ANSYS by making an F1 tire colliding with Halo at 225 kmph in order to know the deflections in the structure.

Keywords: aerodynamics, Halo, safety, visibility

Procedia PDF Downloads 349
2290 Climate Change and Urban Flooding: The Need to Rethinking Urban Flood Management through Resilience

Authors: Suresh Hettiarachchi, Conrad Wasko, Ashish Sharma

Abstract:

The ever changing and expanding urban landscape increases the stress on urban systems to support and maintain safe and functional living spaces. Flooding presents one of the more serious threats to this safety, putting a larger number of people in harm’s way in congested urban settings. Climate change is adding to this stress by creating a dichotomy in the urban flood response. On the one hand, climate change is causing storms to intensify, resulting in more destructive, rarer floods, while on the other hand, longer dry periods are decreasing the severity of more frequent, less intense floods. This variability is creating a need to be more agile and innovative in how we design for and manage urban flooding. Here, we argue that to cope with this challenge climate change brings, we need to move towards urban flood management through resilience rather than flood prevention. We also argue that dealing with the larger variation in flood response to climate change means that we need to look at flooding from all aspects rather than the single-dimensional focus of flood depths and extents. In essence, we need to rethink how we manage flooding in the urban space. This change in our thought process and approach to flood management requires a practical way to assess and quantify resilience that is built into the urban landscape so that informed decision-making can support the required changes in planning and infrastructure design. Towards that end, we propose a Simple Urban Flood Resilience Index (SUFRI) based on a robust definition of resilience as a tool to assess flood resilience. The application of a simple resilience index such as the SUFRI can provide a practical tool that considers urban flood management in a multi-dimensional way and can present solutions that were not previously considered. When such an index is grounded on a clear and relevant definition of resilience, it can be a reliable and defensible way to assess and assist the process of adapting to the increasing challenges in urban flood management with climate change.

Keywords: urban flood resilience, climate change, flood management, flood modelling

Procedia PDF Downloads 32
2289 Properties of Compressed Earth Blocks Enhanced with Clay Pozzolana

Authors: Humphrey Danso, Seth Adu

Abstract:

The high cost of cement and its greenhouse effect on the environment have led to the use of alternative building materials in the production of block and bricks. This study seeks to investigate the properties of compressed earth blocks (CEBs) enhanced with clay pozzolana. CEBs of size 290 × 140 × 100 mm were prepared with 10, 20 and 30 % weight of clay pozzolana. The CEBs were compressed at a constant pressure of 5 MPa and cured for 28 days. The blocks, after 7, 14, 21 and 28 days of curing were tested for density, water absorption, compressive strength and erosion. It was found that amount of pozzolana content did not have much influence on blocks’ density. There was a decline in water absorption of the stabilised blocks ranged between 32.8% and 252.2% over the unstabilised blocks. The highest compressive strength (3.75MPa) of the stabilized blocks was achieved at 28th day of curing with 30% clay pozzolana content, which showed an improvement of 116.8% strength over the unstabilised blocks. Furthermore, there was a statistically significant difference in the erosion resistance between the stabilized blocks and the unstabilised blocks. The study concludes that the inclusion of the clay pozzolana increased the properties of the CEBs, and therefore recommended for use in the building of houses.

Keywords: clay pozzolana, compressed earth blocks (CEBs), compressive strength, erosion test

Procedia PDF Downloads 268
2288 Subjective Well-Being through Coaching Process

Authors: Pendar Fazel

Abstract:

Well-being is a good or satisfactory condition of existence; a state characterized by health, happiness, and prosperity. Well-being of people is correlated with, the cognitive, social, emotional, and physical aspect of their personality. Subjective well-being, people’s emotional and cognitive evaluations of their lives, includes what lay people call happiness, peace, fulfillment, and life satisfaction. Unfortunately in this period of time people are under the pressure of financial, social problems, and other stress factors which made them vulnerable, and their well-being is threatened. Personal Coaching as a holistic orientation and novel approach is ideal for the present century which help people, to find balance, enjoyment and meaning in their lives as well as improving performance, skills and effectiveness. The aim of the present article besides introducing the personal coaching is determining how personal coaching can positively effects on subjective well-being, under this aim we tend to describe how coaching impact on the cognitive and emotional reconstruction. Present qualitative research is descriptive analytic study, which data gathered by manual library research and search within authentic article through internet; analyzed personal coaching which integrated different views into an operational one helps people promote self-awareness as well as evaluate, emotional and cognitive aspect of their personality and provide appropriate subjective well-being.

