Search results for: investment climate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3978

Search results for: investment climate

48 Challenges, Responses and Governance in the Conservation of Forest and Wildlife: The Case of the Aravali Ranges, Delhi NCR

Authors: Shashi Mehta, Krishan Kumar Yadav

Abstract:

This paper presents an overview of issues pertaining to the conservation of the natural environment and factors affecting the coexistence of the forest, wildlife and people. As forests and wildlife together create the basis for economic, cultural and recreational spaces for overall well-being and life-support systems, the adverse impacts of increasing consumerism are only too evident. The IUCN predicts extinction of 41% of all amphibians and 26% of mammals. The major causes behind this threatened extinction are Deforestation, Dysfunctional governance, Climate Change, Pollution and Cataclysmic phenomena. Thus the intrinsic relationship between natural resources and wildlife needs to be understood in totality, not only for the eco-system but for humanity at large. To demonstrate this, forest areas in the Aravalis- the oldest mountain ranges of Asia—falling in the States of Haryana and Rajasthan, have been taken up for study. The Aravalis are characterized by extreme climatic conditions and dry deciduous forest cover on intermittent scattered hills. Extending across the districts of Gurgaon, Faridabad, Mewat, Mahendergarh, Rewari and Bhiwani, these ranges - with village common land on which the entire economy of the rural settlements depends - fall in the state of Haryana. Aravali ranges with diverse fauna and flora near Alwar town of state of Rajasthan also form part of NCR. Once, rich in biodiversity, the Aravalis played an important role in the sustainable co-existence of forest and people. However, with the advent of industrialization and unregulated urbanization, these ranges are facing deforestation, degradation and denudation. The causes are twofold, i.e. the need of the poor and the greed of the rich. People living in and around the Aravalis are mainly poor and eke out a living by rearing live-stock. With shrinking commons, they depend entirely upon these hills for grazing, fuel, NTFP, medicinal plants and even drinking water. But at the same time, the pressure of indiscriminate urbanization and industrialization in these hills fulfils the demands of the rich and powerful in collusion with Government agencies. The functionaries of federal and State Governments play largely a negative role supporting commercial interests. Additionally, planting of a non- indigenous species like prosopis juliflora across the ranges has resulted in the extinction of almost all the indigenous species. The wildlife in the area is also threatened because of the lack of safe corridors and suitable habitat. In this scenario, the participatory role of different stakeholders such as NGOs, civil society and local community in the management of forests becomes crucial not only for conservation but also for the economic wellbeing of the local people. Exclusion of villagers from protection and conservation efforts - be it designing, implementing or monitoring and evaluating could prove counterproductive. A strategy needs to be evolved, wherein Government agencies be made responsible by putting relevant legislation in place along with nurturing and promoting the traditional wisdom and ethics of local communities in the protection and conservation of forests and wild life in the Aravali ranges of States of Haryana and Rajasthan of the National Capital Region, Delhi.

Keywords: deforestation, ecosystem, governance, urbanization

Procedia PDF Downloads 325
47 Regenerating Habitats. A Housing Based on Modular Wooden Systems

Authors: Rui Pedro de Sousa Guimarães Ferreira, Carlos Alberto Maia Domínguez

Abstract:

Despite the ambitions to achieve climate neutrality by 2050, to fulfill the Paris Agreement's goals, the building and construction sector remains one of the most resource-intensive and greenhouse gas-emitting industries in the world, accounting for 40% of worldwide CO ₂ emissions. Over the past few decades, globalization and population growth have led to an exponential rise in demand in the housing market and, by extension, in the building industry. Considering this housing crisis, it is obvious that we will not stop building in the near future. However, the transition, which has already started, is challenging and complex because it calls for the worldwide participation of numerous organizations in altering how building systems, which have been a part of our everyday existence for over a century, are used. Wood is one of the alternatives that is most frequently used nowadays (under responsible forestry conditions) because of its physical qualities and, most importantly, because it produces fewer carbon emissions during manufacturing than steel or concrete. Furthermore, as wood retains its capacity to store CO ₂ after application and throughout the life of the building, working as a natural carbon filter, it helps to reduce greenhouse gas emissions. After a century-long focus on other materials, in the last few decades, technological advancements have made it possible to innovate systems centered around the use of wood. However, there are still some questions that require further exploration. It is necessary to standardize production and manufacturing processes based on prefabrication and modularization principles to achieve greater precision and optimization of the solutions, decreasing building time, prices, and waste from raw materials. In addition, this approach will make it possible to develop new architectural solutions to solve the rigidity and irreversibility of buildings, two of the most important issues facing housing today. Most current models are still created as inflexible, fixed, monofunctional structures that discourage any kind of regeneration, based on matrices that sustain the conventional family's traditional model and are founded on rigid, impenetrable compartmentalization. Adaptability and flexibility in housing are, and always have been, necessities and key components of architecture. People today need to constantly adapt to their surroundings and themselves because of the fast-paced, disposable, and quickly obsolescent nature of modern items. Migrations on a global scale, different kinds of co-housing, or even personal changes are some of the new questions that buildings have to answer. Designing with the reversibility of construction systems and materials in mind not only allows for the concept of "looping" in construction, with environmental advantages that enable the development of a circular economy in the sector but also unleashes multiple social benefits. In this sense, it is imperative to develop prefabricated and modular construction systems able to address the formalization of a reversible proposition that adjusts to the scale of time and its multiple reformulations, many of which are unpredictable. We must allow buildings to change, grow, or shrink over their lifetime, respecting their nature and, finally, the nature of the people living in them. It´s the ability to anticipate the unexpected, adapt to social factors, and take account of demographic shifts in society to stabilize communities, the foundation of real innovative sustainability.

Keywords: modular, timber, flexibility, housing

Procedia PDF Downloads 78
46 Celebrity Culture and Social Role of Celebrities in Türkiye during the 1990s: The Case of Türkiye, Newspaper, Radio, Televison (TGRT) Channel

Authors: Yelda Yenel, Orkut Acele

Abstract:

In a media-saturated world, celebrities have become ubiquitous figures, encountered both in public spaces and within the privacy of our homes, seamlessly integrating into daily life. From Alexander the Great to contemporary media personalities, the image of celebrity has persisted throughout history, manifesting in various forms and contexts. Over time, as the relationship between society and the market evolved, so too did the roles and behaviors of celebrities. These transformations offer insights into the cultural climate, revealing shifts in habits and worldviews. In Türkiye, the emergence of private television channels brought an influx of celebrities into everyday life, making them a pervasive part of daily routines. To understand modern celebrity culture, it is essential to examine the ideological functions of media within political, economic, and social contexts. Within this framework, celebrities serve as both reflections and creators of cultural values and, at times, act as intermediaries, offering insights into the society of their era. Starting its broadcasting life in 1992 with religious films and religious conversation, Türkiye Newspaper, Radio, Television channel (TGRT) later changed its appearance, slogan, and the celebrities it featured in response to the political atmosphere. Celebrities played a critical role in transforming from the existing slogan 'Peace has come to the screen' to 'Watch and see what will happen”. Celebrities hold significant roles in society, and their images are produced and circulated by various actors, including media organizations and public relations teams. Understanding these dynamics is crucial for analyzing their influence and impact. This study aims to explore Turkish society in the 1990s, focusing on TGRT and its visual and discursive characteristics regarding celebrity figures such as Seda Sayan. The first section examines the historical development of celebrity culture and its transformations, guided by the conceptual framework of celebrity studies. The complex and interconnected image of celebrity, as introduced by post-structuralist approaches, plays a fundamental role in making sense of existing relationships. This section traces the existence and functions of celebrities from antiquity to the present day. The second section explores the economic, social, and cultural contexts of 1990s Türkiye, focusing on the media landscape and visibility that became prominent in the neoliberal era following the 1980s. This section also discusses the political factors underlying TGRT's transformation, such as the 1997 military memorandum. The third section analyzes TGRT as a case study, focusing on its significance as an Islamic television channel and the shifts in its public image, categorized into two distinct periods. The channel’s programming, which aligned with Islamic teachings, and the celebrities who featured prominently during these periods became the public face of both TGRT and the broader society. In particular, the transition to a more 'secular' format during TGRT's second phase is analyzed, focusing on changes in celebrity attire and program formats. This study reveals that celebrities are used as indicators of ideology, benefiting from this instrumentalization by enhancing their own fame and reflecting the prevailing cultural hegemony in society.

