Search results for: Spatial Data Analyses
24651 Understanding the Heterogeneity of Polycystic Ovarian Syndrome: The Influence of Ethnicity and Body Mass
Authors: Hamza Ikhlaq, Stephen Franks
Abstract:
Background: Polycystic ovarian syndrome (PCOS) is one of the most common endocrine disorders affecting women of reproductive age. The aetiology behind PCOS is poorly understood but influencing ethnic, environmental, and genetic factors have been recognised. However, literature examining the impact of ethnicity is scarce. We hypothesised Body Mass Index (BMI) and ethnicity influence the clinical, metabolic, and biochemical presentations of PCOS, with an interaction between these factors. Methods: A database of 1081 women with PCOS and a control group of 72 women were analysed. BMIs were grouped using the World Health Organisation classification into normal weight, overweight and obese groups. Ethnicities were classified into European, South Asian, and Afro-Caribbean groups. Biochemical and clinical presentations were compared amongst these groups, and statistical analyses were performed to assess significance. Results: This study revealed ethnicity significantly influences biochemical and clinical presentations of PCOS. A greater proportion of South Asian women are impacted by menstrual cycle disturbances and hirsutism than European and Afro-Caribbean women. South Asian and Afro-Caribbean women show greater measures of insulin resistance and weight gain when compared to their European peers. Women with increased BMI are shown to have an increased prevalence of PCOS phenotypes alongside increased levels of insulin resistance and testosterone. Furthermore, significantly different relationships between the waist-hip ratio and measures of insulin and glucose control for Afro-Caribbean women were identified compared to other ethnic groups. Conclusions: The findings of this study show ethnicity significantly influence the phenotypic and biochemical presentations of PCOS, with an interaction between body habitus and ethnicity found. Furthermore, we provide further data on the influences of BMI on the manifestations of PCOS. Therefore, we highlight the need to consider these factors when reviewing diagnostic criteria and delivering clinical care for these groups.Keywords: PCOS, ethnicity, BMI, clinical
Procedia PDF Downloads 11324650 Dynamics of a Reaction-Diffusion Problems Modeling Two Predators Competing for a Prey
Authors: Owolabi Kolade Matthew
Abstract:
In this work, we investigate both the analytical and numerical studies of the dynamical model comprising of three species system. We analyze the linear stability of stationary solutions in the one-dimensional multi-system modeling the interactions of two predators and one prey species. The stability analysis has a lot of implications for understanding the various spatiotemporal and chaotic behaviors of the species in the spatial domain. The analysis results presented have established the possibility of the three interacting species to coexist harmoniously, this feat is achieved by combining the local and global analyzes to determine the global dynamics of the system. In the presence of diffusion, a viable exponential time differencing method is applied to multi-species nonlinear time-dependent partial differential equation to address the points and queries that may naturally arise. The scheme is described in detail, and justified by a number of computational experiments.Keywords: asymptotically stable, coexistence, exponential time differencing method, global and local stability, predator-prey model, nonlinear, reaction-diffusion system
Procedia PDF Downloads 41224649 Deployment of Electronic Healthcare Records and Development of Big Data Analytics Capabilities in the Healthcare Industry: A Systematic Literature Review
Authors: Tigabu Dagne Akal
Abstract:
Electronic health records (EHRs) can help to store, maintain, and make the appropriate handling of patient histories for proper treatment and decision. Merging the EHRs with big data analytics (BDA) capabilities enable healthcare stakeholders to provide effective and efficient treatments for chronic diseases. Though there are huge opportunities and efforts that exist in the deployment of EMRs and the development of BDA, there are challenges in addressing resources and organizational capabilities that are required to achieve the competitive advantage and sustainability of EHRs and BDA. The resource-based view (RBV), information system (IS), and non- IS theories should be extended to examine organizational capabilities and resources which are required for successful data analytics in the healthcare industries. The main purpose of this study is to develop a conceptual framework for the development of healthcare BDA capabilities based on past works so that researchers can extend. The research question was formulated for the search strategy as a research methodology. The study selection was made at the end. Based on the study selection, the conceptual framework for the development of BDA capabilities in the healthcare settings was formulated.Keywords: EHR, EMR, Big data, Big data analytics, resource-based view
Procedia PDF Downloads 13124648 The Role of Labour Substitution by Age in the Effect of Fertility on Living Standards: Simulations for Scandinavia
Authors: Ross Guest, Bjarne Jensen
Abstract:
This paper analyses a potentially new consumption dividend from lower fertility arising from imperfect labour substitution by age. A smaller proportion of young workers relative to older workers raises relative youth wages given imperfect labour substitution by age. Discounted lifetime labour income rises which provides a consumption dividend. Simulation results are reported for the four Scandinavian countries, adopting a simple overlapping generations model. Imperfect labour substitution is modelled using a CRESH functional form of an aggregate labour index. The magnitudes of this new consumption dividend from a Low fertility projection compared with a high fertility projection are found to be approximately 4 percent annually, on average over the Scandinavian countries in the very long run, but somewhat lower in the short term. There is some sensitivity to the interest rate and the degree of consumption smoothing.Keywords: fertility, consumption, productivity, labour substitution
Procedia PDF Downloads 35024647 Influencing Factors of School Enterprise Cooperation: An Exploratory Study in Chinese Vocational Nursing Education
Authors: Xiao Chen, Alice Ho, Mabel Tie, Xiaoheng Xu
Abstract:
Background and Significance of the Study: School-enterprise cooperation has been the cornerstone of vocational education in China and many other countries. Researchers and policymakers have paid much attention to ensuring the implementation and improving the quality of school-enterprise cooperation. However, many problems still exist on the implementation level of the cooperation. On the one hand, the enterprises lack the motivation to participate in the cooperation. On the other hand, there is a lack of effective guidance and management during the cooperation. Furthermore, the current literature focuses greatly on policy recommendations on the national level while failing to provide a detailed practical understanding of how school-enterprise cooperation is carried out on the ground level. With emerging social problems, such as the aging population in China, there is an increasing need for diverse nursing services and better nursing quality. Methodology: To gain a deeper understanding of the influencing factors of the implementation of school-enterprise cooperation, this work conducted 37 exploratory interviews in four Chinese cities spanning first-tier to fourth-tier cities with hospital department directors, vocational school deans, nurses, and vocational students. Multiple critical policy documents that founded the current vocational education system in China were analyzed, along with the data collected from the interviews. Major Findings: Based on the policy and interview analyses, this work reveals a set of influencing factors for school-enterprise cooperation implementation. Findings from each region contribute to an overall model of influencing factors for implementing school-enterprise cooperation in vocational nursing education in China, which leads to practical insights for policy recommendation. The key influencing factors are found based on the policy, hospital, school, and social levels. Following practical policy recommendations were presented. Moving forward, further research on the implementation of school-enterprise cooperation in specific industries will become increasingly critical to improving the effectiveness of educational policies and the quality of vocational education.Keywords: nursing, policy recommendation, school-enterprise cooperation, vocational education
Procedia PDF Downloads 11524646 Applying Multivariate and Univariate Analysis of Variance on Socioeconomic, Health, and Security Variables in Jordan
Authors: Faisal G. Khamis, Ghaleb A. El-Refae
Abstract:
Many researchers have studied socioeconomic, health, and security variables in the developed countries; however, very few studies used multivariate analysis in developing countries. The current study contributes to the scarce literature about the determinants of the variance in socioeconomic, health, and security factors. Questions raised were whether the independent variables (IVs) of governorate and year impact the socioeconomic, health, and security dependent variables (DVs) in Jordan, whether the marginal mean of each DV in each governorate and in each year is significant, which governorates are similar in difference means of each DV, and whether these DVs vary. The main objectives were to determine the source of variances in DVs, collectively and separately, testing which governorates are similar and which diverge for each DV. The research design was time series and cross-sectional analysis. The main hypotheses are that IVs affect DVs collectively and separately. Multivariate and univariate analyses of variance were carried out to test these hypotheses. The population of 12 governorates in Jordan and the available data of 15 years (2000–2015) accrued from several Jordanian statistical yearbooks. We investigated the effect of two factors of governorate and year on the four DVs of divorce rate, mortality rate, unemployment percentage, and crime rate. All DVs were transformed to multivariate normal distribution. We calculated descriptive statistics for each DV. Based on the multivariate analysis of variance, we found a significant effect in IVs on DVs with p < .001. Based on the univariate analysis, we found a significant effect of IVs on each DV with p < .001, except the effect of the year factor on unemployment was not significant with p = .642. The grand and marginal means of each DV in each governorate and each year were significant based on a 95% confidence interval. Most governorates are not similar in DVs with p < .001. We concluded that the two factors produce significant effects on DVs, collectively and separately. Based on these findings, the government can distribute its financial and physical resources to governorates more efficiently. By identifying the sources of variance that contribute to the variation in DVs, insights can help inform focused variation prevention efforts.Keywords: ANOVA, crime, divorce, governorate, hypothesis test, Jordan, MANOVA, means, mortality, unemployment, year
Procedia PDF Downloads 27524645 Comparison of Home Ranges of Radio Collared Jaguars (Panthera onca L.) in the Dry Chaco and Wet Chaco of Paraguay
Authors: Juan Facetti, Rocky McBride, Karina Loup
Abstract:
The Chaco Region of Paraguay is a key biodiverse area for the conservation of jaguars (Panthera onca), the largest feline of the Americas. It comprises five eco-regions, which holds important but decreasing populations of this species. The last decades, the expansion of soybean over the Atlantic Forest, forced the translocation of cattle-ranches towards the Chaco. Few studies of Jaguar's population densities in the American hemisphere were done until now. In the region, the specie is listed as vulnerable or threatened and more information is needed to implement any conservation policy. Among the factors that threaten the populations are land-use change, habitat fragmentation, prey depletion and illegal hunting. Two largest eco-regions were studied: the Wet Chaco and the Dry Chaco. From 2002 more than 20 jaguars were captured and fitted with GPS-collar. Data collected from 11 GPS-collars were processed, transformed numerically and finally converted into maps for analyzing. 8.092 locations were determined for four adult females (AF) and one adult male (AM) in the Wet Chaco, and one AF, one juvenile male (JM) and four AM in the Dry Chaco, during 1,867 days. GIS and kernel methodology were used to calculate daily distance of movement, home range-HR (95% isopleth), and core area (considered as 50% isopleth). In the Wet Chaco HR were 56 Km2 and 238 km2 for females and males respectively; while in the Dry Chaco HR were 685 Km2 and 844.5 km2 for females and males respectively, and 172 Km2 for a juvenile. Core areas of individual activity for each jaguar, were on average 11.5 Km2 and 33.55 km2 for AF and AM respectively in the Wet Chaco, while in the Dry Chaco were larger: 115 km2 for five AM and 225 Km2 for an AF and 32.4 Km2 for a JM. In both ecoregions, only one relevant overlap of HR of adults was reported. During the reproduction season, the HR (95% K) of one AM overlapped 49.83% with that of one AF. At the Wet Chaco, the maximum daily distance moved by an AF was 14.5 Km and 11.6 Km for the AM, while the Maximum Mean Daily Moved (MMDM) distance was 5.6 km for an AF and 3.1 km for an AM. At the Dry Chaco, the maximum daily distance for an AF was 61.7Km., 50.9Km for the AM and 6.6 Km for the JM, while the MMDM distance was 13.2 km for an AM and 8.4 km for an AF. This study confirmed that, as the invasion to jaguar habitat increased, it resulted in fragmented landscapes that influence spacing patterns of jaguars. Males used largest HR that of the smaller females and males covers largest distances that of the females. There appeared to be important spatial segregation between not only females but also males. It is likely that the larger areas used by males are partly caused by the sexual dimorphism in body size that entails differences in prey requirements. These could explain the larger distances travelled daily by males.Keywords: Chaco ecoregions, Jaguar, home range, Panthera onca, Paraguay