Keywords: subjective well-being, coaching, well-being, positive psychology, personal growth

Procedia PDF Downloads 515
2287 Hypoglycemic and Hypolipidemic Effects of Aqueous Flower Extract from Nyctanthes arbor-tristis L.

Authors: Brahmanage S. Rangika, Dinithi C. Peiris

Abstract:

Boiled Aqueous Flower Extract (AFE) of Nyctanthes arbor-tristis L. (Family: Oleaceae) is used in traditional Sri Lankan medicinal system to treat diabetes. However, this is not scientifically proven and the mechanisms by which the flowers reduce diabetes have not been investigated. The present study was carried out to examine the hypoglycemic potential and toxicity effects of aqueous flower extract of N. arbor-tristis. AFE was prepared and mice were treated orally either with 250, 500, and 750 mg/kg of AFE or distilled water (Control). Fasting and random blood glucose levels were determined. In addition, the toxicity of AFE was determined using chronic oral administration. In normoglycemic mice, mid dose (500mg/kg) of AFE significantly (p < 0.01) reduced fasting blood glucose levels by 49% at 4h post treatment. Further, 500mg/kg of AFE significantly (p < 0.01) lowered random blood glucose level of non-fasted normoglycemic mice. AFE significantly lowered total cholesterol and triglyceride levels while increasing the HDL levels in the serum. Further, AFE significantly inhibited the glucose absorption from the lumen of the intestine and it increases the diaphragm uptake of glucose. Alpha-amylase inhibitory activity was also evident. However, AFE did not induce any overt signs of toxicity or hepatotoxicity. There were no adverse effects on food and water intake and body weight of mice during the experimental period. It can be concluded that AFE of N. arbor-tristis posses safe oral anti diabetic potentials mediated via multiple mechanisms. Results of the present study scientifically proved the claims made about the uses of N. arbor-tristis in the treatment of diabetes mellitus in traditional Sri Lankan medicinal system. Further, flowers can also be used for as a remedy to improve blood lipid profile.

Keywords: aqueous extract, hypoglycemic hypolipidemic, Nyctanthes arbor-tristis flowers, hepatotoxicity

Procedia PDF Downloads 356
2286 Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger

Authors: Hamed K. Arzani, Ahmad Amiri, Hamid K. Arzani, Salim Newaz Kazi, Ahmad Badarudin

Abstract:

The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.

Keywords: heat transfer, nanofluid, turbulent flow, forced convection flow, graphene nanoplatelet

Procedia PDF Downloads 416
2285 The Effectiveness of Synthesizing A-Pillar Structures in Passenger Cars

Authors: Chris Phan, Yong Seok Park

Abstract:

The Toyota Camry is one of the best-selling cars in America. It is economical, reliable, and most importantly, safe. These attributes allowed the Camry to be the trustworthy choice when choosing dependable vehicle. However, a new finding brought question to the Camry’s safety. Since 1997, the Camry received a “good” rating on its moderate overlap front crash test through the Insurance Institute of Highway Safety. In 2012, the Insurance Institute of Highway Safety introduced a frontal small overlap crash test into the overall evaluation of vehicle occupant safety test. The 2012 Camry received a “poor” rating on this new test, while the 2015 Camry redeemed itself with a “good” rating once again. This study aims to find a possible solution that Toyota implemented to reduce the severity of a frontal small overlap crash in the Camry during a mid-cycle update. The purpose of this study is to analyze and evaluate the performance of various A-pillar shapes as energy absorbing structures in improving passenger safety in a frontal crash. First, A-pillar structures of the 2012 and 2015 Camry were modeled using CAD software, namely SolidWorks. Then, a crash test simulation using ANSYS software, was applied to the A-pillars to analyze the behavior of the structures in similar conditions. Finally, the results were compared to safety values of cabin intrusion to determine the crashworthy behaviors of both A-pillar structures by measuring total deformation. This study highlights that it is possible that Toyota improved the shape of the A-pillar in the 2015 Camry in order to receive a “good” rating from the IIHS safety evaluation once again. These findings can possibly be used to increase safety performance in future vehicles to decrease passenger injury or fatality.