Keywords: celebrity culture, media, neoliberalism, TGRT

Procedia PDF Downloads 30
45 Energy Audit and Renovation Scenarios for a Historical Building in Rome: A Pilot Case Towards the Zero Emission Building Goal

Authors: Domenico Palladino, Nicolandrea Calabrese, Francesca Caffari, Giulia Centi, Francesca Margiotta, Giovanni Murano, Laura Ronchetti, Paolo Signoretti, Lisa Volpe, Silvia Di Turi

Abstract:

The aim to achieve a fully decarbonized building stock by 2050 stands as one of the most challenging issues within the spectrum of energy and climate objectives. Numerous strategies are imperative, particularly emphasizing the reduction and optimization of energy demand. Ensuring the high energy performance of buildings emerges as a top priority, with measures aimed at cutting energy consumptions. Concurrently, it is imperative to decrease greenhouse gas emissions by using renewable energy sources for the on-site energy production, thereby striving for an energy balance leading towards zero-emission buildings. Italy's predominant building stock comprises ancient buildings, many of which hold historical significance and are subject to stringent preservation and conservation regulations. Attaining high levels of energy efficiency and reducing CO2 emissions in such buildings poses a considerable challenge, given their unique characteristics and the imperative to adhere to principles of conservation and restoration. Additionally, conducting a meticulous analysis of these buildings' current state is crucial for accurately quantifying their energy performance and predicting the potential impacts of proposed renovation strategies on energy consumption reduction. Within this framework, the paper presents a pilot case in Rome, outlining a methodological approach for the renovation of historic buildings towards achieving Zero Emission Building (ZEB) objective. The building has a mixed function with offices, a conference hall, and an exposition area. The building envelope is made of historical and precious materials used as cladding which must be preserved. A thorough understanding of the building's current condition serves as a prerequisite for analyzing its energy performance. This involves conducting comprehensive archival research, undertaking on-site diagnostic examinations to characterize the building envelope and its systems, and evaluating actual energy usage data derived from energy bills. Energy simulations and audit are the first step in the analysis with the assessment of the energy performance of the actual current state. Subsequently, different renovation scenarios are proposed, encompassing advanced building techniques, to pinpoint the key actions necessary for improving mechanical systems, automation and control systems, and the integration of renewable energy production. These scenarios entail different levels of renovation, ranging from meeting minimum energy performance goals to achieving the highest possible energy efficiency level. The proposed interventions are meticulously analyzed and compared to ascertain the feasibility of attaining the Zero Emission Building objective. In conclusion, the paper provides valuable insights that can be extrapolated to inform a broader approach towards energy-efficient refurbishment of historical buildings that may have limited potential for renovation in their building envelopes. By adopting a methodical and nuanced approach, it is possible to reconcile the imperative of preserving cultural heritage with the pressing need to transition towards a sustainable, low-carbon future.

Keywords: energy conservation and transition, energy efficiency in historical buildings, buildings energy performance, energy retrofitting, zero emission buildings, energy simulation

Procedia PDF Downloads 67
44 Use of Artificial Intelligence and Two Object-Oriented Approaches (k-NN and SVM) for the Detection and Characterization of Wetlands in the Centre-Val de Loire Region, France

Authors: Bensaid A., Mostephaoui T., Nedjai R.

