Search results for: crystal size
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6164

Search results for: crystal size

2174 Microstructure and Properties of Cu-Bearing Hypereutectic High Chromium Cast Iron

Authors: Liqiang Gong, Hanguang Fu

Abstract:

In order to further improve the wear resistance of Hypereutectic High Chromium Cast iron (HHCCI), the effects of different Cu contents on the microstructure and properties of HHCCI were systematically studied. It was found that with the increase of Cu content, the carbide size was refined, and the increase of Cu content led to the increase of austenite and the decrease of hardness in as-cast HHCCI. After heat treatment at 1050 °C, the hardness of HHCCI increased significantly compared with as-cast. And with the increase of Cu content, the hardness of HHCCI increased first and then decreased, and the hardness was the highest when 0.5 wt.% Cu was added. The increase of copper content promotes the precipitation of secondary carbides and makes the interface between α-Fe and M23C6-type secondary carbides a semi-coherent boundary. With the increase of Cu content, the wear loss of HHCCI decreased after heat treatment at 1050 °C, and the wear resistance improved. When the Cu content increased to 1.0 wt.%, the wear resistance of HHCCI was the best, which was 2.6 times that of copper-free HHCCI. The continued increase of copper content has no obvious effect on the wear resistance of HHCCI. In addition, a small amount of Cu tends to adsorb on the (0001) preferential growth surface of M₇C₃-type carbides, thereby refining the carbides. From the First-principles calculations, the solid solution strengthening effect of Cu on the matrix and the adsorption and refinement of carbides were revealed, and the influence mechanism on the wear resistance of HHCCI was characterized.

Keywords: hypereutectic high chromium cast iron, cu alloying, carbides, wear resistance, first-principles calculations

Procedia PDF Downloads 49
2173 Effect of Compost Application on Uptake and Allocation of Heavy Metals and Plant Nutrients and Quality of Oriental Tobacco Krumovgrad 90

Authors: Violina R. Angelova, Venelina T. Popova, Radka V. Ivanova, Givko T. Ivanov, Krasimir I. Ivanov

Abstract:

A comparative research on the impact of compost on uptake and allocation of nutrients and heavy metals and quality of Oriental tobacco Krumovgrad 90 has been carried out. The experiment was performed on an agricultural field contaminated by the lead zinc smelter near the town of Kardzali, Bulgaria, after closing the lead production. The compost treatments had significant effects on the uptake and allocation of plant nutrients and heavy metals. The incorporation of compost leads to decrease in the amount of heavy metals present in the tobacco leaves, with Cd, Pb and Zn having values of 36%, 12% and 6%, respectively. Application of the compost leads to increased content of potassium, calcium and magnesium in the leaves of tobacco, and therefore, may favorably affect the burning properties of tobacco. The incorporation of compost in the soil has a negative impact on the quality and typicality of the oriental tobacco variety of Krumovgrad 90. The incorporation of compost leads to an increase in the size of the tobacco plant leaves, the leaves become darker in colour, less fleshy and undergo a change in form, becoming (much) broader in the second, third and fourth stalk position. This is accompanied by a decrease in the quality of the tobacco. The incorporation of compost also results in an increase in the mineral substances (pure ash), total nicotine and nitrogen, and a reduction in the amount of reducing sugars, which causes the quality of the tobacco leaves to deteriorate (particularly in the third and fourth harvests).

Keywords: chemical composition, compost, heavy metals, oriental tobacco, quality

Procedia PDF Downloads 249
2172 Arta (Calligonum Comosum, L'her.) Shoot Extract: Bio-mediator in Silver Nanoparticles Formation and Antimycotic Potential

Authors: Afrah E. Mohammed, Mudawi M. Nour

Abstract:

Environmentally friendly green synthesis of nanomaterial has a very significant part in nanotechnology. In the present research, the synthesis of silver nanoparticles (AgNPs) was established by treating silver ions with the aqueous extract of Calligonum comosum green shoots at room temperature. AgNPs formation was firstly detected by the colour change of mixed extract (plant extract and AgNO3). Further characterization was done by ultraviolet (UV)-Vis spectrophotometer, transmission electron microscopy (TEM), scanning electron microscopy (SEM), zeta potential and fourier transform infrared spectroscopy (FTIR). The peak values for UV-VIS- spectroscopy were in the range of 440 nm, TEM micrograph showed a spherical shape for the particles and zeta potential showed the formation of negative charged nanoparticles with an average size of about 105.8 nm. 1635.41 and 3249.83 cm−1 are the peaks detected from the FTIR analysis. In this study, biosynthesized silver nanoparticles mediated by C. comosum were tested for their antimycotic activity using a well diffusion method against fungal species; Aspergillus flavus, Penicillium sp, Fusarium oxysporum. Our findings indicated that biosynthesized AgNPs showed an efficient antimycotic activity against tested species. The antimycotic action of AgNPs varied according to different fungal species. Results confirmed the ability of C. comosum green shoot extract to act as an reducing and stabilizing agent during the synthesis of AgNPs.

Keywords: AGNPS, zeta potential, TEM, SEM

Procedia PDF Downloads 62
2171 Detection of Internal Mold Infection of Intact Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy

Authors: K. Petcharaporn

Abstract:

The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.

