Search results for: traffic modeling
1104 Social Identification among Employees: A System Dynamic Approach
Authors: Muhammad Abdullah, Salman Iqbal, Mamoona Rasheed
Abstract:
Social identity among people is an important source of pride and self-esteem, consequently, people struggle to preserve a positive perception of their groups and collectives. The purpose of this paper is to explain the process of social identification and to highlight the underlying causal factors of social identity among employees. There is a little research about how the social identity of employees is shaped in Pakistan’s organizational culture. This study is based on social identity theory. This study uses Systems’ approach as a research methodology. The feedback loop approach is applied to explain the underlying key elements of employee behavior that collectively form social identity among social groups in corporate arena. The findings of this study reveal that effective, evaluative and cognitive components of an individual’s personality are associated with the social identification. The system dynamic feedback loop approach has revealed the underlying structure that is associated with social identity, social group formation, and effective component proved to be the most associated factor. This may also enable to understand how social groups become stable and individuals act according to the group requirements. The value of this paper lies in the understanding gained about the underlying key factors that play a crucial role in social group formation in organizations. It may help to understand the rationale behind how employees socially categorize themselves within organizations. It may also help to design effective and more cohesive teams for better operations and long-term results. This may help to share knowledge among employees as well. The underlying structure behind the social identification is highlighted with the help of system modeling.Keywords: affective commitment, cognitive commitment, evaluated commitment, system thinking
Procedia PDF Downloads 1401103 Tuning Nanomechanical Properties of Stimuli-Responsive Hydrogel Nanocomposite Thin Films for Biomedical Applications
Authors: Mallikarjunachari Gangapuram
Abstract:
The design of stimuli-responsive hydrogel nanocomposite thin films is gaining significant attention in these days due to its wide variety of applications. Soft microrobots, drug delivery, biosensors, regenerative medicine, bacterial adhesion, energy storage and wound dressing are few advanced applications in different fields. In this research work, the nanomechanical properties of composite thin films of 20 microns were tuned by applying homogeneous external DC, and AC magnetic fields of magnitudes 0.05 T and 0.1 T. Polyvinyl alcohol (PVA) used as a matrix material and elliptical hematite nanoparticles (ratio of the length of the major axis to the length of the minor axis is 140.59 ± 1.072 nm/52.84 ± 1.072 nm) used as filler materials to prepare the nanocomposite thin films. Both quasi-static nanoindentation, Nano Dynamic Mechanical Analysis (Nano-DMA) tests were performed to characterize the viscoelastic properties of PVA, PVA+Hematite (0.1% wt, 2% wt and 4% wt) nanocomposites. Different properties such as storage modulus, loss modulus, hardness, and Er/H were carefully analyzed. The increase in storage modulus, hardness, Er/H and a decrease in loss modulus were observed with increasing concentration and DC magnetic field followed by AC magnetic field. Contact angle and ATR-FTIR experiments were conducted to understand the molecular mechanisms such as hydrogen bond formation, crosslinking density, and particle-particle interactions. This systematic study is helpful in design and modeling of magnetic responsive hydrogel nanocomposite thin films for biomedical applications.Keywords: hematite, hydrogel, nanoindentation, nano-DMA
Procedia PDF Downloads 1961102 Investigation and Estimation of State of Health of Battery Pack in Battery Electric Vehicles-Online Battery Characterization
Authors: Ali Mashayekh, Mahdiye Khorasani, Thomas Weyh
Abstract:
The tendency to use the Battery-Electric vehicle (BEV) for the low and medium driving range or even high driving range has been growing more and more. As a result, higher safety, reliability, and durability of the battery pack as a component of electric vehicles, which has a great share of cost and weight of the final product, are the topics to be considered and investigated. Battery aging can be considered as the predominant factor regarding the reliability and durability of BEV. To better understand the aging process, offline battery characterization has been widely used, which is time-consuming and needs very expensive infrastructures. This paper presents the substitute method for the conventional battery characterization methods, which is based on battery Modular Multilevel Management (BM3). According to this Topology, the battery cells can be drained and charged concerning their capacity, which allows varying battery pack structures. Due to the integration of the power electronics, the output voltage of the battery pack is no longer fixed but can be dynamically adjusted in small steps. In other words, each cell can have three different states, namely series, parallel, and bypass in connection with the neighbor cells. With the help of MATLAB/Simulink and by using the BM3 modules, the battery string model is created. This model allows us to switch two cells with the different SoC as parallel, which results in the internal balancing of the cells. But if the parallel switching lasts just for a couple of ms, we can have a perturbation pulse which can stimulate the cells out of the relaxation phase. With the help of modeling the voltage response pulse of the battery, it would be possible to characterize the cell. The Online EIS method, which is discussed in this paper, can be a robust substitute for the conventional battery characterization methods.Keywords: battery characterization, SoH estimation, RLS, BEV
Procedia PDF Downloads 1531101 Design and Testing of Electrical Capacitance Tomography Sensors for Oil Pipeline Monitoring
Authors: Sidi M. A. Ghaly, Mohammad O. Khan, Mohammed Shalaby, Khaled A. Al-Snaie
Abstract:
Electrical capacitance tomography (ECT) is a valuable, non-invasive technique used to monitor multiphase flow processes, especially within industrial pipelines. This study focuses on the design, testing, and performance comparison of ECT sensors configured with 8, 12, and 16 electrodes, aiming to evaluate their effectiveness in imaging accuracy, resolution, and sensitivity. Each sensor configuration was designed to capture the spatial permittivity distribution within a pipeline cross-section, enabling visualization of phase distribution and flow characteristics such as oil and water interactions. The sensor designs were implemented and tested in closed pipes to assess their response to varying flow regimes. Capacitance data collected from each electrode configuration were reconstructed into cross-sectional images, enabling a comparison of image resolution, noise levels, and computational demands. Results indicate that the 16-electrode configuration yields higher image resolution and sensitivity to phase boundaries compared to the 8- and 12-electrode setups, making it more suitable for complex flow visualization. However, the 8 and 12-electrode sensors demonstrated advantages in processing speed and lower computational requirements. This comparative analysis provides critical insights into optimizing ECT sensor design based on specific industrial requirements, from high-resolution imaging to real-time monitoring needs.Keywords: capacitance tomography, modeling, simulation, electrode, permittivity, fluid dynamics, imaging sensitivity measurement