Abstract:

Nowadays, wetlands are the subject of contradictory debates opposing scientific, political and administrative meanings. Indeed, given their multiple services (drinking water, irrigation, hydrological regulation, mineral, plant and animal resources...), wetlands concentrate many socio-economic and biodiversity issues. In some regions, they can cover vast areas (>100 thousand ha) of the landscape, such as the Camargue area in the south of France, inside the Rhone delta. The high biological productivity of wetlands, the strong natural selection pressures and the diversity of aquatic environments have produced many species of plants and animals that are found nowhere else. These environments are tremendous carbon sinks and biodiversity reserves depending on their age, composition and surrounding environmental conditions, wetlands play an important role in global climate projections. Covering more than 3% of the earth's surface, wetlands have experienced since the beginning of the 1990s a tremendous revival of interest, which has resulted in the multiplication of inventories, scientific studies and management experiments. The geographical and physical characteristics of the wetlands of the central region conceal a large number of natural habitats that harbour a great biological diversity. These wetlands, one of the natural habitats, are still influenced by human activities, especially agriculture, which affects its layout and functioning. In this perspective, decision-makers need to delimit spatial objects (natural habitats) in a certain way to be able to take action. Thus, wetlands are no exception to this rule even if it seems to be a difficult exercise to delimit a type of environment as whose main characteristic is often to occupy the transition between aquatic and terrestrial environment. However, it is possible to map wetlands with databases, derived from the interpretation of photos and satellite images, such as the European database Corine Land cover, which allows quantifying and characterizing for each place the characteristic wetland types. Scientific studies have shown limitations when using high spatial resolution images (SPOT, Landsat, ASTER) for the identification and characterization of small wetlands (1 hectare). To address this limitation, it is important to note that these wetlands generally represent spatially complex features. Indeed, the use of very high spatial resolution images (>3m) is necessary to map small and large areas. However, with the recent evolution of artificial intelligence (AI) and deep learning methods for satellite image processing have shown a much better performance compared to traditional processing based only on pixel structures. Our research work is also based on spectral and textural analysis on THR images (Spot and IRC orthoimage) using two object-oriented approaches, the nearest neighbour approach (k-NN) and the Super Vector Machine approach (SVM). The k-NN approach gave good results for the delineation of wetlands (wet marshes and moors, ponds, artificial wetlands water body edges, ponds, mountain wetlands, river edges and brackish marshes) with a kappa index higher than 85%.

Keywords: land development, GIS, sand dunes, segmentation, remote sensing

Procedia PDF Downloads 72
43 Converting Urban Organic Waste into Aquaculture Feeds: A Two-Step Bioconversion Approach

Authors: Aditi Chitharanjan Parmar, Marco Gottardo, Giulia Adele Tuci, Francesco Valentino

Abstract:

The generation of urban organic waste is a significant environmental problem due to the potential release of leachate and/or methane into the environment. This contributes to climate change, discharging a valuable resource that could be used in various ways. This research addresses this issue by proposing a two-step approach by linking biowaste management to aquaculture industry via single cell proteins (SCP) production. A mixture of food waste and municipal sewage sludge (FW-MSS) was firstly subjected to a mesophilic (37°C) anaerobic fermentation to produce a liquid stream rich in short-chain fatty acids (SCFAs), which are important building blocks for the following microbial biomass growth. In the frame of stable fermentation activity (after 1 week of operation), the average value of SCFAs was 21.3  0.4 g COD/L, with a CODSCFA/CODSOL ratio of 0.77 COD/COD. This indicated the successful strategy to accumulate SCFAs from the biowaste mixture by applying short hydraulic retention time (HRT; 4 days) and medium organic loading rate (OLR; 7 – 12 g VS/L d) in the lab-scale (V = 4 L) continuous stirred tank reactor (CSTR). The SCFA-rich effluent was then utilized as feedstock for the growth of a mixed microbial consortium able to store polyhydroxyalkanoates (PHA), a class of biopolymers completely biodegradable in nature and produced as intracellular carbon/energy source. Given the demonstrated properties of the intracellular PHA as antimicrobial and immunomodulatory effect on various fish species, the PHA-producing culture was intended to be utilized as SCP in aquaculture. The growth of PHA-storing biomass was obtained in a 2-L sequencing batch reactor (SBR), fully aerobic and set at 25°C; to stimulate a certain storage response (PHA production) in the cells, the feast-famine conditions were adopted, consisting in an alternation of cycles during which the biomass was exposed to an initial abundance of substrate (feast phase) followed by a starvation period (famine phase). To avoid the proliferation of other bacteria not able to store PHA, the SBR was maintained at low HRT (2 days). Along the stable growth of the mixed microbial consortium (the growth yield was estimated to be 0.47 COD/COD), the feast-famine strategy enhanced the PHA production capacity, leading to a final PHA content in the biomass equal to 16.5 wt%, which is suitable for the use as SCP. In fact, by incorporating the waste-derived PHA-rich biomass into fish feed at 20 wt%, the final feed could contain a PHA content around 3.0 wt%, within the recommended range (0.2–5.0 wt%) for promoting fish health. Proximate analysis of the PHA-rich biomass revealed a good crude proteins level (around 51 wt%) and the presence of all the essential amino acids (EAA), together accounting for 31% of the SCP total amino acid composition. This suggested that the waste-derived SCP was a source of good quality proteins with a good nutritional value. This approach offers a sustainable solution for urban waste management, potentially establishing a sustainable waste-to-value conversion route by connecting waste management to the growing aquaculture and fish feed production sectors.