Keywords: tomato, mold, quality, prediction, transmittance

Procedia PDF Downloads 350
2170 Modulated Bioavailability of an Anti HIV Drug through a Self-Nanoemulsifying Drug Delivery System

Authors: Sunit Kumar Sahoo, Prakash Chandra Senapati

Abstract:

The main drawback to design drug delivery systems with BCS class II drugs is their low bioavailabilty due to their inherent low permeability characteristics. So the present investigation aspire to develop a self-nanoemulsifying drug delivery system (SNEDDS) of BCS class II anti HIV drug efavirenz (EFZ) using mixtures of non-ionic surfactant mixtures with the main objective to improve the oral bioavailability of said drug. Results obtained from solubility studies of EFZ in various expients utilized for construction of the pseudo ternary phase diagram containing surfactant mixtures. Surfactants in 1:1 combination are used with different co-surfactants in different ratio to delineate the area of monophasic region of the pseudo ternary phase diagram. The formulations which offered positive results in different thermodynamic stability studies were considered for percentage transmittance and turbidity analysis. The various characterization studies like the TEM analysis of post diluted SNEDDS formulations r confirmed the size in nanometric range (below 50 nm) and FT-IR studies confirmed the intactness of the drug the in the preconcentrate. The in vitro dissolution profile of SNEDDS showed that 80% drug was released within 30 min in case of optimized SNEDDS while it was approximately 18.3 % in the case of plain drug powder.. The Pharmacokinetic study using rat model revealed a 2.63 fold increase in AUC (0-∞) in comparison to plain EFZ suspension. The designed delivery system illustrated the confidence in creating a formulation of EFZ with enhanced bioavailability for better HIV treatment.

Keywords: efavirenz, self-nanoemulsifying, surfactant mixture, bioavailability

Procedia PDF Downloads 335
2169 Thermal Analysis and Optimization of a High-Speed Permanent Magnet Synchronous Motor with Toroidal Windings

Authors: Yuan Wan, Shumei Cui, Shaopeng Wu

Abstract:

Toroidal windings were taken advantage of to reduce of axial length of the motor, so as to match the applications that have severe restrictions on the axial length. But slotting in the out edge of the stator will decrease the heat-dissipation capacity of the water cooling of the housing. Besides, the windings in the outer slots will increase the copper loss, which will further increase the difficult for heat dissipation of the motor. At present, carbon-fiber composite retaining sleeve are increasingly used to be mounted over the magnets to ensure the rotor strength at high speeds. Due to the poor thermal conductivity of carbon-fiber sleeve, the cooling of the rotor becomes very difficult, which may result in the irreversible demagnetization of magnets for the excessively high temperature. So it is necessary to analyze the temperature rise of such motor. This paper builds a computational fluid dynamic (CFD) model of a toroidal-winding high-speed permanent magnet synchronous motor (PMSM) with water cooling of housing and forced air cooling of rotor. Thermal analysis was carried out based on the model and the factors that affects the temperature rise were investigated. Then thermal optimization for the prototype was achieved. Finally, a small-size prototype was manufactured and the thermal analysis results were verified.

Keywords: thermal analysis, temperature rise, toroidal windings, high-speed PMSM, CFD

Procedia PDF Downloads 477
2168 Antioxidant Mediated Neuroprotective Effects of Allium Cepa Extract Against Ischemia Reperfusion Induced Cognitive Dysfunction and Brain Damage in Mice

Authors: Jaspal Rana, Varinder Singh

Abstract:

Oxidative stress has been identified as an underlying cause of ischemia-reperfusion (IR) related cognitive dysfunction and brain damage. Therefore, antioxidant based therapies to treat IR injury are being investigated. Allium cepa L. (onion) is used as culinary medicine and is documented to have marked antioxidant effects. Hence, the present study was designed to evaluate the effect of A. cepa outer scale extract (ACE) against IR induced cognition and biochemical deficit in mice. ACE was prepared by maceration with 70% methanol and fractionated into ethylacetate and aqueous fractions. Bilateral common carotid artery occlusion for 10 min, followed by 24 h reperfusion, was used to induce cerebral IR injury. Following IR injury, ACE (100 and 200 mg/kg) was administered orally to animals for 7 days once daily. Behavioral outcomes (memory and sensorimotor functions) were evaluated using Morris water maze and neurological severity score. Cerebral infarct size, brain thiobarbituric acid reactive species, reduced glutathione, and superoxide dismutase activity were also determined. Treatment with ACE significantly ameliorated IR mediated deterioration of memory and sensorimotor functions and rose in brain oxidative stress in animals. The results of the present investigation revealed that ACE improved functional outcomes after cerebral IR injury which may be attributed to its antioxidant properties.

Keywords: allium cepa, cerebral ischemia, memory, sensorimotor

Procedia PDF Downloads 96
2167 Human Resource Management Challenges in Age of Artificial Intelligence: Methodology of Case Analysis

Authors: Olga Leontjeva

Abstract:

In the age of Artificial Intelligence (AI), some organization management approaches need to be adapted or changed. Human Resource Management (HRM) is a part of organization management that is under the managers' focus nowadays, because AI integration into organization activities brings some HRM-connected challenges. The topic became more significant during the crises of many organizations in the world caused by the coronavirus pandemic (COVID-19). The paper presents an approach, which will be used for the study that is going to be focused on the various case analysis. The author of the future study will analyze the cases of the organizations from Latvia and Spain that are grouped by the size, type of activity and area of business. The information for the cases will be collected through structured interviews and online surveys. The main result presented is the questionnaire developed that will be used for the study as well as the definition and description of sampling. The first round of the survey will be based on convenience sampling that is the main limitation of the study. To conclude, the approach developed will help to collect valid data if the organizations participating in the survey are ready to share their cases in depth, so the researchers could draw the right conclusions and generalize compared organizations’ cases. The questionnaire developed for the survey is applicable for both written online data collection as well as for the interviews. The case analysis will help to identify some HRM challenges that are connected to AI integration into organization activities such as management of different generation employees and their training peculiarities.