Procedia PDF Downloads 171100 Text Emotion Recognition by Multi-Head Attention based Bidirectional LSTM Utilizing Multi-Level Classification
Authors: Vishwanath Pethri Kamath, Jayantha Gowda Sarapanahalli, Vishal Mishra, Siddhesh Balwant Bandgar
Abstract:
Recognition of emotional information is essential in any form of communication. Growing HCI (Human-Computer Interaction) in recent times indicates the importance of understanding of emotions expressed and becomes crucial for improving the system or the interaction itself. In this research work, textual data for emotion recognition is used. The text being the least expressive amongst the multimodal resources poses various challenges such as contextual information and also sequential nature of the language construction. In this research work, the proposal is made for a neural architecture to resolve not less than 8 emotions from textual data sources derived from multiple datasets using google pre-trained word2vec word embeddings and a Multi-head attention-based bidirectional LSTM model with a one-vs-all Multi-Level Classification. The emotions targeted in this research are Anger, Disgust, Fear, Guilt, Joy, Sadness, Shame, and Surprise. Textual data from multiple datasets were used for this research work such as ISEAR, Go Emotions, Affect datasets for creating the emotions’ dataset. Data samples overlap or conflicts were considered with careful preprocessing. Our results show a significant improvement with the modeling architecture and as good as 10 points improvement in recognizing some emotions.Keywords: text emotion recognition, bidirectional LSTM, multi-head attention, multi-level classification, google word2vec word embeddings
Procedia PDF Downloads 1781099 Computational Fluid Dynamics Modeling of Flow Properties Fluctuations in Slug-Churn Flow through Pipe Elbow
Authors: Nkemjika Chinenye-Kanu, Mamdud Hossain, Ghazi Droubi
Abstract:
Prediction of multiphase flow induced forces, void fraction and pressure is crucial at both design and operating stages of practical energy and process pipe systems. In this study, transient numerical simulations of upward slug-churn flow through a vertical 90-degree elbow have been conducted. The volume of fluid (VOF) method was used to model the two-phase flows while the K-epsilon Reynolds-Averaged Navier-Stokes (RANS) equations were used to model turbulence in the flows. The simulation results were validated using experimental results. Void fraction signal, peak frequency and maximum magnitude of void fraction fluctuation of the slug-churn flow validation case studies compared well with experimental results. The x and y direction force fluctuation signals at the elbow control volume were obtained by carrying out force balance calculations using the directly extracted time domain signals of flow properties through the control volume in the numerical simulation. The computed force signal compared well with experiment for the slug and churn flow validation case studies. Hence, the present numerical simulation technique was able to predict the behaviours of the one-way flow induced forces and void fraction fluctuations.Keywords: computational fluid dynamics, flow induced vibration, slug-churn flow, void fraction and force fluctuation
Procedia PDF Downloads 1601098 Using Lysosomal Immunogenic Cell Death to Target Breast Cancer via Xanthine Oxidase/Micro-Antibody Fusion Protein
Authors: Iulianna Taritsa, Kuldeep Neote, Eric Fossel
Abstract:
Lysosome-induced immunogenic cell death (LIICD) is a powerful mechanism of targeting cancer cells that kills circulating malignant cells and primes the host’s immune cells against future remission. Current immunotherapies for cancer are limited in preventing recurrence – a gap that can be bridged by training the immune system to recognize cancer neoantigens. Lysosomal leakage can be induced therapeutically to traffic antigens from dying cells to dendritic cells, which can later present those tumorigenic antigens to T cells. Previous research has shown that oxidative agents administered in the tumor microenvironment can initiate LIICD. We generated a fusion protein between an oxidative agent known as xanthine oxidase (XO) and a mini-antibody specific for EGFR/HER2-sensitive breast tumor cells. The anti-EGFR single domain antibody fragment is uniquely sourced from llama, which is functional without the presence of a light chain. These llama micro-antibodies have been shown to be better able to penetrate tissues and have improved physicochemical stability as compared to traditional monoclonal antibodies. We demonstrate that the fusion protein created is stable and can induce early markers of immunogenic cell death in an in vitro human breast cancer cell line (SkBr3). Specifically, we measured overall cell death, as well as surface-expressed calreticulin, extracellular ATP release, and HMGB1 production. These markers are consensus indicators of ICD. Flow cytometry, luminescence assays, and ELISA were used respectively to quantify biomarker levels between treated versus untreated cells. We also included a positive control group of SkBr3 cells dosed with doxorubicin (a known inducer of LIICD) and a negative control dosed with cisplatin (a known inducer of cell death, but not of the immunogenic variety). We looked at each marker at various time points after cancer cells were treated with the XO/antibody fusion protein, doxorubicin, and cisplatin. Upregulated biomarkers after treatment with the fusion protein indicate an immunogenic response. We thus show the potential for this fusion protein to induce an anticancer effect paired with an adaptive immune response against EGFR/HER2+ cells. Our research in human cell lines here provides evidence for the success of the same therapeutic method for patients and serves as the gateway to developing a new treatment approach against breast cancer.Keywords: apoptosis, breast cancer, immunogenic cell death, lysosome
Procedia PDF Downloads 2011097 Intelligent Indoor Localization Using WLAN Fingerprinting
Authors: Gideon C. Joseph
Abstract:
The ability to localize mobile devices is quite important, as some applications may require location information of these devices to operate or deliver better services to the users. Although there are several ways of acquiring location data of mobile devices, the WLAN fingerprinting approach has been considered in this work. This approach uses the Received Signal Strength Indicator (RSSI) measurement as a function of the position of the mobile device. RSSI is a quantitative technique of describing the radio frequency power carried by a signal. RSSI may be used to determine RF link quality and is very useful in dense traffic scenarios where interference is of major concern, for example, indoor environments. This research aims to design a system that can predict the location of a mobile device, when supplied with the mobile’s RSSIs. The developed system takes as input the RSSIs relating to the mobile device, and outputs parameters that describe the location of the device such as the longitude, latitude, floor, and building. The relationship between the Received Signal Strengths (RSSs) of mobile devices and their corresponding locations is meant to be modelled; hence, subsequent locations of mobile devices can be predicted using the developed model. It is obvious that describing mathematical relationships between the RSSIs measurements and localization parameters is one option to modelling the problem, but the complexity of such an approach is a serious turn-off. In contrast, we propose an intelligent system that can learn the mapping of such RSSIs measurements to the localization parameters to be predicted. The system is capable of upgrading its performance as more experiential knowledge is acquired. The most appealing consideration to using such a system for this task is that complicated mathematical analysis and theoretical frameworks are excluded or not needed; the intelligent system on its own learns the underlying relationship in the supplied data (RSSI levels) that corresponds to the localization parameters. These localization parameters to be predicted are of two different tasks: Longitude and latitude of mobile devices are real values (regression problem), while the floor and building of the mobile devices are of integer values or categorical (classification problem). This research work presents artificial neural network based intelligent systems to model the relationship between the RSSIs predictors and the mobile device localization parameters. The designed systems were trained and validated on the collected WLAN fingerprint database. The trained networks were then tested with another supplied database to obtain the performance of trained systems on achieved Mean Absolute Error (MAE) and error rates for the regression and classification tasks involved therein.Keywords: indoor localization, WLAN fingerprinting, neural networks, classification, regression
Procedia PDF Downloads 3541096 Spatial Differentiation Patterns and Influencing Mechanism of Urban Greening in China: Based on Data of 289 Cities
Authors: Fangzheng Li, Xiong Li
Abstract:
Significant differences in urban greening have occurred in Chinese cities, which accompanied with China's rapid urbanization. However, few studies focused on the spatial differentiation of urban greening in China with large amounts of data. The spatial differentiation pattern, spatial correlation characteristics and the distribution shape of urban green space ratio, urban green coverage rate and public green area per capita were calculated and analyzed, using Global and Local Moran's I using data from 289 cities in 2014. We employed Spatial Lag Model and Spatial Error Model to assess the impacts of urbanization process on urban greening of China. Then we used Geographically Weighted Regression to estimate the spatial variations of the impacts. The results showed: 1. a significant spatial dependence and heterogeneity existed in urban greening values, and the differentiation patterns were featured by the administrative grade and the spatial agglomeration simultaneously; 2. it revealed that urbanization has a negative correlation with urban greening in Chinese cities. Among the indices, the the proportion of secondary industry, urbanization rate, population and the scale of urban land use has significant negative correlation with the urban greening of China. Automobile density and per capita Gross Domestic Product has no significant impact. The results of GWR modeling showed that the relationship between urbanization and urban greening was not constant in space. Further, the local parameter estimates suggested significant spatial variation in the impacts of various urbanization factors on urban greening.Keywords: China’s urbanization, geographically weighted regression, spatial differentiation pattern, urban greening
Procedia PDF Downloads 4701095 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction
Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju
Abstract:
The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.Keywords: comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events
Procedia PDF Downloads 2641094 Systems Lens: Towards Sustainable Management of Maintenance and Renewal of Wire-Based Infrastructure: The Case of Water Network in the City of Linköping, Sweden
Authors: E. Hegazy, S. Anderberg, J. Krook
Abstract:
The city's wire-based infrastructure systems (WBIS) are responsible for the delivery of electricity, telecommunications, sanitation, drainage, and district heating and are a necessity for sustainable modern urban life. Maintaining the functionality of these structures involves high costs and, brings disturbance to the local community and effects on the environment. One key reason for this is that the cables and pipes are placed under streets, making system parts easily worn and their service lifetime reduced, and all maintenance and renewal rely on recurrent needs for excavation. In Sweden, a significant part of wire-based infrastructure is already outdated and will need to be replaced in the coming decades. The replacement of these systems will entail massive costs as well as important traffic disruption and environmental disturbance. However, this challenge may also open a unique opportunity to introduce new, more sustainable technologies and management practices. The transformation of WBIS management for long-term sustainability and meeting maintenance and renewal needs does not have a comprehensive approach. However, a systemic approach may inform WBIS management. This approach considers both technical and non-technical aspects, as well as time-related factors. Nevertheless, there is limited systemic knowledge of how different factors influence current management practices. The aim of this study is to address this knowledge gap and contribute to the understanding of what factors influence the current practice of WBIS management. A case study approach is used to identify current management practices, the underlying factors that influence them, and their implications for sustainability outcomes. The case study is based on both quantitative data on the local system and data from interviews and workshops with local practitioners and other stakeholders. Linköping was selected as a case since it provided good accessibility to the water administration and relevant data for analyzing water infrastructure management strategies. It is a sufficiently important city in Sweden to be able to identify challenges, which, to some extent, are common to all Swedish cities. By uncovering current practices and what is influencing Linköping, knowledge gaps and uncertainties related to sustainability consequences were highlighted. The findings show that goals, priorities, and policies controlling management are short-termed, and decisions on maintenance and renewal are often restricted to finding solutions to the most urgent issues. Sustainability transformation in the infrastructure area will not be possible through individual efforts without coordinated technical, organizational, business, and regulatory changes.Keywords: case study, infrastructure, management, practice, Sweden
Procedia PDF Downloads 921093 Creative Element Analysis of Machinery Creativity Contest Works
Authors: Chin-Pin, Chen, Shi-Chi, Shiao, Ting-Hao, Lin
Abstract:
Current industry is facing the rapid development of new technology in the world and fierce changes of economic environment in the society so that the industry development trend gradually does not focus on labor, but leads the industry and the academic circle with innovation and creativity. The development trend in machinery industry presents the same situation. Based on the aim of Creativity White Paper, Ministry of Education in Taiwan promotes and develops various creativity contests to cope with the industry trend. Domestic students and enterprises have good performance on domestic and international creativity contests in recent years. There must be important creative elements in such creative works to win the award among so many works. Literature review and in-depth interview with five creativity contest awarded instructors are first proceeded to conclude 15 machinery creative elements, which are further compared with the creative elements of machinery awarded creative works in past five years to understand the relationship between awarded works and creative elements. The statistical analysis results show that IDEA (Industrial Design Excellence Award) contains the most creative elements among four major international creativity contests. That is, most creativity review focuses on creative elements that are comparatively stricter. Concerning the groups participating in creativity contests, enterprises consider more creative elements of the creative works than other two elements for contests. From such contest works, creative elements of “replacement or improvement”, “convenience”, and “modeling” present higher significance. It is expected that the above findings could provide domestic colleges and universities with reference for participating in creativity related contests in the future.Keywords: machinery, creative elements, creativity contest, creativity works
Procedia PDF Downloads 4471092 Generalized Linear Modeling of HCV Infection Among Medical Waste Handlers in Sidama Region, Ethiopia
Authors: Birhanu Betela Warssamo
Abstract:
Background: There is limited evidence on the prevalence and risk factors for hepatitis C virus (HCV) infection among waste handlers in the Sidama region, Ethiopia; however, this knowledge is necessary for the effective prevention of HCV infection in the region. Methods: A cross-sectional study was conducted among randomly selected waste collectors from October 2021 to 30 July 2022 in different public hospitals in the Sidama region of Ethiopia. Serum samples were collected from participants and screened for anti-HCV using a rapid immunochromatography assay. Socio-demographic and risk factor information of waste handlers was gathered by pretested and well-structured questionnaires. The generalized linear model (GLM) was conducted using R software, and P-value < 0.05 was declared statistically significant. Results: From a total of 282 participating waste handlers, 16 (5.7%) (95% CI, 4.2 – 8.7) were infected with the hepatitis C virus. The educational status of waste handlers was the significant demographic variable that was associated with the hepatitis C virus (AOR = 0.055; 95% CI = 0.012 – 0.248; P = 0.000). More married waste handlers, 12 (75%), were HCV positive than unmarried, 4 (25%) and married waste handlers were 2.051 times (OR = 2.051, 95%CI = 0.644 –6.527, P = 0.295) more prone to HCV infection, compared to unmarried, which was statistically insignificant. The GLM showed that exposure to blood (OR = 8.26; 95% CI = 1.878–10.925; P = 0.037), multiple sexual partners (AOR = 3.63; 95% CI = 2.751–5.808; P = 0.001), sharp injury (AOR = 2.77; 95% CI = 2.327–3.173; P = 0.036), not using PPE (AOR = 0.77; 95% CI = 0.032–0.937; P = 0.001), contact with jaundiced patient (AOR = 3.65; 95% CI = 1.093–4.368; P = 0 .0048) and unprotected sex (AOR = 11.91; 95% CI = 5.847–16.854; P = 0.001) remained statistically significantly associated with HCV positivity. Conclusions: The study revealed that there was a high prevalence of hepatitis C virus infection among waste handlers in the Sidama region, Ethiopia. This demonstrated that there is an urgent need to increase preventative efforts and strategic policy orientations to control the spread of the hepatitis C virus.Keywords: Hepatitis C virus, risk factors, waste handlers, prevalence, Sidama Ethiopia
Procedia PDF Downloads 221091 Spirometric Reference Values in 236,606 Healthy, Non-Smoking Chinese Aged 4–90 Years
Authors: Jiashu Shen
Abstract:
Objectives: Spirometry is a basic reference for health evaluation which is widely used in clinical. Previous reference of spirometry is not applicable because of drastic changes of social and natural circumstance in China. A new reference values for the spirometry of the Chinese population is extremely needed. Method: Spirometric reference value was established using the statistical modeling method Generalized Additive Models for Location, Scale and Shape for forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, and maximal mid-expiratory flow (MMEF). Results: Data from 236,606 healthy non-smokers aged 4–90 years was collected from the MJ Health Check database. Spirometry equations for FEV1, FVC, MMEF, and FEV1/FVC were established, including the predicted values and lower limits of normal (LLNs) by sex. The predictive equations that were developed for the spirometric results elaborated the relationship between spirometry and age, and they eliminated the effects of height as a variable. Most previous predictive equations for Chinese spirometry were significantly overestimated (to be exact, with mean differences of 22.21% in FEV1 and 31.39% in FVC for males, along with differences of 26.93% in FEV1 and 35.76% in FVC for females) or underestimated (with mean differences of -5.81% in MMEF and -14.56% in FEV1/FVC for males, along with a difference of -14.54% in FEV1/FVC for females) the results of lung function measurements as found in this study. Through cross-validation, our equations were established as having good fit, and the means of the measured value and the estimated value were compared, with good results. Conclusions: Our study updates the spirometric reference equations for Chinese people of all ages and provides comprehensive values for both physical examination and clinical diagnosis.Keywords: Chinese, GAMLSS model, reference values, spirometry
Procedia PDF Downloads 1381090 Method to Find a ε-Optimal Control of Stochastic Differential Equation Driven by a Brownian Motion
Authors: Francys Souza, Alberto Ohashi, Dorival Leao
Abstract:
We present a general solution for finding the ε-optimal controls for non-Markovian stochastic systems as stochastic differential equations driven by Brownian motion, which is a problem recognized as a difficult solution. The contribution appears in the development of mathematical tools to deal with modeling and control of non-Markovian systems, whose applicability in different areas is well known. The methodology used consists to discretize the problem through a random discretization. In this way, we transform an infinite dimensional problem in a finite dimensional, thereafter we use measurable selection arguments, to find a control on an explicit form for the discretized problem. Then, we prove the control found for the discretized problem is a ε-optimal control for the original problem. Our theory provides a concrete description of a rather general class, among the principals, we can highlight financial problems such as portfolio control, hedging, super-hedging, pairs-trading and others. Therefore, our main contribution is the development of a tool to explicitly the ε-optimal control for non-Markovian stochastic systems. The pathwise analysis was made through a random discretization jointly with measurable selection arguments, has provided us with a structure to transform an infinite dimensional problem into a finite dimensional. The theory is applied to stochastic control problems based on path-dependent stochastic differential equations, where both drift and diffusion components are controlled. We are able to explicitly show optimal control with our method.Keywords: dynamic programming equation, optimal control, stochastic control, stochastic differential equation