Keywords: A-pillar, Crashworthiness, Design Synthesis, Finite Element Analysis

Procedia PDF Downloads 102
2284 Design of Process Parameters in Electromagnetic Forming Apparatus by FEM

Authors: Hyeong-Gyu Park, Hak-Gon Noh, Beom-Soo Kang, Jeong Kim

Abstract:

Electromagnetic forming (EMF) process is one of a high-speed forming process, which uses an electromagnetic body (Lorentz) force to deform work-piece. Advantages of EMF are summarized as improvement of formability, reduction in wrinkling, non-contact forming. In this study, the spiral coil is considered to evaluate formability in terms of pressure distribution of the forming process. It also is represented forming results of numerical analysis using ANSYS code. In the numerical simulation, RLC circuit coupled with spiral coil was made to consider the design parameters such as system input current and electromagnetic force. The simulation results show that even though input peak currents level are same level in each case, forming condition is certainly different because of frequency of input current and magnitude of current density and magnetic flux density. Finally, the simulation results appear that electromagnetic forming force apparently affected by input current frequency which determines magnitude of current density and magnetic flux density.

Keywords: electromagnetic forming, high-speed forming, RLC circuit, Lorentz force

Procedia PDF Downloads 443
2283 Short Arc Technique for Baselines Determinations

Authors: Gamal F.Attia

Abstract:

The baselines are the distances and lengths of the chords between projections of the positions of the laser stations on the reference ellipsoid. For the satellite geodesy, it is very important to determine the optimal length of orbital arc along which laser measurements are to be carried out. It is clear that for the dynamical methods long arcs (one month or more) are to be used. According to which more errors of modeling of different physical forces such as earth's gravitational field, air drag, solar radiation pressure, and others that may influence the accuracy of the estimation of the satellites position, at the same time the measured errors con be almost completely excluded and high stability in determination of relative coordinate system can be achieved. It is possible to diminish the influence of the errors of modeling by using short-arcs of the satellite orbit (several revolutions or days), but the station's coordinates estimated by different arcs con differ from each other by a larger quantity than statistical zero. Under the semidynamical ‘short arc’ method one or several passes of the satellite in one of simultaneous visibility from both ends of the chord is known and the estimated parameter in this case is the length of the chord. The comparison of the same baselines calculated with long and short arcs methods shows a good agreement and even speaks in favor of the last one. In this paper the Short Arc technique has been explained and 3 baselines have been determined using the ‘short arc’ method.

Keywords: baselines, short arc, dynamical, gravitational field

Procedia PDF Downloads 454
2282 Restriction on the Freedom of Economic Activity in the Polish Energy Law

Authors: Zofia Romanowska

Abstract:

Recently there have been significant changes in the Polish energy market. Due to the government's decision to strengthen energy security as well as to strengthen the implementation of the European Union common energy policy, the Polish energy market has been undergoing significant changes. In the face of these, it is necessary to answer the question about the direction the Polish energy rationing sector is going, how wide apart the powers of the state are and also whether the real regulator of energy projects in Poland is not in fact the European Union itself. In order to determine the role of the state as a regulator of the energy market, the study analyses the basic instruments of regulation, i.e. the licenses, permits and permissions to conduct various activities related to the energy market, such as the production and sale of liquid fuels or concessions for trade in natural gas. Bearing in mind that Polish law is part of the widely interpreted European Union energy policy, the legal solutions in neighbouring countries are also being researched, including those made in Germany, a country which plays a key role in the shaping of EU policies. The correct interpretation of the new legislation modifying the current wording of the Energy Law Act, such as obliging the entities engaged in the production and trade of liquid fuels (including abroad) to meet a number of additional requirements for the licensing and providing information to the state about conducted business, plays a key role in the study. Going beyond the legal framework for energy rationing, the study also includes a legal and economic analysis of public and private goods within the energy sector and delves into the subject of effective remedies. The research caused the relationships between progressive rationing introduced by the legislator and the rearrangement rules prevailing on the Polish energy market to be taken note of, which led to the introduction of greater transparency in the sector. The studies refer to the initial conclusion that currently, despite the proclaimed idea of liberalization of the oil and gas market and the opening of market to a bigger number of entities as a result of the newly implanted changes, the process of issuing and controlling the conduction of the concessions will be tightened, guaranteeing to entities greater security of energy supply. In the long term, the effect of the introduced legislative solutions will be the reduction of the amount of entities on the energy market. The companies that meet the requirements imposed on them by the new regulation to cope with the profitability of the business will in turn increase prices for their services, which will be have an impact on consumers' budgets.