Keywords: age of artificial intelligence, case analysis, generation Y and Z employees, human resource management

Procedia PDF Downloads 152
2166 Daily Variations of Particulate Matter (PM10) in Industrial Sites in an Suburban Area of Sour El Ghozlane, Algeria

Authors: Sidali Khedidji, Riad Ladji, Noureddine Yassaa

Abstract:

In this study, particulate matter (PM10) which are hazardous for environment and human health were investigated in Sour El Ghozlane suburban atmosphere at a sampling point from March 2013 to April 2013. Ambient concentration measurements of polycyclic aromatic hydrocarbons were carried out at a regional study of the cement industry in Sour El Ghozlane. During sampling, the airborne particulate matter was enriched onto PTFE filters by using a two medium volume samplers with or without a size-selective inlet for PM10 and TSP were used and each sampling period lasted approximately 24 h. The organic compounds were characterized using gas chromatography coupled with mass spectrometric detection (GC-MSD). Total concentrations for PAHs recorded in sour el ghozlane suburban ranged from 101 to 204 ng m-3. Gravimeter method was applied to the black smoke concentration data for Springer seasons. The 24 h average concentrations of PM10 and TSP of Sour El Ghozlane suburban atmosphere were found in the range 4.76–165.76 μg/m3 and 28.63–800.14 μg/m3, respectively, in the sampling period. Meteorological factors, such as (relative humidity and temperature) were typically found to be affecting PMs, especially PM10. Air temperature did not seem to be significantly affecting TSP and PM10 mass concentrations.The guide value fixed by the European Community «40 μg/m3» not to exceed 35 days, were exceeded in some samples. However, it should be noted that the value limit fixed by the Algerian regulations «80 μg/m3» has been exceeded in 3 samplers during the period study.

Keywords: PAHs, PM10, TSP, particulate matter, cement industry

Procedia PDF Downloads 357
2165 Duration Patterns of English by Native British Speakers and Mandarin ESL Speakers

Authors: Chen Bingru

Abstract:

This study is intended to describe and analyze the effects of polysyllabic shortening and word or phrase boundary on the duration patterns of spoken utterances by Mandarin learners of English in comparison with native speakers of English. To investigate the relative contribution of these effects, two production experiments were conducted. The study included 11 native British English speakers and 20 Mandarin learners of English who were asked to produce four sets of tokens consisting of a mono-syllabic base form, disyllabic, and trisyllabic words derived from the base by the addition of suffixes, and a set of short sentences with a particular combination of phrase size, stress pattern, and boundary location. The duration of words and segments was measured, and results from the data analysis suggest that the amount of polysyllabic shortening and the effect of word or phrase position are likely to affect a Chinese accent for Mandarin ESL speakers. This study sheds light on research on the duration patterns of language by demonstrating the effect of duration-related factors on the foreign accent of Mandarin ESL speakers. It can also benefit both L2 learners and language teachers by increasing their sensitivity to the duration differences and difficulties experienced by L2 learners of English. An understanding of the amount of polysyllabic shortening and the effect of position in words and phrase on syllable duration can also facilitate L2 teachers to establish priorities for teaching pronunciation to ESL learners.

Keywords: duration patterns, Chinese accent, Mandarin ESL speakers, polysyllabic shortening

Procedia PDF Downloads 126
2164 Shrinkage Evaluation in a Stepped Wax Pattern – a Simulation Approach

Authors: Alok S Chauhan, Sridhar S., Pradyumna R.

Abstract:

In the process of precision investment casting of turbine hollow blade/vane components, a part of the dimensional deviations observed in the castings can be attributed to the wax pattern. In the process of injection moulding of wax to produce patterns, heated wax shrinks in size during cooling in the die, leading to a reduction in the dimensions of the pattern. Also, flow and thermal induced residual stresses result in shrinkage & warpage of the component after removal from the die, further adding to the deviations. Injection moulding parameters such as wax temperature, flow rate, packing pressure, etc. affect the flow and thermal behavior of the component and hence are directly responsible for the dimensional deviations. There is a need to precisely determine and control these deviations in order to achieve stringent dimensional accuracies imposed on these castings by aerospace standards. Simulation based approaches provide a platform to predict these dimensional deviations without resorting to elaborate experimentation. In the present paper, Moldex3D simulation package has been utilized to analyze the effect of variations in injection temperature, packing pressure and cooling time on the shrinkage behavior of a stepped pattern. Two types of waxes with different rheological properties have been included in the study to gauge the effect of change in wax on the dimensional deviations. A full factorial design of experiments has been configured with these parameters and results of analysis of variance have been presented.

Keywords: wax patterns, investment casting, pattern die/mould, wax injection, Moldex3D simulation

Procedia PDF Downloads 354
2163 Influence of Cooking on the Functional Properties of Dioscorea Schimperiana During Chips Production

Authors: Djeukeu Asongni William, Leng Marlyse, Gouado Inocent

Abstract:

Background: Process for obtaining D. schimperiana chips involves a long period of cooking followed by drying of obtained products in the sun. Such a process could induce the modification of the functional properties of the chips, thus reducing the technological uses of these products. This study was conducted with a view to assessing the impact of this process on the chips of D. schimperiana. Methods: The chips used were purchased in Baham, Bamendjou and Bagangté markets during the month of February 2013. A representative sample of each market chips was formed by mixing the chips of several sellers. The control sample consisted of fresh yams that have been sliced to the average size of local chips then dried in the oven at 45 ° C for 36 h. On each sample was performed the analysis of the physico-chemical properties (carbohydrates, lipids, proteins, iron , phosphorus, reducing sugars, ash and total starch) and gelling properties both with and without inhibitor alpha-amylases (0.018 and 0.146 mol / l). Results: Results show that the levels of ash 2.99 g / 100gms, iron 1.01 g / 100gms and phosphorus 532.06 mg / 100gms fresh sample were significantly higher than those of the products obtained in the traditional process. The functional properties of the chips obtained from different methods shows that the peak viscosity of the fresh sample is larger than the other samples with or without inhibitor. In addition, the fresh sample has the lowest breakdown under the same conditions. Conclusion: These results show that traditional process reduces technological potential of chips, thus limiting the value of D. schimperiana.