Procedia PDF Downloads 30224644 Development of Zero-Cement Binder Activated by Carbonation
Authors: Young Cheol Choi, Eun-Jin Moon, Sung-Won Yoo, Sang-Hwa Jung, In-Hwan Yang
Abstract:
Stainless steel slag (STS) is a by-product generated from the stainless steel refining process. The recycling of STS produced in Korea for construction applications is limited due to its poor hydraulic properties. On the other hand, STS has high carbonation reactivity to CO2 as it contains gamma-C2S content. This material is ideal for mineral carbonation which is one of the techniques proposed for carbon emission reduction. The objective of this study is to investigate the feasibility of developing a zero-cement STS binder activated by carbonation as alternative cementitious material. The quantitative analyses for CO2 uptake of STS powder and STS blended cement were investigated using thermogravimetric analysis (TGA), X-ray diffraction (XRD). In addition, the compressive strength and microstructure of STS pastes after CO2 curing were evaluated. Test results showed that STS can be activated by carbonation to gain a sufficient strength as alternative cementitious material.Keywords: gamma-C2S, CO2 uptake, carbonation, stainless steel slag
Procedia PDF Downloads 46424643 The Effects of Heavy Metal and Aromatic Hydrocarbon Pollution on Bees
Authors: Katarzyna Zięba, Hajnalka Szentgyörgyi, Paweł Miśkowiec, Agnieszka Moos-Matysik
Abstract:
Bees are effective pollinators of plants using by humans. However, there is a concern about the fate different species due to their recently decline. Pollution of the environment is described in the literature as one of the causes of this phenomenon. Due to human activities, heavy metals and aromatic hydrocarbons can occur in bee organisms in high concentrations. The presented study aims to provide information on how pollution affects bee quality, taking into account, also the biological differences between various groups of bees. Understanding the consequences of environmental pollution on bees can help to create and promote bee friendly habitats and actions. The analyses were carried out using two contamination gradients with 5 sites on each. The first, mainly heavy metal polluted gradient is stretching approx. 30km from the Bukowno Zinc smelter near Olkusz in the Lesser Poland Voivodship, to the north. The second cuts through the agglomeration of Kraków up to the southern borders of the Ojców National Park. The gradient near Olkusz is a well-described pollution gradient contaminated mainly by zinc, lead, and cadmium. The second gradient cut through the agglomeration of Kraków and end below the Ojców National Park. On each gradient, two bee species were installed: red mason bees (Osmia bicornis) and honey bees (Apis mellifera). Red mason bee is a polylectic, solitary bee species, widely distributed in Poland. Honey bees are a highly social species of bees, with clearly defined casts and roles in the colony. Before installing the bees in the field, samples of imagos of red mason bees and samples of pollen and imagos from each honey bee colony were analysed for zinc, lead cadmium, polycyclic and monocyclic hydrocarbons levels. After collecting the bees from the field, samples of bees and pollen samples for each site were prepared for heavy metal, monocyclic hydrocarbon, and polycyclic hydrocarbon analysis. Analyses of aromatic hydrocarbons were performed with gas chromatography coupled with a headspace sampler (HP 7694E) and mass spectrometer (MS) as detector. Monocyclic compounds were injected into column with headspace sampler while polycyclic ones with manual injector (after solid-liquid extraction with hexane). The heavy metal content (zinc, lead and cadmium) was assessed with flame atomic absorption spectroscopy (FAAS AAnalyst 300 Perkin Elmer spectrometer) according to the methods for honey and bee products described in the literature. Pollution levels found in bee bodies and imago body masses in both species, and proportion of sex in case of red mason bees were correlated with pollution levels found in pollen for each site and colony or trap nest. An attempt to pinpoint the most important form of contamination regarding bee health was also be undertaken based on the achieved results.Keywords: heavy metals, aromatic hydrocarbons, bees, pollution
Procedia PDF Downloads 50824642 Preparation of Cupric Oxides Nanoparticles for Antibacterial Applications
Authors: Yong-Cin Chen, Meng-Jiy Wang
Abstract:
This study reports to prepare cuprous oxide (Cu2O) particles with different dimension and shape for evaluating the antibacterial applications. In the preparation of Cu2O, the surfactant, cetyltrimethylammonium bromide (CTAB), was used as templates to modulate the size of the prepared Cu2O particles. Furthermore, ammonia water was used for adjusting the pH environment that four different shapes of particles including cubic, spherical, octahedral, and star-like Cu2O were synthesized. The physical characteristics of Cu2O particles were evaluated by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV/VIS spectrophotometer, and zeta potential meter/particle size analyzer (ZetaPALS). The resistance to bacteria was investigated against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by applying the synthesized Cu2O particles that the qualitative analyses were facilitated by measuring the inhibition zone on Agar plate.Keywords: copper oxide, cupric oxide, nanoparticles, antibacetrial
Procedia PDF Downloads 51424641 First-Person Point of View in Contrast to Globalisation in Somerset Maugham’s ‘Mr. Know-All’
Authors: Armel Mbon
Abstract:
This paper discusses the first-person point of view in Maugham's 'Mr. Know-All.' It particularly analyses the narrator's position in relation to the story told in this short story, with the intention of disclosing the latter's prejudice against Mr. Kelada, the protagonist, and, consequently, its hindrance to globalisation. It thus underlines the fact that this protagonist and other travellers are different colours, but one person on this ship epitomises globalisation. The general attitude of readers is that they are inclined to easily believe the narrator while forgetting that fiction is the work of a taler, a teller, but, first and foremost, a liar. The audience, whether it is disconnected from the setting or not, also tends to forget that "travellers from afar can lie with impunity." In fact, the nameless narrator in Maugham's short story has a persona that leaves a lot to be desired. He is prejudiced against Mr. Kelada, known as Mr. Know-All, as will be evidenced by the scrutiny of his diction. This paper finally purports to show that those who proclaim globalisation loudly are not ready to live together.Keywords: narrator, persona, point of view, diction, contrast, globalisation