Keywords: license, energy law, energy market, public goods, regulator

Procedia PDF Downloads 233
2281 A Review of Current Research and Future Directions on Foodborne Illness and Food Safety: Understanding the Risks and Mitigation Strategies

Authors: Tuji Jemal Ahmed

Abstract:

This paper is to provides a comprehensive review of current research works on foodborne illness and food safety, including the risks associated with foodborne illnesses, the latest research on food safety, and the mitigation strategies used to prevent and control foodborne illnesses. Foodborne illness is a major public health concern that affects millions of people every year. As foodborne illnesses have grown more common and dangerous in recent years, it is vital that we research and build upon methods to ensure food remains safe throughout consumption. Additionally, this paper will discuss future directions for food safety research, including emerging technologies, changes in regulations and standards, and collaborative efforts to improve food safety. The first section of the paper provides an overview of the risks of foodborne illness, including a definition of foodborne illness, the causes of foodborne illness, the types of foodborne illnesses, and high-risk foods for foodborne illness, Health Consequences of Foodborne Illness. The second section of the paper focuses on current research on food safety, including the role of regulatory agencies in food safety, food safety standards and guidelines, emerging food safety concerns, and advances in food safety technology. The third section of the paper explores mitigation strategies for foodborne illness, including preventative measures, hazard analysis and critical control points (HACCP), good manufacturing practices (GMPs), and training and education. Finally, this paper examines future directions for food safety research, including hurdle technologies and their impact on food safety, changes in food safety regulations and standards, collaborative efforts to improve food safety, and research gaps and areas for further exploration. In general, this work provides a comprehensive review of current research and future directions in food safety and understanding the risks associated with foodborne illness. The implications of the assessment for food safety and public health are discussed, as well as recommended for research scholars.

Keywords: food safety, foodborne illness, technologies, mitigation

Procedia PDF Downloads 82
2280 Tiger Team Strategy as a Health District Response to the COVID-19 Pandemic in Sydney, Australia during the Period between March 2020 to January 2022

Authors: Rehana Khan

Abstract:

Background: The study investigates the experiences of Tiger Teams within the Sydney Local Health District during the COVID-19 pandemic. Aim: The aims were to understand the experiences of the Tiger Team members, to evaluate the effectiveness of Tiger Teams, and to elicit any learnings for future implementation of Tiger Teams in a similar context. Methods: Tiger Team members who worked from March 2020 to January 2022 were approached, with 23 members agreeing to participate in the study. Individual interviews were undertaken by a researcher on a virtual platform. Thematic analysis was used to analyse the data. Saturation was deemed to have been reached when no new themes or subthemes arose within the final three interviews. Results: Four themes emerged: diversity worked well in Tiger Teams; fear of the unknown and challenging conversations were the main challenges of Tiger Teams; improved use of resources and more structure around the strategy of the Tiger Team model would help in future implementations; and Sydney Local Health District’s response to the pandemic was uniformly considered effective in keeping the community safe. In relation to Sydney Local Health District’s response in future pandemics, participants suggested having a pool of staff in readiness to undertake Tiger Team duties when required; prioritise staff welfare at all levels of involvement during a pandemic; maintaining transparent communication and relationship building between Executive level, Tiger Team members and clinical floor level in relation to decision making; and improve documentation, including evaluations of the COVID-19 pandemic response. Implications: The study provides constructive insights into the experiences of Tiger Team members, and these findings will help inform future planning for surge and secondment of staff in public health emergencies.