Keywords: Dioscorea schimperiana, chips, functional properties, technological properties, valorization

Procedia PDF Downloads 384
2162 Ab Initio Approach to Generate a Binary Bulk Metallic Glass Foam

Authors: Jonathan Galvan-Colin, Ariel Valladares, Renela Valladares, Alexander Valladares

Abstract:

Both porous materials and bulk metallic glasses have been studied due to their potential applications and their exceptional physical and chemical properties. However, each material presents certain drawbacks which have been thought to be overcome by generating bulk metallic glass foams (BMGF). Although some experimental reports have been performed on multicomponent BMGF, still no ab initio works have been published, as far as we know. We present an approach based on the expanding lattice (EL) method to generate binary amorphous nanoporous Cu64Zr36. Starting from two different configurations: a 108-atom crystalline cubic supercell (cCu64Zr36) and a 108-atom amorphous supercell (aCu64Zr36), both with an initial density of 8.06 g/cm3, we applied EL method to halve the density and to get 50% of porosity. After the lattice expansion the supercells were subject to ab initio molecular dynamics for 500 steps at constant room temperature. Then, the samples were geometry-optimized and characterized with the pair and radial distribution functions, bond-angle distributions and a coordination number analysis. We found that pores appeared along specific spatial directions different from one to another and that they differed in size and form as well, which we think is related to the initial structure. Due to the lack of experimental counterparts our results should be considered predictive and further studies are needed in order to handle a larger number of atoms and its implication on pore topology.

Keywords: ab initio molecular dynamics, bulk mettalic glass, porous alloy

Procedia PDF Downloads 247
2161 Role of Pulp Volume Method in Assessment of Age and Gender in Lucknow, India, an Observational Study

Authors: Anurag Tripathi, Sanad Khandelwal

Abstract:

Age and gender determination are required in forensic for victim identification. There is secondary dentine deposition throughout life, resulting in decreased pulp volume and size. Evaluation of pulp volume using Cone Beam Computed Tomography (CBCT)is a noninvasive method to evaluate the age and gender of an individual. The study was done to evaluate the efficacy of pulp volume method in the determination of age and gender.Aims/Objectives: The study was conducted to estimate age and determine sex by measuring tooth pulp volume with the help of CBCT. An observational study of one year duration on CBCT data of individuals was conducted in Lucknow. Maxillary central incisors (CI) and maxillary canine (C) of the randomly selected samples were assessed for measurement of pulp volume using a software. Statistical analysis: Chi Square Test, Arithmetic Mean, Standard deviation, Pearson’s Correlation, Linear & Logistic regression analysis. Results: The CBCT data of Ninety individuals with age range between 18-70 years was evaluated for pulp volume of central incisor and canine (CI & C). The Pearson correlation coefficient between the tooth pulp volume (CI & C) and chronological age suggested that pulp volume decreased with age. The validation of the equations for sex determination showed higher prediction accuracy for CI (56.70%) and lower for C (53.30%).Conclusion: Pulp volume obtained from CBCT is a reliable indicator for age estimation and gender prediction.

Keywords: forensic, dental age, pulp volume, cone beam computed tomography

Procedia PDF Downloads 81
2160 Perspectives on Educational Psychological Support Services in New Zealand and South African Schools

Authors: Johnnie Hay

Abstract:

New Zealand is well known for its natural beauty, diversity of people but also for its strong focus on mental health through the provision of a vast network of psycho-social support services. South African-trained psychologists often make New Zealand their new home when emigrating - as it is relatively simple to slot into the well-established mental health system. South Africa is bigger in size, population, GDP and probably people diversity than New Zealand but struggles to provide adequate educational and psychological support services to schools. This is mainly due to budgetary pressures brought about by the imperative to first ensure that the approximately 13 million learners all have a teacher in front of their classes and at an average ratio of not more than 40 learners per class. In this paper, perspectives on educational and psychological support in New Zealand and South African schools will be shared. Through basic qualitative research encompassing semi-structured interviews with two South African educational psychologists who returned from New Zealand, supplemented by document analysis, the New Zealand situation will be scrutinized. South African perspectives will be obtained through a number of semi-structured interviews and questionnaires administered by education support services specialists working in district-based support teams in three provinces of the country. This research is in process, but preliminary findings indicate large disparities between the two countries' emphasis, funding, post provisioning and structure regarding educational and psychological support services.