Procedia PDF Downloads 9224640 Environmental Evaluation of Two Kind of Drug Production (Syrup and Pomade Form) Using Life Cycle Assessment Methodology
Authors: H. Aksas, S. Boughrara, K. Louhab
Abstract:
The goal of this study was the use of life cycle assessment (LCA) methodology to assess the environmental impact of pharmaceutical product (four kinds of syrup form and tree kinds of pomade form), which are produced in one leader manufactory in Algeria town that is SAIDAL Company. The impacts generated have evaluated using SimpaPro7.1 with CML92 Method for syrup form and EPD 2007 for pomade form. All impacts evaluated have compared between them, with determination of the compound contributing to each impacts in each case. Data needed to conduct Life Cycle Inventory (LCI) came from this factory, by the collection of theoretical data near the responsible technicians and engineers of the company, the practical data are resulting from the assay of pharmaceutical liquid, obtained at the laboratories of the university. This data represent different raw material imported from European and Asian country necessarily to formulate the drug. Energy used is coming from Algerian resource for the input. Outputs are the result of effluent analysis of this factory with different form (liquid, solid and gas form). All this data (input and output) represent the ecobalance.Keywords: pharmaceutical product, drug residues, LCA methodology, environmental impacts
Procedia PDF Downloads 24624639 Multi Cloud Storage Systems for Resource Constrained Mobile Devices: Comparison and Analysis
Authors: Rajeev Kumar Bedi, Jaswinder Singh, Sunil Kumar Gupta
Abstract:
Cloud storage is a model of online data storage where data is stored in virtualized pool of servers hosted by third parties (CSPs) and located in different geographical locations. Cloud storage revolutionized the way how users access their data online anywhere, anytime and using any device as a tablet, mobile, laptop, etc. A lot of issues as vendor lock-in, frequent service outage, data loss and performance related issues exist in single cloud storage systems. So to evade these issues, the concept of multi cloud storage introduced. There are a lot of multi cloud storage systems exists in the market for mobile devices. In this article, we are providing comparison of four multi cloud storage systems for mobile devices Otixo, Unclouded, Cloud Fuze, and Clouds and evaluate their performance on the basis of CPU usage, battery consumption, time consumption and data usage parameters on three mobile phones Nexus 5, Moto G and Nexus 7 tablet and using Wi-Fi network. Finally, open research challenges and future scope are discussed.Keywords: cloud storage, multi cloud storage, vendor lock-in, mobile devices, mobile cloud computing
Procedia PDF Downloads 40724638 Preparation of Wireless Networks and Security; Challenges in Efficient Accession of Encrypted Data in Healthcare
Authors: M. Zayoud, S. Oueida, S. Ionescu, P. AbiChar
Abstract:
Background: Wireless sensor network is encompassed of diversified tools of information technology, which is widely applied in a range of domains, including military surveillance, weather forecasting, and earthquake forecasting. Strengthened grounds are always developed for wireless sensor networks, which usually emerges security issues during professional application. Thus, essential technological tools are necessary to be assessed for secure aggregation of data. Moreover, such practices have to be incorporated in the healthcare practices that shall be serving in the best of the mutual interest Objective: Aggregation of encrypted data has been assessed through homomorphic stream cipher to assure its effectiveness along with providing the optimum solutions to the field of healthcare. Methods: An experimental design has been incorporated, which utilized newly developed cipher along with CPU-constrained devices. Modular additions have also been employed to evaluate the nature of aggregated data. The processes of homomorphic stream cipher have been highlighted through different sensors and modular additions. Results: Homomorphic stream cipher has been recognized as simple and secure process, which has allowed efficient aggregation of encrypted data. In addition, the application has led its way to the improvisation of the healthcare practices. Statistical values can be easily computed through the aggregation on the basis of selected cipher. Sensed data in accordance with variance, mean, and standard deviation has also been computed through the selected tool. Conclusion: It can be concluded that homomorphic stream cipher can be an ideal tool for appropriate aggregation of data. Alongside, it shall also provide the best solutions to the healthcare sector.Keywords: aggregation, cipher, homomorphic stream, encryption
Procedia PDF Downloads 26024637 The Relationship between Emotional Intelligence and Leadership Performance
Authors: Omar Al Ali
Abstract:
The current study was aimed to explore the relationships between emotional intelligence, cognitive ability, and leader's performance. Data were collected from 260 senior managers from UAE. The results showed that there are significant relationships between emotional intelligence and leadership performance as measured by the annual internal evaluations of each participant (r = .42, p < .01). Data from regression analysis revealed that both variables namely emotional intelligence (beta = .31, p < .01), and cognitive ability (beta = .29, p < .01), predicted leadership competencies, and together explained 26% of its variance. Data suggests that EI and cognitive ability are significantly correlated with leadership performance. In depth implications of the present findings for human resource development theory and practice are discussed.Keywords: emotional intelligence, cognitive ability, leadership, performance
Procedia PDF Downloads 47724636 Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System
Authors: Tisciane Perpetuo e Oliveira, Dante Inga Narvaez, Marcelo Gradella Villalva
Abstract:
Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.Keywords: energy production, meteorological data, irradiance decomposition, solar photovoltaic system
Procedia PDF Downloads 14224635 Development of Forging Technology of Cam Ring Gear for Truck Using Small Bar
Authors: D. H. Park, Y. H. Tak, H. H. Kwon, G. J. Kwon, H. G. Kim
Abstract:
This study focused on developing forging technology of a large-diameter cam ring gear from the small bar. The analyses of temperature variation and deformation behavior of the material are important to obtain the optimal forging products. The hot compression test was carried out to know formability at high temperature. In order to define the optimum forging conditions including material temperature, strain and forging load, the finite element method was used to simulate the forging process of cam ring gear parts. Test results were in good agreement with the simulations. An existing cam ring gear is presented the chips generated by cutting the rod material and the durability issues, but this would be to develop a large-diameter cam ring gear forging parts for truck in order to solve the durability problem and the material waste.Keywords: forging technology, cam ring, gear, truck, small bar
Procedia PDF Downloads 29724634 Social Media Data Analysis for Personality Modelling and Learning Styles Prediction Using Educational Data Mining
Authors: Srushti Patil, Preethi Baligar, Gopalkrishna Joshi, Gururaj N. Bhadri
Abstract:
In designing learning environments, the instructional strategies can be tailored to suit the learning style of an individual to ensure effective learning. In this study, the information shared on social media like Facebook is being used to predict learning style of a learner. Previous research studies have shown that Facebook data can be used to predict user personality. Users with a particular personality exhibit an inherent pattern in their digital footprint on Facebook. The proposed work aims to correlate the user's’ personality, predicted from Facebook data to the learning styles, predicted through questionnaires. For Millennial learners, Facebook has become a primary means for information sharing and interaction with peers. Thus, it can serve as a rich bed for research and direct the design of learning environments. The authors have conducted this study in an undergraduate freshman engineering course. Data from 320 freshmen Facebook users was collected. The same users also participated in the learning style and personality prediction survey. The Kolb’s Learning style questionnaires and Big 5 personality Inventory were adopted for the survey. The users have agreed to participate in this research and have signed individual consent forms. A specific page was created on Facebook to collect user data like personal details, status updates, comments, demographic characteristics and egocentric network parameters. This data was captured by an application created using Python program. The data captured from Facebook was subjected to text analysis process using the Linguistic Inquiry and Word Count dictionary. An analysis of the data collected from the questionnaires performed reveals individual student personality and learning style. The results obtained from analysis of Facebook, learning style and personality data were then fed into an automatic classifier that was trained by using the data mining techniques like Rule-based classifiers and Decision trees. This helps to predict the user personality and learning styles by analysing the common patterns. Rule-based classifiers applied for text analysis helps to categorize Facebook data into positive, negative and neutral. There were totally two models trained, one to predict the personality from Facebook data; another one to predict the learning styles from the personalities. The results show that the classifier model has high accuracy which makes the proposed method to be a reliable one for predicting the user personality and learning styles.Keywords: educational data mining, Facebook, learning styles, personality traits
Procedia PDF Downloads 23124633 An Intelligence-Led Methodologly for Detecting Dark Actors in Human Trafficking Networks
Authors: Andrew D. Henshaw, James M. Austin
Abstract:
Introduction: Human trafficking is an increasingly serious transnational criminal enterprise and social security issue. Despite ongoing efforts to mitigate the phenomenon and a significant expansion of security scrutiny over past decades, it is not receding. This is true for many nations in Southeast Asia, widely recognized as the global hub for trafficked persons, including men, women, and children. Clearly, human trafficking is difficult to address because there are numerous drivers, causes, and motivators for it to persist, such as non-military and non-traditional security challenges, i.e., climate change, global warming displacement, and natural disasters. These make displaced persons and refugees particularly vulnerable. The issue is so large conservative estimates put a dollar value at around $150 billion-plus per year (Niethammer, 2020) spanning sexual slavery and exploitation, forced labor, construction, mining and in conflict roles, and forced marriages of girls and women. Coupled with corruption throughout military, police, and civil authorities around the world, and the active hands of powerful transnational criminal organizations, it is likely that such figures are grossly underestimated as human trafficking is misreported, under-detected, and deliberately obfuscated to protect those profiting from it. For example, the 2022 UN report on human trafficking shows a 56% reduction in convictions in that year alone (UNODC, 2022). Our Approach: To better understand this, our research utilizes a bespoke methodology. Applying a JAM (Juxtaposition Assessment Matrix), which we previously developed to detect flows of dark money around the globe (Henshaw, A & Austin, J, 2021), we now focus on the human trafficking paradigm. Indeed, utilizing a JAM methodology has identified key indicators of human trafficking not previously explored in depth. Being a set of structured analytical techniques that provide panoramic interpretations of the subject matter, this iteration of the JAM further incorporates behavioral and driver indicators, including the employment of Open-Source Artificial Intelligence (OS-AI) across multiple collection points. The extracted behavioral data was then applied to identify non-traditional indicators as they contribute to human trafficking. Furthermore, as the JAM OS-AI analyses data from the inverted position, i.e., the viewpoint of the traffickers, it examines the behavioral and physical traits required to succeed. This transposed examination of the requirements of success delivers potential leverage points for exploitation in the fight against human trafficking in a new and novel way. Findings: Our approach identified new innovative datasets that have previously been overlooked or, at best, undervalued. For example, the JAM OS-AI approach identified critical 'dark agent' lynchpins within human trafficking that are difficult to detect and harder to connect to actors and agents within a network. Our preliminary data suggests this is in part due to the fact that ‘dark agents’ in extant research have been difficult to detect and potentially much harder to directly connect to the actors and organizations in human trafficking networks. Our research demonstrates that using new investigative techniques such as OS-AI-aided JAM introduces a powerful toolset to increase understanding of human trafficking and transnational crime and illuminate networks that, to date, avoid global law enforcement scrutiny.Keywords: human trafficking, open-source intelligence, transnational crime, human security, international human rights, intelligence analysis, JAM OS-AI, Dark Money