Keywords: Tiger Team, pandemic response, future planning, COVID-19

Procedia PDF Downloads 64
2279 Phytoextraction of Heavy Metals in a Contaminated Site in Assam, India Using Indian Pennywort and Fenugreek: An Experimental Study

Authors: Chinumani Choudhury

Abstract:

Heavy metal contamination is an alarming problem, which poses a serious risk to human health and the surrounding geology. Soils get contaminated with heavy metals due to the un-regularized industrial discharge of the toxic metal-rich effluents. Under such a condition, the remediation of the contaminated sites becomes imperative for a sustainable, safe, and healthy environment. Phytoextraction, which involves the removal of heavy metals from the soil through root absorption and uptake, is a viable remediation technique, which ensures extraction of the toxic inorganic compound available in the soil even at low concentrations. The soil present in the Silghat Region of Assam, India, is mostly contaminated with Zinc (Zn) and Lead (Pb), having concentrations as high as to cause a serious environmental problem if proper measures are not taken. In the present study, an extensive experimental study was carried out to understand the effectiveness of two commonly planted trees in Assam, namely, i) Indian Pennywort and ii) Fenugreek, in the removal of heavy metals from the contaminated soil. The basic characterization of the soil in the contaminated site of the Silghat region was performed and the field concentration of Zn and Pb was recorded. Various long-term laboratory pot tests were carried out by sowing the seeds of Indian Pennywort and Fenugreek in a soil, which was spiked, with a very high dosage of Zn and Pb. The tests were carried out for different concentration of a particular heavy metal and the individual effectiveness in the absorption of the heavy metal by the plants were studied. The concentration of the soil was monitored regularly to assess the rate of depletion and the simultaneous uptake of the heavy metal from the soil to the plant. The amount of heavy metal uptake by the plant was also quantified by analyzing the plant sample at the end of the testing period. Finally, the study throws light on the applicability of the studied plants in the field for effective remediation of the contaminated sites of Assam.

Keywords: phytoextraction, heavy-metals, Indian pennywort, fenugreek

Procedia PDF Downloads 106
2278 Simulation Study of Multiple-Thick Gas Electron Multiplier-Based Microdosimeters for Fast Neutron Measurements

Authors: Amir Moslehi, Gholamreza Raisali

Abstract:

Microdosimetric detectors based on multiple-thick gas electron multiplier (multiple-THGEM) configurations are being used in various fields of radiation protection and dosimetry. In the present work, microdosimetric response of these detectors to fast neutrons has been investigated by Monte Carlo method. Three similar microdosimeters made of A-150 and rexolite as the wall materials are designed; the first based on single-THGEM, the second based on double-THGEM and the third is based on triple-THGEM. Sensitive volume of the three microdosimeters is a right cylinder of 5 mm height and diameter which is filled with the propane-based tissue-equivalent (TE) gas. The TE gas with 0.11 atm pressure at the room temperature simulates 1 µm of tissue. Lineal energy distributions for several neutron energies from 10 keV to 14 MeV including 241Am-Be neutrons are calculated by the Geant4 simulation toolkit. Also, mean quality factor and dose-equivalent value for any neutron energy has been determined by these distributions. Obtained data derived from the three microdosimeters are in agreement. Therefore, we conclude that the multiple-THGEM structures present similar microdosimetric responses to fast neutrons.

Keywords: fast neutrons, geant4, multiple-thick gas electron multiplier, microdosimeter

Procedia PDF Downloads 335
2277 Assessment Proposal to Establish the First Geo-Park in Egypt at Abu-Roash Area, Cairo

Authors: Kholoud Abdelmaksoud, Mahmoud Emam, Wael Al-Metwaly

Abstract:

Egypt is known as cradle of civilization due to its ancient history and archeological sites, but Egypt possess also a cradle of Geo-sites, which qualify it to be listed as one of the most important Geo-heritage sites all over the country. Geology and landscape in Abu-Roash area is considered as one of the most important geological places (geo-sites) inside Cairo which help us to know and understand geology and geologic processes, so the area is used mainly for geological education purposes, also the area contain an archeological sites; pyramid complex, tombs, and Coptic monastery which give the area unique importance. Abu-Roash area is located inside Cairo 9 km north of the Giza Pyramids, which make the accessibility to the area easy and safe, the geology of Abu-Roash constitutes a complex Cretaceous sedimentary succession mass with showing outstanding tectonic features (Syrian Arc system event), these features are considered as a Geo-heritage, which will be the main designation of ‘Geo-parks’ establishing. The research is dealing with the numerous geo-sites found in the area, and its geologic and archeological importance, the relation between geo-sites and archeology, also the research proposed a detailed maps for these sites depicting Geo-routes and the hazardous places surrounding Abu-Roash area. The research is proposing a new proposal not applied in Egypt before, establishing a Geo-park, to promote this unique geo-heritage from hazardous factors and anthropogenic effects, also it will offer geo-educational opportunities to the general public and to the scientific community, enhancement of Geo-tourism which will be linked easily with the Ancient Egyptian tourism, it will also provide a significant economic benefit to Abu-Roash residential area. Finally, the research recommends that The United Nations Educational, Scientific and Cultural Organizations promote conservation of geological and geo-morphological heritage to list this area for its importance under the umbrella of geo-parks.