Procedia PDF Downloads 1941089 Spatial Pattern of Environmental Noise Levels and Auditory Ailments in Abeokuta Metropolis, Southwestern Nigeria
Authors: Olusegun Oguntoke, Aramide Y. Tijani, Olayide R. Adetunji
Abstract:
Environmental noise has become a major threat to the quality of human life, and it is generally more severe in cities. This study assessed the level of environmental noise, mapped the spatial pattern at different times of the day and examined the association with morbidity of auditory ailments in Abeokuta metropolis. The entire metropolis was divided into 80 cells (areas) of 1000 m by 1000 m; out of which 33 were randomly selected for noise levels assessment. Portable noise meter (AR824) was used to measure noise level, and Global Positioning System (Garmin GPS-72H) was employed to take the coordinates of the sample sites for mapping. Risk map of the noise levels was produced using Kriging interpolation techniques based on the spatial spread of measured noise values across the study area. Data on cases of hearing impairments were collected from four major hospitals in the city. Data collected from field measurements and medical records were subjected to descriptive (frequency and percentage) and inferential (mean, ANOVA and correlation) statistics using SPSS (version 20.0). ArcMap 10.1 was employed for spatial analysis and mapping. Results showed mean noise levels range at morning (42.4 ± 4.14 – 88.2 ± 15.1 dBA), afternoon (45.0 ± 6.72– 86.4 ± 12.5 dBA) and evening (51.0 ± 6.55–84.4 ± 5.19 dBA) across the study area. The interpolated maps identified Kuto, Okelowo, Isale-Igbein, and Sapon as high noise risk areas. These are the central business district and nucleus of Abeokuta metropolis where commercial activities, high traffic volume, and clustered buildings exist. The monitored noise levels varied significantly among the sampled areas in the morning, afternoon and evening (p < 0.05). A significant correlation was found between diagnosed cases of auditory ailments and noise levels measured in the morning (r=0.39 at p < 0.05). Common auditory ailments found across the metropolis included impaired hearing (25.8%), tinnitus (16.4%) and otitis (15.0%). The most affected age groups were between 11-30 years while the male gender had more cases of hearing impairments (51.2%) than the females. The study revealed that environmental noise levels exceeded the recommended standards in the morning, afternoon and evening in 60.6%, 61% and 72.7% of the sampled areas respectively. Summarily, environmental noise in the study area is high and contributes to the morbidity of auditory ailments. Areas identified as hot spots of noise pollution should be avoided in the location of noise sensitive activities while environmental noise monitoring should be included as part of the mandate of the regulatory agencies in Nigeria.Keywords: noise pollution, associative analysis, auditory impairment, urban, human exposure
Procedia PDF Downloads 1491088 Numerical Study on Response of Polymer Electrolyte Fuel Cell (PEFCs) with Defects under Different Load Conditions
Authors: Muhammad Faizan Chinannai, Jaeseung Lee, Mohamed Hassan Gundu, Hyunchul Ju
Abstract:
Fuel cell is known to be an effective renewable energy resource which is commercializing in the present era. It is really important to know about the improvement in performance even when the system faces some defects. This study was carried out to analyze the performance of the Polymer electrolyte fuel cell (PEFCs) under different operating conditions such as current density, relative humidity and Pt loadings considering defects with load changes. The purpose of this study is to analyze the response of the fuel cell system with defects in Balance of Plants (BOPs) and catalyst layer (CL) degradation by maintaining the coolant flow rate as such to preserve the cell temperature at the required level. Multi-Scale Simulation of 3D two-phase PEFC model with coolant was carried out under different load conditions. For detailed analysis and performance comparison, extensive contours of temperature, current density, water content, and relative humidity are provided. The simulation results of the different cases are compared with the reference data. Hence the response of the fuel cell stack with defects in BOP and CL degradations can be analyzed by the temperature difference between the coolant outlet and membrane electrode assembly. The results showed that the Failure of the humidifier increases High-Frequency Resistance (HFR), air flow defects and CL degradation results in the non-uniformity of current density distribution and high cathode activation overpotential, respectively.Keywords: PEM fuel cell, fuel cell modeling, performance analysis, BOP components, current density distribution, degradation
Procedia PDF Downloads 2161087 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite
Abstract:
Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination
Procedia PDF Downloads 1291086 Evaluation of Prestressed Reinforced Concrete Slab Punching Shear Using Finite Element Method
Authors: Zhi Zhang, Liling Cao, Seyedbabak Momenzadeh, Lisa Davey
Abstract:
Reinforced concrete (RC) flat slab-column systems are commonly used in residential or office buildings, as the flat slab provides efficient clearance resulting in more stories at a given height than regular reinforced concrete beam-slab system. Punching shear of slab-column joints is a critical component of two-way reinforced concrete flat slab design. The unbalanced moment at the joint is transferred via slab moment and shear forces. ACI 318 provides an equation to evaluate the punching shear under the design load. It is important to note that the design code considers gravity and environmental load when considering the design load combinations, while it does not consider the effect from differential foundation settlement, which may be a governing load condition for the slab design. This paper describes how prestressed reinforced concrete slab punching shear is evaluated based on ACI 318 provisions and finite element analysis. A prestressed reinforced concrete slab under differential settlements is studied using the finite element modeling methodology. The punching shear check equation is explained. The methodology to extract data for punching shear check from the finite element model is described and correlated with the corresponding code provisions. The study indicates that the finite element analysis results should be carefully reviewed and processed in order to perform accurate punching shear evaluation. Conclusions are made based on the case studies to help engineers understand the punching shear behavior in prestressed and non-prestressed reinforced concrete slabs.Keywords: differential settlement, finite element model, prestressed reinforced concrete slab, punching shear
Procedia PDF Downloads 1341085 A Human Centered Design of an Exoskeleton Using Multibody Simulation