Keywords: educational psychological support services, support for learners experiencing special needs, education support services, diverse learner population

Procedia PDF Downloads 44
2159 Nickel Electroplating in Post Supercritical CO2 Mixed Watts Bath under Different Agitations

Authors: Chun-Ying Lee, Kun-Hsien Lee, Bor-Wei Wang

Abstract:

The process of post-supercritical CO2 electroplating uses the electrolyte solution after being mixed with supercritical CO2 and released to atmospheric pressure. It utilizes the microbubbles that form when oversaturated CO2 in the electrolyte returns to gaseous state, which gives the similar effect of pulsed electroplating. Under atmospheric pressure, the CO2 bubbles gradually diffuse. Therefore, the introduction of ultrasound and/or other agitation can potentially excite the CO2 microbubbles to achieve an electroplated surface of even higher quality. In this study, during the electroplating process, three different modes of agitation: magnetic stirrer agitation, ultrasonic agitation and a combined mode (magnetic + ultrasonic) were applied, respectively, in order to obtain an optimal surface morphology and mechanical properties for the electroplated Ni coating. It is found that the combined agitation mode at a current density of 40 A/dm2 achieved the smallest grain size, lower surface roughness, and produced an electroplated Ni layer that achieved hardness of 320 HV, much higher when compared with conventional method, which were usually in the range of 160 to 300 HV. However, at the same time, the electroplating with combined agitation developed a higher internal stress of 320 MPa due to the lower current efficiency of the process and finer grain in the coating. Moreover, a new control methodology for tailoring the coating’s mechanical property through its thickness was demonstrated by the timely introduction of ultrasonic agitation during the electroplating process with post supercritical CO2 mixed electrolyte.

Keywords: nickel electroplating, micro-bubbles, supercritical carbon dioxide, ultrasonic agitation

Procedia PDF Downloads 261
2158 Improved Thermal Comfort in Cabin Aircraft with in-Seat Microclimate Conditioning Module

Authors: Mathieu Le Cam, Tejaswinee Darure, Mateusz Pawlucki

Abstract:

Climate control of cabin aircraft is traditionally conditioned as a single unit by the environmental control system. Cabin temperature is controlled by the crew while passengers of the aircraft have control on the gaspers providing fresh air from the above head area. The small nozzles are difficult to reach and adjust to meet the passenger’s needs in terms of flow and direction. More dedicated control over the near environment of each passenger can be beneficial in many situations. The European project COCOON, funded under Clean Sky 2, aims at developing and demonstrating a microclimate conditioning module (MCM) integrated into a standard economy 3-seat row. The system developed will lead to improved passenger comfort with more control on their personal thermal area. This study focuses on the assessment of thermal comfort of passengers in the cabin aircraft through simulation on the TAITherm modelling platform. A first analysis investigates thermal comfort and sensation of passengers in varying cabin environmental conditions: from cold to very hot scenarios, with and without MCM installed in the seats. The modelling platform is also used to evaluate the impact of different physiologies of passengers on their thermal comfort as well as different seat locations. Under the current cabin conditions, a passenger of a 50th percentile body size is feeling uncomfortably cool due to the high velocity cabin air ventilation. The simulation shows that the in-seat MCM developed in COCOON project improves the thermal comfort of the passenger.

Keywords: cabin aircraft, in-seat HVAC, microclimate conditioning module, thermal comfort

Procedia PDF Downloads 172
2157 Morphological Transformations and Variations in Architectural Language from Tombs to Mausoleums: From Ottoman Empire to the Turkish Republic

Authors: Uğur Tuztaşi, Mehmet Uysal, Yavuz Arat

Abstract:

The tomb (grave) structures that have influenced the architectural culture from the Seljuk times to the Ottoman throughout Anatolia are members of a continuing building tradition in terms of monumental expression and styles. This building typology which has religious and cultural permeability in view of spatial traces and structural formations follows the entire trajectory of the respect to death and the deceased from the Seljuks to the Ottomans and also the changing burial traditions epitomised in the form of mausoleums in the Turkish Republic. Although the cultural layers have the same contents with regards to the cult of monument this architectural tradition which evolved from tombs to mausoleums changed in both typological formation and structural size. In short, the tomb tradition with unique examples of architectural functions and typological formations has been encountered from 13th century onwards and continued during the Ottoman period with changes in form and has transformed to mausoleums during the 20th century. This study analyses the process of transformation from complex structures to simple structures and then to monumental graves in terms of architectural expression. Moreover, the study interrogates the architectural language of Anatolian Seljuk tombs to Ottoman tombs and monumental graves built during the republican period in terms of spatial and structural contexts.

Keywords: death and space in Turks, monumental graves, language of architectural style, morphological transformations

Procedia PDF Downloads 339
2156 Potential and Techno-Economic Analysis of Hydrogen Production from Portuguese Solid Recovered Fuels

Authors: A. Ribeiro, N. Pacheco, M. Soares, N. Valério, L. Nascimento, A. Silva, C. Vilarinho, J. Carvalho

Abstract:

Hydrogen will play a key role in changing the current global energy paradigm, associated with the high use of fossil fuels and the release of greenhouse gases. This work intended to identify and quantify the potential of Solid Recovered Fuels (SFR) existing in Portugal and project the cost of hydrogen, produced through its steam gasification in different scenarios, associated with the size or capacity of the plant and the existence of carbon capture and storage (CCS) systems. Therefore, it was performed a techno-economic analysis simulation using an ASPEN base model, the H2A Hydrogen Production Model Version 3.2018. Regarding the production of SRF, it was possible to verify the annual production of more than 200 thousand tons of SRF in Portugal in 2019. The results of the techno-economic analysis simulations showed that in the scenarios containing a high (200,000 tons/year) and medium (40,000 tons/year) amount of SFR, the cost of hydrogen production was competitive concerning the current prices of hydrogen. The results indicate that scenarios 1 and 2, which use 200,000 tons of SRF per year, have lower hydrogen production values, 1.22 USD/kg H2 and 1.63 USD/kg H2, respectively. The cost of producing hydrogen without carbon capture and storage (CCS) systems in an average amount of SFR (40,000 tons/year) was 1.70 USD/kg H2. In turn, scenarios 5 (without CCS) and 6 (with CCS), which use only 683 tons of SFR from urban sources, have the highest costs, 6.54 USD/kg H2 and 908.97 USD/kg H2, respectively. Therefore, it was possible to conclude that there is a huge potential for the use of SRF for the production of hydrogen through steam gasification in Portugal.