Keywords: geo-park, geo-sites, Abu-roash, archaeological sites, geo-tourism

Procedia PDF Downloads 289
2276 Formulation, Nutritive Value Assessment And Effect On Weight Gain Of Infant Formulae Prepared From Locally Available Materia

Authors: J. T. Johnson, R. A. Atule, E. Gbodo

Abstract:

The widespread problem of infant malnutrition in developing countries has stirred efforts in research, development and extension by both local and international organizations. As a result, the formulation and development of nutritious weaning foods from local and readily available raw materials which are cost effective has become imperative in many developing countries. Thus, local and readily available raw materials where used to compound and develop nutritious new infant formulae. The materials used for this study include maize, millet, cowpea, pumpkin, fingerlings, and fish bone. The materials where dried and blended to powder. The powders were weighed in the ratio of 4:4:4:3:1:1 respectively and were then mixed properly. Analysis of nutritive value was conducted on the formulae and compared with NAN-2 standard and results reveals that the formulae had reasonable amount of moisture, lipids, carbohydrate, protein, and fibre. Although NAN-2 was superior in both carbohydrate and protein, the new infant formula was higher in mineral elements, vitamins, fibre, and lipids. All the essentials vitamins and both macro and micro minerals where found in appreciable quantity capable of meeting the biochemical and physiological demand of the body while the anti-nutrients composition were significantly below FAO and WHO safe limits. Finally, the compounded infant formulae was feed to a set of albino Wistar rats while some other set of rats was feed with NAN-2 for the period of twenty seven (27) days and body weight was measure at three days intervals. The results of body weight changes was spectacular as their body weight over shot or almost double that of those animals that were feed with NAN-2 at each point of measurement. The results suggest that the widespread problem of infant malnutrition in the developing world especially among the low income segment of the society can now be reduced if not totally eradicated since nutritive and cost effective weaning formulae can be prepared locally from common readily available materials.

Keywords: formulation, nutritive value, local, materials

Procedia PDF Downloads 368
2275 The Impact of Mining Activities on the Surface Water Quality: A Case Study of the Kaap River in Barberton, Mpumalanga

Authors: M. F. Mamabolo

Abstract:

Mining activities are identified as the most significant source of heavy metal contamination in river basins, due to inadequate disposal of mining waste thus resulting in acid mine drainage. Waste materials generated from gold mining and processing have severe and widespread impacts on water resources. Therefore, a total of 30 water samples were collected from Fig Tree Creek, Kaapriver, Sheba mine stream & Sauid kaap river to investigate the impact of gold mines on the Kaap River system. Physicochemical parameters (pH, EC and TDS) were taken using a BANTE 900P portable water quality meter. The concentration of Fe, Cu, Co, and SO₄²⁻ in water samples were analysed using Inductively Coupled Plasma-Mass spectrophotometry (ICP-MS) at 0.01 mg/L. The results were compared to the regulatory guideline of the World Health Organization (WHO) and the South Africa National Standards (SANS). It was found that Fe, Cu and Co were below the guideline values while SO₄²⁻ detected in Sheba mine stream exceeded the 250 mg/L limit for both seasons, attributed by mine wastewater. SO₄²⁻ was higher in wet season due to high evaporation rates and greater interaction between rocks and water. The pH of all the streams was within the limit (≥5 to ≤9.7), however EC of the Sheba mine stream, Suid Kaap River & where the tributary connects with the Fig Tree Creek exceeded 1700 uS/m, due to dissolved material. The TDS of Sheba mine stream exceeded 1000 mg/L, attributed by high SO₄²⁻ concentration. While the tributary connecting to the Fig Tree Creek exceed the value due to pollution from household waste, runoff from agriculture etc. In conclusion, the water from all sampled streams were safe for consumption due to low concentrations of physicochemical parameters. However, elevated concentration of SO₄²⁻ should be monitored and managed to avoid water quality deterioration in the Kaap River system.