Procedia PDF Downloads 9024632 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity
Authors: Shaan Khosla, Jon Krohn
Abstract:
In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.Keywords: AI, machine learning, NLP, recruiting
Procedia PDF Downloads 8424631 Direct Current Electric Field Stimulation against PC12 Cells in 3D Bio-Reactor to Enhance Axonal Extension
Authors: E. Nakamachi, S. Tanaka, K. Yamamoto, Y. Morita
Abstract:
In this study, we developed a three-dimensional (3D) direct current electric field (DCEF) stimulation bio-reactor for axonal outgrowth enhancement to generate the neural network of the central nervous system (CNS). By using our newly developed 3D DCEF stimulation bio-reactor, we cultured the rat pheochromocytoma cells (PC12) and investigated the effects on the axonal extension enhancement and network generation. Firstly, we designed and fabricated a 3D bio-reactor, which can load DCEF stimulation on PC12 cells embedded in the collagen gel as extracellular environment. The connection between the electrolyte and the medium using salt bridges for DCEF stimulation was introduced to avoid the cell death by the toxicity of metal ion. The distance between the salt bridges was adopted as the design variable to optimize a structure for uniform DCEF stimulation, where the finite element (FE) analyses results were used. Uniform DCEF strength and electric flux vector direction in the PC12 cells embedded in collagen gel were examined through measurements of the fabricated 3D bio-reactor chamber. Measurement results of DCEF strength in the bio-reactor showed a good agreement with FE results. In addition, the perfusion system was attached to maintain pH 7.2 ~ 7.6 of the medium because pH change was caused by DCEF stimulation loading. Secondly, we disseminated PC12 cells in collagen gel and carried out 3D culture. Finally, we measured the morphology of PC12 cell bodies and neurites by the multiphoton excitation fluorescence microscope (MPM). The effectiveness of DCEF stimulation to enhance the axonal outgrowth and the neural network generation was investigated. We confirmed that both an increase of mean axonal length and axogenesis rate of PC12, which have been exposed 5 mV/mm for 6 hours a day for 4 days in the bioreactor. We found following conclusions in our study. 1) Design and fabrication of DCEF stimulation bio-reactor capable of 3D culture nerve cell were completed. A uniform electric field strength of average value of 17 mV/mm within the 1.2% error range was confirmed by using FE analyses, after the structure determination through the optimization process. In addition, we attached a perfusion system capable of suppressing the pH change of the culture solution due to DCEF stimulation loading. 2) Evaluation of DCEF stimulation effects on PC12 cell activity was executed. The 3D culture of PC 12 was carried out adopting the embedding culture method using collagen gel as a scaffold for four days under the condition of 5.0 mV/mm and 10mV/mm. There was a significant effect on the enhancement of axonal extension, as 11.3% increase in an average length, and the increase of axogenesis rate. On the other hand, no effects on the orientation of axon against the DCEF flux direction was observed. Further, the network generation was enhanced to connect longer distance between the target neighbor cells by DCEF stimulation.Keywords: PC12, DCEF stimulation, 3D bio-reactor, axonal extension, neural network generation
Procedia PDF Downloads 18424630 A Web Service-Based Framework for Mining E-Learning Data
Authors: Felermino D. M. A. Ali, S. C. Ng
Abstract:
E-learning is an evolutionary form of distance learning and has become better over time as new technologies emerged. Today, efforts are still being made to embrace E-learning systems with emerging technologies in order to make them better. Among these advancements, Educational Data Mining (EDM) is one that is gaining a huge and increasing popularity due to its wide application for improving the teaching-learning process in online practices. However, even though EDM promises to bring many benefits to educational industry in general and E-learning environments in particular, its principal drawback is the lack of easy to use tools. The current EDM tools usually require users to have some additional technical expertise to effectively perform EDM tasks. Thus, in response to these limitations, this study intends to design and implement an EDM application framework which aims at automating and simplify the development of EDM in E-learning environment. The application framework introduces a Service-Oriented Architecture (SOA) that hides the complexity of technical details and enables users to perform EDM in an automated fashion. The framework was designed based on abstraction, extensibility, and interoperability principles. The framework implementation was made up of three major modules. The first module provides an abstraction for data gathering, which was done by extending Moodle LMS (Learning Management System) source code. The second module provides data mining methods and techniques as services; it was done by converting Weka API into a set of Web services. The third module acts as an intermediary between the first two modules, it contains a user-friendly interface that allows dynamically locating data provider services, and running knowledge discovery tasks on data mining services. An experiment was conducted to evaluate the overhead of the proposed framework through a combination of simulation and implementation. The experiments have shown that the overhead introduced by the SOA mechanism is relatively small, therefore, it has been concluded that a service-oriented architecture can be effectively used to facilitate educational data mining in E-learning environments.Keywords: educational data mining, e-learning, distributed data mining, moodle, service-oriented architecture, Weka
Procedia PDF Downloads 23624629 Simulation of 1D Dielectric Barrier Discharge in Argon Mixtures
Authors: Lucas Wilman Crispim, Patrícia Hallack, Maikel Ballester
Abstract:
This work aims at modeling electric discharges in gas mixtures. The mathematical model mimics the ignition process in a commercial spark-plug when a high voltage is applied to the plug terminals. A longitudinal unidimensional Cartesian domain is chosen for the simulation region. Energy and mass transfer are considered for a macroscopic fluid representation, while energy transfer in molecular collisions and chemical reactions are contemplated at microscopic level. The macroscopic model is represented by a set of uncoupled partial differential equations. Microscopic effects are studied within a discrete model for electronic and molecular collisions in the frame of ZDPlasKin, a plasma modeling numerical tool. The BOLSIG+ solver is employed in solving the electronic Boltzmann equation. An operator splitting technique is used to separate microscopic and macroscopic models. The simulation gas is a mixture of atomic Argon neutral, excited and ionized. Spatial and temporal evolution of such species and temperature are presented and discussed.Keywords: CFD, electronic discharge, ignition, spark plug