Keywords: gasification, hydrogen, solid recovered fuels, techno-economic analysis, waste-to-energy

Procedia PDF Downloads 106
2155 Investigation of Crack Formation in Ordinary Reinforced Concrete Beams and in Beams Strengthened with Carbon Fiber Sheet: Theory and Experiment

Authors: Anton A. Bykov, Irina O. Glot, Igor N. Shardakov, Alexey P. Shestakov

Abstract:

This paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and has been solved by using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. Experiments were performed on the sequential quasistatic four-point bending of the beam leading to the formation of cracks in concrete. At each loading stage, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. At the first stage the conservative process of deformation is realized. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the beams strengthened by carbon-fiber sheet before loading and at the intermediate stage of loading after the grouting of initial cracks. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring of cracking and for assessing the quality of measures aimed at strengthening concrete structures.

Keywords: crack formation, experiment, mathematical modeling, reinforced concrete, vibrodiagnostics

Procedia PDF Downloads 280
2154 Nanomechanical Devices Vibrating at Microwave Frequencies in Simple Liquids

Authors: Debadi Chakraborty, John E. Sader

Abstract:

Nanomechanical devices have emerged as a versatile platform for a host of applications due to their extreme sensitivity to environmental conditions. For example, mass measurements with sensitivity at the atomic level have recently been demonstrated. Ultrafast laser spectroscopy coherently excite the vibrational modes of metal nanoparticles and permits precise measurement of the vibration characteristics as a function of nanoparticle shape, size and surrounding environment. This study reports that the vibration of metal nanoparticles in simple liquids, like water and glycerol are not described by conventional fluid mechanics, i.e., Navier Stokes equations. The intrinsic molecular relaxation processes in the surrounding liquid are found to have a profound effect on the fluid-structure interaction of mechanical devices at nanometre scales. Theoretical models have been developed based on the non-Newtonian viscoelastic fluid-structure interaction theory to investigate the vibration of nanoparticles immersed in simple fluids. The utility of this theoretical framework is demonstrated by comparison to measurements on single nanowires and ensembles of metal rods. This study provides a rigorous foundation for the use of metal nanoparticles as ultrasensitive mechanical sensors in fluid and opens a new paradigm for understanding extremely high frequency fluid mechanics, nanoscale sensing technologies, and biophysical processes.

Keywords: fluid-structure interaction, nanoparticle vibration, ultrafast laser spectroscopy, viscoelastic damping

Procedia PDF Downloads 256
2153 Characterization and Nanostructure Formation of Banana Peels Nanosorbent with Its Application

Authors: Opeyemi Atiba-Oyewo, Maurice S. Onyango, Christian Wolkersdorfer

Abstract:

Characterization and nanostructure formation of banana peels as sorbent material are described in this paper. The transformation of this agricultural waste via mechanical milling to enhance its properties such as changed in microstructure and surface area for water pollution control and other applications were studied. Mechanical milling was employed using planetary continuous milling machine with ethanol as a milling solvent and the samples were taken at time intervals between 10 h to 30 h to examine the structural changes. The samples were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR), Transmission electron microscopy (TEM) and Brunauer Emmett and teller (BET). Results revealed three typical structures with different deformation mechanisms and the grain-sizes within the range of (71-12 nm), nanostructure of the particles and fibres. The particle size decreased from 65µm to 15 nm as the milling progressed for a period of 30 h. The morphological properties of the materials indicated that the particle shapes becomes regular and uniform as the milling progresses. Furthermore, particles fracturing resulted in surface area increment from 1.0694-4.5547 m2/g. The functional groups responsible for the banana peels capacity to coordinate and remove metal ions, such as the carboxylic and amine groups were identified at absorption bands of 1730 and 889 cm-1, respectively. However, the choice of this sorbent material for the sorption or any application will depend on the composition of the pollutant to be eradicated.

Keywords: characterization, nanostructure, nanosorbent, eco-friendly, banana peels, mechanical milling, water quality

Procedia PDF Downloads 259
2152 PaSA: A Dataset for Patent Sentiment Analysis to Highlight Patent Paragraphs

Authors: Renukswamy Chikkamath, Vishvapalsinhji Ramsinh Parmar, Christoph Hewel, Markus Endres

Abstract:

Given a patent document, identifying distinct semantic annotations is an interesting research aspect. Text annotation helps the patent practitioners such as examiners and patent attorneys to quickly identify the key arguments of any invention, successively providing a timely marking of a patent text. In the process of manual patent analysis, to attain better readability, recognising the semantic information by marking paragraphs is in practice. This semantic annotation process is laborious and time-consuming. To alleviate such a problem, we proposed a dataset to train machine learning algorithms to automate the highlighting process. The contributions of this work are: i) we developed a multi-class dataset of size 150k samples by traversing USPTO patents over a decade, ii) articulated statistics and distributions of data using imperative exploratory data analysis, iii) baseline Machine Learning models are developed to utilize the dataset to address patent paragraph highlighting task, and iv) future path to extend this work using Deep Learning and domain-specific pre-trained language models to develop a tool to highlight is provided. This work assists patent practitioners in highlighting semantic information automatically and aids in creating a sustainable and efficient patent analysis using the aptitude of machine learning.