Keywords: Kaap river system, mines, heavy metals, sulphate

Procedia PDF Downloads 61
2274 NiAl-Layered Double Hydroxide: Preparation, Characterization and Applications in Photo-Catalysis and Hydrogen Storage

Authors: Ahmed Farghali, Heba Amar, Mohamed Khedr

Abstract:

NiAl-Layered Double Hydroxide (NiAl-LDH), one of anionic functional layered materials, has been prepared by a simple co-precipitation process. X-ray diffraction patterns confirm the formation of the desired compounds of NiAl hydroxide single phase and the crystallite size was found to be about 4.6 nm. The morphology of the prepared samples was investigated using scanning electron microscopy and the layered structure was appeared under the transmission electron microscope. The thermal stability and the function groups of NiAl-LDH were investigated using thermal gravimetric analysis (TGA) and Fourier transform infrared (FTIR) respectively. NiAl-LDH was investigated as a photo-catalyst for the degradation of some toxic dyes such as toluidine blue and bromopyrogallol red. It shows good catalytic efficiency in visible light and even in dark. For the first time NiAl-LDH was used for hydrogen storage application. NiAl-LDH samples were exposed to 20 bar applied hydrogen pressure at room temperature, 100 and -193 oC. NiAl-LDH samples appear to have feasible hydrogen storage capacity. It was capable to adsorb 0.1wt% at room temperature, 0.15 wt% at 100oC and storage capacity reached 0.3 wt% at -193 oC.

Keywords: NiAl-LDH, preparation, characterization, photo-catalysis, hydrogen storage

Procedia PDF Downloads 295
2273 Inhibitions in Implementing Green Supply Chain Management at Hospitals

Authors: M. Aruna, Uma Gunasilan

Abstract:

Hospitals play an ample role in securing the health of a country. Nevertheless, they also have an unhealthy side. Ecological issues strengthen ill-health throughout the domain which subsequently puts pressure on hospital supply chains. Medical waste indeed is hazardous for environment and subsequently for human. The hospital waste management is of immense prominence due to its infectious and hazardous nature that can source many effects on human health and the environment. Government regulations and public cognizance regarding hospital waste issues have imposed hospital units to admit these strategies. The innovative technologies and instruments have been developed to handle hospital wastes. Green supply chain management practices are common in the United States. In India, Green Supply Chain management (GSCM) has just started to be recognized and practiced. GSCM are green, integrated and ecologically optimized. In Green supply chain management environmental sustainability is found to be an important driver. Eleven barriers are identified in this work. Interpretive Structural Modeling (ISM) technique is used for ranking the obstructions.

Keywords: green supply chain management (GSCM), hospital waste management (HWM), interpretive structural modeling (ISM), medical waste (MW)

Procedia PDF Downloads 302
2272 A Pilot Study on the Short Term Effects of Paslop Dance Exercise on Core Strength, Balance and Flexibility

Authors: Wilawan Kanhachon, Yodchai Boonprakob, Uraiwon Chatchawan, Junichiro Yamauchi

Abstract:

Introduction: Paslop is a traditional dance from Laos, which is popular in Laos and northeastern of Thailand. This unique type of Paslop dancing is to control body movement with the song. While dancing to the beat, dancers should contract their abdomen and back muscle all the time. Paslop may be a good alternative to improve strengthening, balance and flexibility. Objective: To investigate the effects of Paslop dance exercise on core strength, balance, and flexibility. Methods: Seven healthy participants (age, 20.57±1.13 yrs; height, 162.29±6.16 cm; body mass, 58.14±7.03 kg; mean± S.D.) were volunteered to perform the 45-minute Paslop dance exercise in three times a week for 8 weeks. Before, during and after the exercise period, core strength, balance and flexibility were measured with the pressure biofeedback unit (PBU), one-leg stance test (OLST), and sit and reach test (SAR), respectively. Result: PBU score for core strength increased from 2.12 mmHg in baseline to 6.34 mmHg at the 4th week and 10.10 mmHg at the 8th week after the Paslop dance training, while OLST and SAR did not change. Conclusion: The study demonstrates that 8-week Paslop dancing exercise can improve the core strength.