Authors: Sebastian Kölbl, Thomas Reitmaier, Mathias Hartmann
Abstract:
Trial and error approaches to adapt wearable support structures to human physiology are time consuming and elaborate. However, during preliminary design, the focus lies on understanding the interaction between exoskeleton and the human body in terms of forces and moments, namely body mechanics. For the study at hand, a multi-body simulation approach has been enhanced to evaluate actual forces and moments in a human dummy model with and without a digital mock-up of an active exoskeleton. Therefore, different motion data have been gathered and processed to perform a musculosceletal analysis. The motion data are ground reaction forces, electromyography data (EMG) and human motion data recorded with a marker-based motion capture system. Based on the experimental data, the response of the human dummy model has been calibrated. Subsequently, the scalable human dummy model, in conjunction with the motion data, is connected with the exoskeleton structure. The results of the human-machine interaction (HMI) simulation platform are in particular resulting contact forces and human joint forces to compare with admissible values with regard to the human physiology. Furthermore, it provides feedback for the sizing of the exoskeleton structure in terms of resulting interface forces (stress justification) and the effect of its compliance. A stepwise approach for the setup and validation of the modeling strategy is presented and the potential for a more time and cost-effective development of wearable support structures is outlined.Keywords: assistive devices, ergonomic design, inverse dynamics, inverse kinematics, multibody simulation
Procedia PDF Downloads 1681084 Mental Health Challenges, Internalizing and Externalizing Behavior Problems, and Academic Challenges among Adolescents from Broken Families
Authors: Fadzai Munyuki
Abstract:
Parental divorce is one of youth's most stressful life events and is associated with long-lasting emotional and behavioral problems. Over the last few decades, research has consistently found strong associations between divorce and adverse health effects in adolescents. Parental divorce has been hypothesized to lead to psychosocial development problems, mental health challenges, internalizing and externalizing behavior problems, and low academic performance among adolescents. This is supported by the Positive youth development theory, which states that a family setup has a major role to play in adolescent development and well-being. So, the focus of this research will be to test this hypothesized process model among adolescents in five provinces in Zimbabwe. A cross-sectional study will be conducted to test this hypothesis, and 1840 (n = 1840) adolescents aged between 14 to 17 will be employed for this study. A Stress and Questionnaire scale, a Child behavior checklist scale, and an academic concept scale will be used for this study. Data analysis will be done using Structural Equations Modeling. This study has many limitations, including the lack of a 'real-time' study, a few cross-sectional studies, a lack of a thorough and validated population measure, and many studies that have been done that have focused on one variable in relation to parental divorce. Therefore, this study seeks to bridge this gap between past research and current literature by using a validated population measure, a real-time study, and combining three latent variables in this study.Keywords: mental health, internalizing and externalizing behavior, divorce, academic achievements
Procedia PDF Downloads 811083 Non-Linear Assessment of Chromatographic Lipophilicity of Selected Steroid Derivatives
Authors: Milica Karadžić, Lidija Jevrić, Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Anamarija Mandić, Aleksandar Oklješa, Andrea Nikolić, Marija Sakač, Katarina Penov Gaši
Abstract:
Using chemometric approach, the relationships between the chromatographic lipophilicity and in silico molecular descriptors for twenty-nine selected steroid derivatives were studied. The chromatographic lipophilicity was predicted using artificial neural networks (ANNs) method. The most important in silico molecular descriptors were selected applying stepwise selection (SS) paired with partial least squares (PLS) method. Molecular descriptors with satisfactory variable importance in projection (VIP) values were selected for ANN modeling. The usefulness of generated models was confirmed by detailed statistical validation. High agreement between experimental and predicted values indicated that obtained models have good quality and high predictive ability. Global sensitivity analysis (GSA) confirmed the importance of each molecular descriptor used as an input variable. High-quality networks indicate a strong non-linear relationship between chromatographic lipophilicity and used in silico molecular descriptors. Applying selected molecular descriptors and generated ANNs the good prediction of chromatographic lipophilicity of the studied steroid derivatives can be obtained. This article is based upon work from COST Actions (CM1306 and CA15222), supported by COST (European Cooperation and Science and Technology).Keywords: artificial neural networks, chemometrics, global sensitivity analysis, liquid chromatography, steroids
Procedia PDF Downloads 3491082 Effects of Transit Fare Discount Programs on Passenger Volumes and Transferring Behaviors
Authors: Guan-Ying Chen, Han-Tsung Liou, Shou-Ren Hu
Abstract:
To address traffic congestion problems and encourage the use of public transportation systems in the Taipei metropolitan area, the Taipei City Government and the New Taipei City Government implemented a monthly ticket policy on April 16, 2018. This policy offers unlimited rides on the Taipei MRT, Taipei City Bus, New Taipei City Bus, Danhai Light Rail, and Public Bike (YouBike) on a monthly basis. Additionally, both city governments replaced the smart card discount policy with a new frequent flyer discount program (referred to as the loyal customer program) on February 1, 2020, introducing a differential pricing policy. Specifically, the more frequently the Taipei MRT system is used, the greater the discounts users receive. To analyze the impact of the Taipei public transport monthly ticket policy and the frequent user discount program on the passenger volume of the Taipei MRT system and the transferring behaviors of MRT users, this study conducts a trip-chain analysis using transaction data from Taipei MRT smart cards between September 2017 and December 2020. To achieve these objectives, the study employs four indicators: 1) number of passengers, 2) average number of rides, 3) average trip distance, and 4) instances of multiple consecutive rides. The study applies the t-test and Mann-Kendall trend test to investigate whether the proposed indicators have changed over time due to the implementation of the discount policy. Furthermore, the study examines the travel behaviors of passengers who use monthly tickets. The empirical results of the study indicate that the implementation of the Taipei public transport monthly ticket policy has led to an increase in the average number of passengers and a reduction in the average trip distance. Moreover, there has been a significant increase in instances of multiple consecutive rides, attributable to the unlimited rides offered by the monthly tickets. The impact of the frequent user discount program on changes in MRT passengers is not as pronounced as that of the Taipei public transportation monthly ticket policy. This is partly due to the fact that the frequent user discount program is only applicable to the Taipei MRT system, and the passenger volume was greatly affected by the COVID-19 pandemic. The findings of this research can serve as a reference for Taipei MRT Corporation in formulating its fare strategy and can also provide guidance for the Taipei and New Taipei City Governments in evaluating differential pricing policies for public transportation systems.Keywords: frequent user discount program, mass rapid transit, monthly ticket, smart card