Keywords: machine learning, patents, patent sentiment analysis, patent information retrieval

Procedia PDF Downloads 70
2151 Small Scale Solar-Photovoltaic and Wind Pump-Storage Hydroelectric System for Remote Residential Applications

Authors: Seshi Reddy Kasu, Florian Misoc

Abstract:

The use of hydroelectric pump-storage system at large scale, MW-size systems, is already widespread around the world. Designed for large scale applications, pump-storage station can be scaled-down for small, remote residential applications. Given the cost and complexity associated with installing a substation further than 100 miles from the main transmission lines, a remote, independent and self-sufficient system is by far the most feasible solution. This article is aiming at the design of wind and solar power generating system, by means of pumped-storage to replace the wind and/or solar power systems with a battery bank energy storage. Wind and solar pumped-storage power generating system can reduce the cost of power generation system, according to the user's electricity load and resource condition and also can ensure system reliability of power supply. Wind and solar pumped-storage power generation system is well suited for remote residential applications with intermittent wind and/or solar energy. This type of power systems, installed in these locations, could be a very good alternative, with economic benefits and positive social effects. The advantage of pumped storage power system, where wind power regulation is calculated, shows that a significant smoothing of the produced power is obtained, resulting in a power-on-demand system’s capability, concomitant to extra economic benefits.

Keywords: battery bank, photo-voltaic, pump-storage, wind energy

Procedia PDF Downloads 579
2150 Characterization of Aluminosilicates and Verification of Their Impact on Quality of Ceramic Proppants Intended for Shale Gas Output

Authors: Joanna Szymanska, Paulina Wawulska-Marek, Jaroslaw Mizera

Abstract:

Nowadays, the rapid growth of global energy consumption and uncontrolled depletion of natural resources become a serious problem. Shale rocks are the largest and potential global basins containing hydrocarbons, trapped in closed pores of the shale matrix. Regardless of the shales origin, mining conditions are extremely unfavourable due to high reservoir pressure, great depths, increased clay minerals content and limited permeability (nanoDarcy) of the rocks. Taking into consideration such geomechanical barriers, effective extraction of natural gas from shales with plastic zones demands effective operations. Actually, hydraulic fracturing is the most developed technique based on the injection of pressurized fluid into a wellbore, to initiate fractures propagation. However, a rapid drop of pressure after fluid suction to the ground induces a fracture closure and conductivity reduction. In order to minimize this risk, proppants should be applied. They are solid granules transported with hydraulic fluids to locate inside the rock. Proppants act as a prop for the closing fracture, thus gas migration to a borehole is effective. Quartz sands are commonly applied proppants only at shallow deposits (USA). Whereas, ceramic proppants are designed to meet rigorous downhole conditions to intensify output. Ceramic granules predominate with higher mechanical strength, stability in strong acidic environment, spherical shape and homogeneity as well. Quality of ceramic proppants is conditioned by raw materials selection. Aim of this study was to obtain the proppants from aluminosilicates (the kaolinite subgroup) and mix of minerals with a high alumina content. These loamy minerals contain a tubular and platy morphology that improves mechanical properties and reduces their specific weight. Moreover, they are distinguished by well-developed surface area, high porosity, fine particle size, superb dispersion and nontoxic properties - very crucial for particles consolidation into spherical and crush-resistant granules in mechanical granulation process. The aluminosilicates were mixed with water and natural organic binder to improve liquid-bridges and pores formation between particles. Afterward, the green proppants were subjected to sintering at high temperatures. Evaluation of the minerals utility was based on their particle size distribution (laser diffraction study) and thermal stability (thermogravimetry). Scanning Electron Microscopy was useful for morphology and shape identification combined with specific surface area measurement (BET). Chemical composition was verified by Energy Dispersive Spectroscopy and X-ray Fluorescence. Moreover, bulk density and specific weight were measured. Such comprehensive characterization of loamy materials confirmed their favourable impact on the proppants granulation. The sintered granules were analyzed by SEM to verify the surface topography and phase transitions after sintering. Pores distribution was identified by X-Ray Tomography. This method enabled also the simulation of proppants settlement in a fracture, while measurement of bulk density was essential to predict their amount to fill a well. Roundness coefficient was also evaluated, whereas impact on mining environment was identified by turbidity and solubility in acid - to indicate risk of the material decay in a well. The obtained outcomes confirmed a positive influence of the loamy minerals on ceramic proppants properties with respect to the strict norms. This research is perspective for higher quality proppants production with costs reduction.

Keywords: aluminosilicates, ceramic proppants, mechanical granulation, shale gas

Procedia PDF Downloads 147
2149 Designing Ecologically and Economically Optimal Electric Vehicle Charging Stations

Authors: Y. Ghiassi-Farrokhfal

Abstract:

The number of electric vehicles (EVs) is increasing worldwide. Replacing gas fueled cars with EVs reduces carbon emission. However, the extensive energy consumption of EVs stresses the energy systems, requiring non-green sources of energy (such as gas turbines) to compensate for the new energy demand caused by EVs in the energy systems. To make EVs even a greener solution for the future energy systems, new EV charging stations are equipped with solar PV panels and batteries. This will help serve the energy demand of EVs through the green energy of solar panels. To ensure energy availability, solar panels are combined with batteries. The energy surplus at any point is stored in batteries and is used when there is not enough solar energy to serve the demand. While EV charging stations equipped with solar panels and batteries are green and ecologically optimal, they might not be financially viable solutions, due to battery prices. To make the system viable, we should size the battery economically and operate the system optimally. This is, in general, a challenging problem because of the stochastic nature of the EV arrivals at the charging station, the available solar energy, and the battery operating system. In this work, we provide a mathematical model for this problem and we compute the return on investment (ROI) of such a system, which is designed to be ecologically and financially optimal. We also quantify the minimum required investment in terms of battery and solar panels along with the operating strategy to ensure that a charging station has enough energy to serve its EV demand at any time.