Keywords: feed supplement, nutritional value, polyhydroxyalkanoates (PHA), single cell protein (SCP), urban organic waste.

Procedia PDF Downloads 41
42 Solar-Electric Pump-out Boat Technology: Impacts on the Marine Environment, Public Health, and Climate Change

Authors: Joy Chiu, Colin Hemez, Emma Ryan, Jia Sun, Robert Dubrow, Michael Pascucilla

Abstract:

The popularity of recreational boating is on the rise in the United States, which raises numerous national-level challenges in the management of air and water pollution, aquatic habitat destruction, and waterway access. The need to control sewage discharge from recreational vessels underlies all of these challenges. The release of raw human waste into aquatic environments can lead to eutrophication and algal blooms; can increase human exposure to pathogenic viruses, bacteria, and parasites; can financially impact commercial shellfish harvest/fisheries and marine bathing areas; and can negatively affect access to recreational and/or commercial waterways to the detriment of local economies. Because of the damage that unregulated sewage discharge can do to environments and human health/marine life, recreational vessels in the United States are required by law to 'pump-out' sewage from their holding tanks into sewage treatment systems in all designated 'no discharge areas'. Many pump-out boats, which transfer waste out of recreational vessels, are operated and maintained using funds allocated through the Federal Clean Vessel Act (CVA). The East Shore District Health Department of Branford, Connecticut is protecting this estuary by pioneering the design and construction of the first-in-the-nation zero-emissions, the solar-electric pump-out boat of its size to replace one of its older traditional gasoline-powered models through a Connecticut Department of Energy and Environmental Protection CVA Grant. This study, conducted in collaboration with the East Shore District Health Department, the Connecticut Department of Energy and Environmental Protection, States Organization for Boating Access and Connecticut’s CVA program coordinators, had two aims: (1) To perform a national assessment of pump-out boat programs, supplemented by a limited international assessment, to establish best pump-out boat practices (regardless of how the boat is powered); and (2) to estimate the cost, greenhouse gas emissions, and environmental and public health impacts of solar-electric versus traditional gasoline-powered pump-out boats. A national survey was conducted of all CVA-funded pump-out program managers and selected pump-out boat operators to gauge best practices; costs associated with gasoline-powered pump-out boat operation and management; and the regional, cultural, and policy-related issues that might arise from the adoption of solar-electric pump-out boat technology. We also conducted life-cycle analyses of gasoline-powered and solar-electric pump-out boats to compare their greenhouse gas emissions; production of air, soil and water pollution; and impacts on human health. This work comprises the most comprehensive study into pump-out boating practices in the United States to date, in which information obtained at local, state, national, and international levels is synthesized. This study aims to enable CVA programs to make informed recommendations for sustainable pump-out boating practices and identifies the challenges and opportunities that remain for the wide adoption of solar-electric pump-out boat technology.