Procedia PDF Downloads 16224628 Forensic Investigation Into the Variation of Geological Properties of Soils Bintulu, Sarawak
Authors: Jaithish John
Abstract:
In this paper a brief overview is provided of the developments in interdisciplinary knowledge exchange with use of soil and geological (earth) materials in the search for evidence. The aim is to provide background information on the role and value of understanding ‘earth materials’ from the crime scene through to microscopic scale investigations to support law enforcement agencies in solving criminal and environmental concerns and investigations. This involves the sampling, analysis, interpretation and explanation presentation of all these evidences. In this context, field and laboratory methods are highlighted for the controlled / referenced sample, alibi sample and questioned sample. The aim of forensic analyses of earth materials is to associate these samples taken from a questioned source to determine if there are similar and outstanding characteristics features of earth materials crucial to support the investigation to the questioned earth materials and compare it to the controlled / referenced sample and alibi samples.Keywords: soil, texture, grain, microscopy
Procedia PDF Downloads 8424627 Mathematics Bridging Theory and Applications for a Data-Driven World
Authors: Zahid Ullah, Atlas Khan
Abstract:
In today's data-driven world, the role of mathematics in bridging the gap between theory and applications is becoming increasingly vital. This abstract highlights the significance of mathematics as a powerful tool for analyzing, interpreting, and extracting meaningful insights from vast amounts of data. By integrating mathematical principles with real-world applications, researchers can unlock the full potential of data-driven decision-making processes. This abstract delves into the various ways mathematics acts as a bridge connecting theoretical frameworks to practical applications. It explores the utilization of mathematical models, algorithms, and statistical techniques to uncover hidden patterns, trends, and correlations within complex datasets. Furthermore, it investigates the role of mathematics in enhancing predictive modeling, optimization, and risk assessment methodologies for improved decision-making in diverse fields such as finance, healthcare, engineering, and social sciences. The abstract also emphasizes the need for interdisciplinary collaboration between mathematicians, statisticians, computer scientists, and domain experts to tackle the challenges posed by the data-driven landscape. By fostering synergies between these disciplines, novel approaches can be developed to address complex problems and make data-driven insights accessible and actionable. Moreover, this abstract underscores the importance of robust mathematical foundations for ensuring the reliability and validity of data analysis. Rigorous mathematical frameworks not only provide a solid basis for understanding and interpreting results but also contribute to the development of innovative methodologies and techniques. In summary, this abstract advocates for the pivotal role of mathematics in bridging theory and applications in a data-driven world. By harnessing mathematical principles, researchers can unlock the transformative potential of data analysis, paving the way for evidence-based decision-making, optimized processes, and innovative solutions to the challenges of our rapidly evolving society.Keywords: mathematics, bridging theory and applications, data-driven world, mathematical models
Procedia PDF Downloads 7524626 Mangroves in the Douala Area, Cameroon: The Challenges of Open Access Resources for Forest Governance
Authors: Bissonnette Jean-François, Dossa Fabrice
Abstract:
The project focuses on analyzing the spatial and temporal evolution of mangrove forest ecosystems near the city of Douala, Cameroon, in response to increasing human and environmental pressures. The selected study area, located in the Wouri River estuary, has a unique combination of economic importance, and ecological prominence. The study included valuable insights by conducting semi-structured interviews with resource operators and local officials. The thorough analysis of socio-economic data, farmer surveys, and satellite-derived information was carried out utilizing quantitative approaches in Excel and SPSS. Simultaneously, qualitative data was subjected to rigorous classification and correlation with other sources. The use of ArcGIS and CorelDraw facilitated the visual representation of the gradual changes seen in various land cover classifications. The research reveals complex processes that characterize mangrove ecosystems on Manoka and Cape Cameroon Islands. The lack of regulations in urbanization and the continuous growth of infrastructure have led to a significant increase in land conversion, causing negative impacts on natural landscapes and forests. The repeated instances of flooding and coastal erosion have further shaped landscape alterations, fostering the proliferation of water and mudflat areas. The unregulated use of mangrove resources is a significant factor in the degradation of these ecosystems. Activities including the use of wood for smoking and fishing, together with the coastal pollution resulting from the absence of waste collection, have had a significant influence. In addition, forest operators contribute to the degradation of vegetation, hence exacerbating the harmful impact of invasive species on the ecosystem. Strategic interventions are necessary to guarantee the sustainable management of these ecosystems. The proposals include advocating for sustainable wood exploitation techniques, using appropriate techniques, along with regeneration, and enforcing rules to prevent wood overexploitation. By implementing these measures, the ecological balance can be preserved, safeguarding the long-term viability of these precious ecosystems. On a conceptual level, this paper uses the framework developed by Elinor Ostrom and her colleagues to investigate the consequences of open access resources, where local actors have not been able to enforce measures to prevent overexploitation of mangrove wood resources. Governmental authorities have demonstrated limited capacity to enforce sustainable management of wood resources and have not been able to establish effective relationships with local fishing communities and with communities involved in the purchase of wood. As a result, wood resources in the mangrove areas remain largely accessible, while authorities do not monitor wood volumes extracted nor methods of exploitation. There have only been limited and punctual attempts at forest restoration with no significant consequence on mangrove forests dynamics.Keywords: Mangroves, forest management, governance, open access resources, Cameroon