Keywords: solar energy, battery storage, electric vehicle, charging stations

Procedia PDF Downloads 202
2148 Detection of Internal Mold Infection of Intact For Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy

Authors: K. Petcharaporn, N. Prathengjit

Abstract:

The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.

Keywords: tomato, mold, quality, prediction, transmittance

Procedia PDF Downloads 500
2147 Assessment of Availability and Factors Associated with Improved Sanitation Facilities in Urban Kebeles of Dire Dawa City, Eastern Ethiopia in 2022

Authors: Meki Detamo, Ahmed

Abstract:

Access to improved sanitation facilities is crucial for promoting community sanitation worldwide. In Ethiopia, however, sanitation remains a major development challenge despite growing attention and efforts by governments and donors. This study aimed to assess the availability of improved sanitation facilities and associated factors in urban kebeles of Dire Dawa City, Eastern Ethiopia, in 2022. A community-based cross-sectional study was conducted from March 6 to 30, 2022, using a multi-stage sampling technique to select 508 households. Data was collected through structured and pre-tested questionnaires using face-to-face interviews and observations and analyzed using SPSS Version 23. The availability of improved sanitation facilities was found to be remarkably high at 98.2% (95% CI: 97.0, 99.2), with 60.8% of households having a handwashing facility in or around the latrine, 86.0% using soap and water, and 89.0% using an improved water source for drinking. Logistic regression analysis revealed that households with a family size of less than four, those who owned their own house, and those who had self-initiated latrine construction were significantly associated with the availability of improved sanitation facilities. The study recommends the implementation of continuous refreshment training to emphasize the benefits of improved sanitation facilities in the urban community and family planning. This study provides valuable insights into the high availability of improved sanitation facilities in urban areas of Ethiopia and can inform future efforts to improve community sanitation.

Keywords: sanitation facilities, availability, improved, Dire Dawa, Ethiopia

Procedia PDF Downloads 58
2146 Urban Agriculture Potential and Challenges in Mid-Sized Cities: A Case Study of Neishabour, Iran

Authors: Mohammadreza Mojtahedi

Abstract:

Urban agriculture, in the face of burgeoning urban populations and unchecked urbanization, presents a promising avenue for sustainable economic, social, and environmental growth. This study, set against the backdrop of Neishabour, Iran, delves into the potential and challenges inherent in this domain. Utilizing a descriptive-analytical approach, field survey data were predominantly collated via questionnaires. The research rigor was upheld with the Delphi method affirming the validity and a Cronbach's alpha score exceeding 0.70, underscoring reliability. The study encompassed Neishabour's 2016 populace, pegged at 264,375, drawing a sample size of 384 via Cochran's formula. The findings spotlight Neishabour's pronounced agricultural prowess, as evidenced by a significance level under 0.05 and an average difference of 0.54. Engaging in urban agricultural ventures can notably elevate job quality, spur savings, bolster profitability, promote organic cultivation, and streamline production expenses. However, challenges, such as heightened land valuations for alternative uses, conflicting land engagements, security dilemmas, technical impediments, waning citizen interest, regulatory conundrums, and perceived upfront investment risks, were identified. A silver lining emerged with urban locales, especially streets and boulevards, securing average ratings of 3.90, marking them as prime contenders for urban agricultural endeavors.

Keywords: urban agriculture, sustainable development, mid-sized cities, neishabour.

Procedia PDF Downloads 43
2145 Preparation and Characterization of Water-in-Oil Nanoemulsion of 5-Fluorouracil to Enhance Skin Permeation for Treatment of Skin Diseases.

Authors: P. S. Rajinikanth, Shobana Mariappan, Jestin Chellian

Abstract:

The objective of the study was to prepare and characterize a water-in-oil nano emulsion of 5-Fluorouracil (5FU) to enhance the skin penetration. The present study describes a nano emulsion of 5FU using Capyrol PGMC, Transcutol HP and PEG 400 as oil, surfactant and co-surfactant, respectively. The optimized formulations were further evaluated for heating cooling cycle, centrifugation studies, freeze thaw cycling, particle size distribution and zeta potential in order to confirm the stability of the optimized nano emulsions. The in-vitro characterization results showed that the droplets of prepared formulation were ~100 nm with ± 15 zeta potential. In vitro skin permeation studies was conducted in albino mice skin. Significant increase in permeability parameters was also observed in nano emulsion formulations (P<0.05). The steady-state flux (Jss), enhancement ration and permeability coefficient (Kp) for optimized nano emulsion formulation (FU2, FU1, 1:1 S mix were found to be 24.21 ±2.45 μg/cm2/h, 3.28±0.87 & 19.52±1.87 cm/h, respectively), which were significant compared with conventional gel. The in vitro and in vivo skin deposition studies in rat indicated that the amount of drug deposited from the nano emulsion (292.45 µg/cm2) in skin was significant (P<0.05) an increased as compared to a conventional 5FU gel (121.42 µg/cm2). The skin irritation study using rat skin showed that the mean irritation index of the nano emulsion reduced significantly (P<0.05) as compared with conventional gel contain 1% 5FU. The results from this study suggest that a water-in-oil nano emulsion could be safely used to promote skin penetration of 5FU following topical application.

Keywords: nano emulsion, controlled release, 5 fluorouracil, skin penetration, skin irritation

Procedia PDF Downloads 483