Procedia PDF Downloads 901081 Identification of High-Rise Buildings Using Object Based Classification and Shadow Extraction Techniques
Authors: Subham Kharel, Sudha Ravindranath, A. Vidya, B. Chandrasekaran, K. Ganesha Raj, T. Shesadri
Abstract:
Digitization of urban features is a tedious and time-consuming process when done manually. In addition to this problem, Indian cities have complex habitat patterns and convoluted clustering patterns, which make it even more difficult to map features. This paper makes an attempt to classify urban objects in the satellite image using object-oriented classification techniques in which various classes such as vegetation, water bodies, buildings, and shadows adjacent to the buildings were mapped semi-automatically. Building layer obtained as a result of object-oriented classification along with already available building layers was used. The main focus, however, lay in the extraction of high-rise buildings using spatial technology, digital image processing, and modeling, which would otherwise be a very difficult task to carry out manually. Results indicated a considerable rise in the total number of buildings in the city. High-rise buildings were successfully mapped using satellite imagery, spatial technology along with logical reasoning and mathematical considerations. The results clearly depict the ability of Remote Sensing and GIS to solve complex problems in urban scenarios like studying urban sprawl and identification of more complex features in an urban area like high-rise buildings and multi-dwelling units. Object-Oriented Technique has been proven to be effective and has yielded an overall efficiency of 80 percent in the classification of high-rise buildings.Keywords: object oriented classification, shadow extraction, high-rise buildings, satellite imagery, spatial technology
Procedia PDF Downloads 1601080 Sustainable Practices through Organizational Internal Factors among South African Construction Firms
Authors: Oluremi I. Bamgbade, Oluwayomi Babatunde
Abstract:
Governments and nonprofits have been in the support of sustainability as the goal of businesses especially in the construction industry because of its considerable impacts on the environment, economy, and society. However, to measure the degree to which an organisation is being sustainable or pursuing sustainable growth can be difficult as a result of the clear sustainability strategy required to assume their commitment to the goal and competitive advantage. This research investigated the influence of organisational culture and organisational structure in achieving sustainable construction among South African construction firms. A total of 132 consultants from the nine provinces in South Africa participated in the survey. The data collected were initially screened using SPSS (version 21) while Partial Least Squares Structural Equation Modeling (PLS-SEM) algorithm and bootstrap techniques were employed to test the hypothesised paths. The empirical evidence also supported the hypothesised direct effects of organisational culture and organisational structure on sustainable construction. Similarly, the result regarding the relationship between organisational culture and organisational structure was supported. Therefore, construction industry can record a considerable level of construction sustainability and establish suitable cultures and structures within the construction organisations. Drawing upon organisational control theory, these findings supported the view that these organisational internal factors have a strong contingent effect on sustainability adoption in construction project execution. The paper makes theoretical, practical and methodological contributions within the domain of sustainable construction especially in the context of South Africa. Some limitations of the study are indicated, suggesting opportunities for future research.Keywords: organisational culture, organisational structure, South African construction firms, sustainable construction
Procedia PDF Downloads 2911079 A Study on Shavadoon Underground Living Space in Dezful and Shooshtar Cities, Southwest of Iran: As a Sample of Sustainable Vernacular Architecture
Authors: Haniyeh Okhovat, Mahmood Hosseini, Omid Kaveh Ahangari, Mona Zaryoun
Abstract:
Shavadoon is a type of underground living space, formerly used in urban residences of Dezful and Shooshtar cities in southwestern Iran. In spite of their high efficiency in creating cool spaces for hot summers of that area, Shavadoons were abandoned, like many other components of vernacular architecture, as a result of the modernism movement. However, Shavadoons were used by the local people as shelters during the 8-year Iran-Iraq war, and although several cases of bombardment happened during those years, no case of damage was reported in those two cities. On this basis, and regarding the high seismicity of Iran, the use of Shavadoons as post-disasters shelters can be considered as a good issue for research. This paper presents the results of a thorough study conducted on these spaces and their seismic behavior. First, the architectural aspects of Shavadoon and their construction technique are presented. Then, the results of seismic evaluation of a sample Shavadoon, conducted by a series of time history analyses, using Plaxis software and a set of selected earthquakes, are briefly explained. These results show that Shavadoons have good stability against seismic excitations. This stability is mainly because of the high strength of conglomerate materials inside which the Shavadoons have been excavated. On this basis, and considering other merits of this components of vernacular architecture in southwest of Iran, it is recommended that the revival of these components is seriously reconsidered by both architects and civil engineers.Keywords: Shavadoon, Iran high seismicity, Conglomerate, Modeling in Plaxis, Vernacular sustainable architecture
Procedia PDF Downloads 3071078 Interpretation and Prediction of Geotechnical Soil Parameters Using Ensemble Machine Learning
Authors: Goudjil kamel, Boukhatem Ghania, Jlailia Djihene
Abstract:
This paper delves into the development of a sophisticated desktop application designed to calculate soil bearing capacity and predict limit pressure. Drawing from an extensive review of existing methodologies, the study meticulously examines various approaches employed in soil bearing capacity calculations, elucidating their theoretical foundations and practical applications. Furthermore, the study explores the burgeoning intersection of artificial intelligence (AI) and geotechnical engineering, underscoring the transformative potential of AI- driven solutions in enhancing predictive accuracy and efficiency.Central to the research is the utilization of cutting-edge machine learning techniques, including Artificial Neural Networks (ANN), XGBoost, and Random Forest, for predictive modeling. Through comprehensive experimentation and rigorous analysis, the efficacy and performance of each method are rigorously evaluated, with XGBoost emerging as the preeminent algorithm, showcasing superior predictive capabilities compared to its counterparts. The study culminates in a nuanced understanding of the intricate dynamics at play in geotechnical analysis, offering valuable insights into optimizing soil bearing capacity calculations and limit pressure predictions. By harnessing the power of advanced computational techniques and AI-driven algorithms, the paper presents a paradigm shift in the realm of geotechnical engineering, promising enhanced precision and reliability in civil engineering projects.Keywords: limit pressure of soil, xgboost, random forest, bearing capacity
Procedia PDF Downloads 291077 Algebraic Coupled Level Set-Volume of Fluid Method with Capillary Pressure Treatment for Surface Tension Dominant Two-Phase Flows
Authors: Majid Haghshenas, James Wilson, Ranganathan Kumar
Abstract:
In this study, an Algebraic Coupled Level Set-Volume of Fluid (A-CLSVOF) method with capillary pressure treatment is proposed for the modeling of two-phase capillary flows. The Volume of Fluid (VOF) method is utilized to incorporate one-way coupling with the Level Set (LS) function in order to further improve the accuracy of the interface curvature calculation and resulting surface tension force. The capillary pressure is determined and treated independently of the hydrodynamic pressure in the momentum balance in order to maintain consistency between cell centered and interpolated values, resulting in a reduction in parasitic currents. In this method, both VOF and LS functions are transported where the new volume fraction determines the interface seed position used to reinitialize the LS field. The Hamilton-Godunov function is used with a second order (in space and time) discretization scheme to produce a signed distance function. The performance of the current methodology has been tested against some common test cases in order to assess the reduction in non-physical velocities and improvements in the interfacial pressure jump. The cases of a static drop, non-linear Rayleigh-Taylor instability and finally a droplets impact on a liquid pool were simulated to compare the performance of the present method to other well-known methods in the area of parasitic current reduction, interface location evolution and overall agreement with experimental results.Keywords: two-phase flow, capillary flow, surface tension force, coupled LS with VOF
Procedia PDF Downloads 3581076 Air Dispersion Model for Prediction Fugitive Landfill Gaseous Emission Impact in Ambient Atmosphere
Authors: Moustafa Osman Mohammed
Abstract:
This paper will explore formation of HCl aerosol at atmospheric boundary layers and encourages the uptake of environmental modeling systems (EMSs) as a practice evaluation of gaseous emissions (“framework measures”) from small and medium-sized enterprises (SMEs). The conceptual model predicts greenhouse gas emissions to ecological points beyond landfill site operations. It focuses on incorporation traditional knowledge into baseline information for both measurement data and the mathematical results, regarding parameters influence model variable inputs. The paper has simplified parameters of aerosol processes based on the more complex aerosol process computations. The simple model can be implemented to both Gaussian and Eulerian rural dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of organic vapors, and (iii) dry deposition. The chemical transformation of gas-phase compounds is taken into account photochemical formulation with exposure effects according to HCl concentrations as starting point of risk assessment. The discussion set out distinctly aspect of sustainability in reflection inputs, outputs, and modes of impact on the environment. Thereby, models incorporate abiotic and biotic species to broaden the scope of integration for both quantification impact and assessment risks. The later environmental obligations suggest either a recommendation or a decision of what is a legislative should be achieved for mitigation measures of landfill gas (LFG) ultimately.Keywords: air pollution, landfill emission, environmental management, monitoring/methods and impact assessment
Procedia PDF Downloads 3261075 Getting to Know the Enemy: Utilization of Phone Record Analysis Simulations to Uncover a Target’s Personal Life Attributes
Authors: David S. Byrne
Abstract:
The purpose of this paper is to understand how phone record analysis can enable identification of subjects in communication with a target of a terrorist plot. This study also sought to understand the advantages of the implementation of simulations to develop the skills of future intelligence analysts to enhance national security. Through the examination of phone reports which in essence consist of the call traffic of incoming and outgoing numbers (and not by listening to calls or reading the content of text messages), patterns can be uncovered that point toward members of a criminal group and activities planned. Through temporal and frequency analysis, conclusions were drawn to offer insights into the identity of participants and the potential scheme being undertaken. The challenge lies in the accurate identification of the users of the phones in contact with the target. Often investigators rely on proprietary databases and open sources to accomplish this task, however it is difficult to ascertain the accuracy of the information found. Thus, this paper poses two research questions: how effective are freely available web sources of information at determining the actual identification of callers? Secondly, does the identity of the callers enable an understanding of the lifestyle and habits of the target? The methodology for this research consisted of the analysis of the call detail records of the author’s personal phone activity spanning the period of a year combined with a hypothetical theory that the owner of said phone was a leader of terrorist cell. The goal was to reveal the identity of his accomplices and understand how his personal attributes can further paint a picture of the target’s intentions. The results of the study were interesting, nearly 80% of the calls were identified with over a 75% accuracy rating via datamining of open sources. The suspected terrorist’s inner circle was recognized including relatives and potential collaborators as well as financial institutions [money laundering], restaurants [meetings], a sporting goods store [purchase of supplies], and airline and hotels [travel itinerary]. The outcome of this research showed the benefits of cellphone analysis without more intrusive and time-consuming methodologies though it may be instrumental for potential surveillance, interviews, and developing probable cause for wiretaps. Furthermore, this research highlights the importance of building upon the skills of future intelligence analysts through phone record analysis via simulations; that hands-on learning in this case study emphasizes the development of the competencies necessary to improve investigations overall.Keywords: hands-on learning, intelligence analysis, intelligence education, phone record analysis, simulations
Procedia PDF Downloads 20