Procedia PDF Downloads 6324625 Understanding Primary School Students’ Beliefs Regarding the Adoption of Pro-Environmental Behaviors
Authors: Astrid de Leeuw, Pierre Valois
Abstract:
Environmental education is the key to enhancing or changing students’ ways of thinking and acting in order to create an environmentally robust future for all. The present study investigates the beliefs of 812 primary school students, which merit consideration when developing educational interventions. Results of multiple regression analyses reveal that educational interventions should focus on promoting students’ feelings of control over pro-environmental behaviors (PEB). For example, schools could provide recycling bins on the premises. Furthermore, it is critical to develop positive attitudes in students by stressing the various benefits of PEB for keeping our planet clean and protecting wildlife. Unfortunately, our results indicate that students believe that PEB is boring and annoying. Suggestions are offered for making PEB more interesting and relevant. Further research is needed to test the effectiveness of interventions based on the present results.Keywords: pro-environmental behavior, primary school students, theory of planned behavior, beliefs, educational interventions
Procedia PDF Downloads 50424624 AI-Enabled Smart Contracts for Reliable Traceability in the Industry 4.0
Authors: Harris Niavis, Dimitra Politaki
Abstract:
The manufacturing industry was collecting vast amounts of data for monitoring product quality thanks to the advances in the ICT sector and dedicated IoT infrastructure is deployed to track and trace the production line. However, industries have not yet managed to unleash the full potential of these data due to defective data collection methods and untrusted data storage and sharing. Blockchain is gaining increasing ground as a key technology enabler for Industry 4.0 and the smart manufacturing domain, as it enables the secure storage and exchange of data between stakeholders. On the other hand, AI techniques are more and more used to detect anomalies in batch and time-series data that enable the identification of unusual behaviors. The proposed scheme is based on smart contracts to enable automation and transparency in the data exchange, coupled with anomaly detection algorithms to enable reliable data ingestion in the system. Before sensor measurements are fed to the blockchain component and the smart contracts, the anomaly detection mechanism uniquely combines artificial intelligence models to effectively detect unusual values such as outliers and extreme deviations in data coming from them. Specifically, Autoregressive integrated moving average, Long short-term memory (LSTM) and Dense-based autoencoders, as well as Generative adversarial networks (GAN) models, are used to detect both point and collective anomalies. Towards the goal of preserving the privacy of industries' information, the smart contracts employ techniques to ensure that only anonymized pointers to the actual data are stored on the ledger while sensitive information remains off-chain. In the same spirit, blockchain technology guarantees the security of the data storage through strong cryptography as well as the integrity of the data through the decentralization of the network and the execution of the smart contracts by the majority of the blockchain network actors. The blockchain component of the Data Traceability Software is based on the Hyperledger Fabric framework, which lays the ground for the deployment of smart contracts and APIs to expose the functionality to the end-users. The results of this work demonstrate that such a system can increase the quality of the end-products and the trustworthiness of the monitoring process in the smart manufacturing domain. The proposed AI-enabled data traceability software can be employed by industries to accurately trace and verify records about quality through the entire production chain and take advantage of the multitude of monitoring records in their databases.Keywords: blockchain, data quality, industry4.0, product quality
Procedia PDF Downloads 18924623 IoT Based Approach to Healthcare System for a Quadriplegic Patient Using EEG
Authors: R. Gautam, P. Sastha Kanagasabai, G. N. Rathna
Abstract:
The proposed healthcare system enables quadriplegic patients, people with severe motor disabilities to send commands to electronic devices and monitor their vitals. The growth of Brain-Computer-Interface (BCI) has led to rapid development in 'assistive systems' for the disabled called 'assistive domotics'. Brain-Computer-Interface is capable of reading the brainwaves of an individual and analyse it to obtain some meaningful data. This processed data can be used to assist people having speech disorders and sometimes people with limited locomotion to communicate. In this Project, Emotiv EPOC Headset is used to obtain the electroencephalogram (EEG). The obtained data is processed to communicate pre-defined commands over the internet to the desired mobile phone user. Other Vital Information like the heartbeat, blood pressure, ECG and body temperature are monitored and uploaded to the server. Data analytics enables physicians to scan databases for a specific illness. The Data is processed in Intel Edison, system on chip (SoC). Patient metrics are displayed via Intel IoT Analytics cloud service.Keywords: brain computer interface, Intel Edison, Emotiv EPOC, IoT analytics, electroencephalogram
Procedia PDF Downloads 18624622 Searchable Encryption in Cloud Storage
Authors: Ren Junn Hwang, Chung-Chien Lu, Jain-Shing Wu
Abstract:
Cloud outsource storage is one of important services in cloud computing. Cloud users upload data to cloud servers to reduce the cost of managing data and maintaining hardware and software. To ensure data confidentiality, users can encrypt their files before uploading them to a cloud system. However, retrieving the target file from the encrypted files exactly is difficult for cloud server. This study proposes a protocol for performing multikeyword searches for encrypted cloud data by applying k-nearest neighbor technology. The protocol ranks the relevance scores of encrypted files and keywords, and prevents cloud servers from learning search keywords submitted by a cloud user. To reduce the costs of file transfer communication, the cloud server returns encrypted files in order of relevance. Moreover, when a cloud user inputs an incorrect keyword and the number of wrong alphabet does not exceed a given threshold; the user still can retrieve the target files from cloud server. In addition, the proposed scheme satisfies security requirements for outsourced data storage.Keywords: fault-tolerance search, multi-keywords search, outsource storage, ranked search, searchable encryption
Procedia PDF Downloads 383