Keywords: balance, core strength, flexibility, Paslop

Procedia PDF Downloads 369
2271 Anti-Obesity Activity of Garcinia xanthochymus: Biochemical Characterization and In vivo Studies in High Fat Diet-Rat Model

Authors: Mahesh M. Patil, K. A. Anu-Appaiah

Abstract:

Overweight and obesity is a serious medical problem, increasing in prevalence, and affecting millions worldwide. Investigators have been trying from decades to articulate the burden of obesity and related risk factors. To answer this problem, we suggest a new therapeutic anti-obesity compounds from Garcinia xanthochymus fruit. However, there is little published scientific information on non-hydroxycitric acid Garcinia species. Our findings include biochemical characterization of the fruit; in vivo toxicity and bio-efficacy study of G. xanthochymus in high fat diet wistar rat model. We observed that Garcinia pericarp is a rich source of organic acids, polyphenols, mono- (40.63%) and poly-unsaturated fatty acids (16.45%; omega-3: 10.02%). Toxicological studies have showed that Garcinia is safe and had no observed adverse effect level up to 400 mg/kg/day. Body weight and food intake was significantly (P<0.05) reduced in oral gavage treated rats (sonicated Garcinia powder) in 13 weeks. Subcutaneous fat was significantly (P<0.05) reduced in Garcinia treated rats. Hepatocytes significantly (p<0.05) overexpressed sterol regulatory element binding protein 2, liver X receptor- α, liver X receptor- β, lipoprotein lipase and monoacylglycerol lipase. Fatty acid binding protein 1 and peroxisome proliferator activated receptor- α were down regulated as assessed by real time qPCR. Currently our research is focused on the adipocyte obesity related gene expressions, effect of Garcinia on 3T3-adipocyte cell lines and high fat diet induced mice model. This in vivo pre-clinical data suggests that G. xanthochymus may have clinical utility for the treatment of obesity. However, further studies are required to establish its potency.

Keywords: Garcinia xanthochymus, anti-obesity, high fat diet, real time qPCR

Procedia PDF Downloads 242
2270 Constructability Driven Engineering in Oil and Gas Projects

Authors: Srikanth Nagarajan, P. Parthasarathy, Frits Lagers

Abstract:

Lower crude oil prices increased the pressure on oil and gas projects. Being competitive becomes very important and critical for the success in any industry. Increase in size of the project multiplies the magnitude of the issue. Timely completion of projects within the budget and schedule is very important for any project to succeed. A simple idea makes a larger impact on the total cost of the plant. In this robust world, the phases of engineering right from licensing technology, feed, different phases of detail engineering, procurement and construction has been so much compressed that they overlap with each other. Hence constructability techniques have become very important. Here in this paper, the focus will be on how these techniques can be implemented and reduce cost with the help of a case study. Constructability is a process driven by the need to impact project’s construction phase resulting in improved project delivery, costs and schedule. In construction phase of one of our fast-track mega project, it was noticed that there was an opportunity to reduce significant amount of cost and schedule by implementing Constructability study processes. In this case study, the actual methodology adopted during engineering and construction and the way for doing it better by implementing Constructability techniques with collaborative engineering efforts will be explained.

Keywords: being competitive, collaborative engineering, constructability, cost reduction

Procedia PDF Downloads 399
2269 Construction of Wind Tunnel for Aerodynamic

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale, José Ubiragi de Lima Mendes

Abstract:

The study of the aerodynamics is related to the improvement in the acting of airplanes and automobiles with the objective of being reduced the effect of the attrition of the air on structures, providing larger speeds and smaller consumption of fuel. The application of the knowledge of the aerodynamics not more limits to the aeronautical and automobile industries. In that way, being tried the new demands with relationship to the aerodynamic study in the most several areas of the engineering, this work presents the stages of the project and construction of a wind tunnel for application in aerodynamic rehearsals. Among the several configurations of existent wind tunnels, opted to build open circuit, due to smaller construction complexity and installation; operational simplicity and cost reduced. Belonging to the type blower, to take advantage of a larger efficiency of the motor; and with diffusion so that flowed him of air it wins speed before reaching the section of rehearsals. The guidelines for project were: didactic practices: study of the layer it limits and analyze of the drainages on proof bodies with different geometries. For the pressure variation in the test section a connected manometer used a pitot tube. Quantitative and qualitative results showed to be satisfactory.

Keywords: wind tunnel, aerodynamics, air, airplane

Procedia PDF Downloads 471