Keywords: pump-out boat, marine water, solar-electric, zero emissions

Procedia PDF Downloads 128
41 Texture Characteristics and Depositional Environment of the Lower Mahi River Sediment, Mainland Gujarat, India

Authors: Shazi Farooqui, Anupam Sharma

Abstract:

The Mahi River (~600km long) is an important west flowing the river of Central India. It originates in Madhya Pradesh and starts flowing in NW direction and enters into the state of Rajasthan. It flows across southern Rajasthan and then enters into Gujarat and finally debouches in the Gulf of Cambay. In Gujarat state, it flows through all four geomorphic zones i.e. eastern upland zone, shallow buried piedmont zone, alluvial zone and coastal zone. In lower reaches and particularly when it is flowing under the coastal regime, it provides an opportunity to study – 1. Land–Sea interaction and role of relative sea level changes, 2. Coastal/estuarine geological process, 3. Landscape evolution in marginal areas and so on. The Late Quaternary deposits of Mainland Gujarat is appreciably studied by Chamyal and his group of MS University of Baroda, and they have established that the 30-35m thick sediment package of the Mainland Gujarat is comprised of marine, fluvial and aeolian sediments. It is also established that in the estuarine zone, the upper few meter thick sediments package is of marine nature. However, its thickness, characters and the depositional environment including the role of climate and tectonics is still not clearly defined. To understand few aspects of the above mentioned, in the present study, a 17m subsurface sediment core has been retrieved from the estuarine zone of Mahi river basin. The Multiproxy studies which include the textural analysis (grain size), Loss on ignition (LOI), Bulk and clay mineralogy and geochemical studies have been carried out. In the entire sedimentary sequence, the grain size largely varies from coarse sand to clay; however, a solitary gravel bed is also noticed. The lower part (depth 9-17m), is mainly comprised of sub equal proportion of sand and silt. The sediments mainly have bimodal and leptokurtic distribution and deposited in alternate sand-silt package, probably indicating flood deposits. Relatively low moisture (1.8%) and organic carbon (2.4%) with increased carbonate values (12%) indicate that conditions must have to remain oxidizing. The middle part (depth 9–6m) has a 1m thick gravel bed at the bottom and overlain by coarse sand to very fine sand showing fining upward sequence. The presence of gravel bed suggests some kind of tectonic activity resulting into change in base level or enhanced precipitation in the catchment region. The upper part (depth 6–0m; top part of sequence) mainly comprised of fine sand to silt size grains (with appreciable clay content). The sediment of this part is Unimodal and very leptokurtic in nature suggesting wave and winnowing process and deposited in low energy suspension environment. This part has relatively high moisture (2.1%) and organic carbon (2.7%) with decreased carbonate content (4.2%) indicating change in the depositional environment probably under estuarine conditions. The presence of chlorite along with smectite clay mineral further supports the significant marine contribution in the formation of upper part of the sequence.

Keywords: grain size, statistical analysis, clay minerals, late quaternary, LOI

Procedia PDF Downloads 181
40 Economic Analysis of a Carbon Abatement Technology

Authors: Hameed Rukayat Opeyemi, Pericles Pilidis Pagone Emmanuele, Agbadede Roupa, Allison Isaiah

Abstract:

Climate change represents one of the single most challenging problems facing the world today. According to the National Oceanic and Administrative Association, Atmospheric temperature rose almost 25% since 1958, Artic sea ice has shrunk 40% since 1959 and global sea levels have risen more than 5.5cm since 1990. Power plants are the major culprits of GHG emission to the atmosphere. Several technologies have been proposed to reduce the amount of GHG emitted to the atmosphere from power plant, one of which is the less researched Advanced zero-emission power plant. The advanced zero emission power plants make use of mixed conductive membrane (MCM) reactor also known as oxygen transfer membrane (OTM) for oxygen transfer. The MCM employs membrane separation process. The membrane separation process was first introduced in 1899 when Walter Hermann Nernst investigated electric current between metals and solutions. He found that when a dense ceramic is heated, the current of oxygen molecules move through it. In the bid to curb the amount of GHG emitted to the atmosphere, the membrane separation process was applied to the field of power engineering in the low carbon cycle known as the Advanced zero emission power plant (AZEP cycle). The AZEP cycle was originally invented by Norsk Hydro, Norway and ABB Alstom power (now known as Demag Delaval Industrial turbomachinery AB), Sweden. The AZEP drew a lot of attention because its ability to capture ~100% CO2 and also boasts of about 30-50% cost reduction compared to other carbon abatement technologies, the penalty in efficiency is also not as much as its counterparts and crowns it with almost zero NOx emissions due to very low nitrogen concentrations in the working fluid. The advanced zero emission power plants differ from a conventional gas turbine in the sense that its combustor is substituted with the mixed conductive membrane (MCM-reactor). The MCM-reactor is made up of the combustor, low-temperature heat exchanger LTHX (referred to by some authors as air preheater the mixed conductive membrane responsible for oxygen transfer and the high-temperature heat exchanger and in some layouts, the bleed gas heat exchanger. Air is taken in by the compressor and compressed to a temperature of about 723 Kelvin and pressure of 2 Mega-Pascals. The membrane area needed for oxygen transfer is reduced by increasing the temperature of 90% of the air using the LTHX; the temperature is also increased to facilitate oxygen transfer through the membrane. The air stream enters the LTHX through the transition duct leading to inlet of the LTHX. The temperature of the air stream is then increased to about 1150 K depending on the design point specification of the plant and the efficiency of the heat exchanging system. The amount of oxygen transported through the membrane is directly proportional to the temperature of air going through the membrane. The AZEP cycle was developed using the Fortran software and economic analysis was conducted using excel and Matlab followed by optimization case study. The Simple bleed gas heat exchange layout (100 % CO2 capture), Bleed gas heat exchanger layout with flue gas turbine (100 % CO2 capture), Pre-expansion reheating layout (Sequential burning layout)–AZEP 85% (85% CO2 capture) and Pre-expansion reheating layout (Sequential burning layout) with flue gas turbine–AZEP 85% (85% CO2 capture). This paper discusses monte carlo risk analysis of four possible layouts of the AZEP cycle.

Keywords: gas turbine, global warming, green house gas, fossil fuel power plants

Procedia PDF Downloads 397
39 Micro-Oculi Facades as a Sustainable Urban Facade

Authors: Ok-Kyun Im, Kyoung Hee Kim

Abstract:

We live in an era that faces global challenges of climate changes and resource depletion. With the rapid urbanization and growing energy consumption in the built environment, building facades become ever more important in architectural practice and environmental stewardship. Furthermore, building facade undergoes complex dynamics of social, cultural, environmental and technological changes. Kinetic facades have drawn attention of architects, designers, and engineers in the field of adaptable, responsive and interactive architecture since 1980’s. Materials and building technologies have gradually evolved to address the technical implications of kinetic facades. The kinetic façade is becoming an independent system of the building, transforming the design methodology to sustainable building solutions. Accordingly, there is a need for a new design methodology to guide the design of a kinetic façade and evaluate its sustainable performance. The research objectives are two-fold: First, to establish a new design methodology for kinetic facades and second, to develop a micro-oculi façade system and assess its performance using the established design method. The design approach to the micro-oculi facade is comprised of 1) façade geometry optimization and 2) dynamic building energy simulation. The façade geometry optimization utilizes multi-objective optimization process, aiming to balance the quantitative and qualitative performances to address the sustainability of the built environment. The dynamic building energy simulation was carried out using EnergyPlus and Radiance simulation engines with scripted interfaces. The micro-oculi office was compared with an office tower with a glass façade in accordance with ASHRAE 90.1 2013 to understand its energy efficiency. The micro-oculi facade is constructed with an array of circular frames attached to a pair of micro-shades called a micro-oculus. The micro-oculi are encapsulated between two glass panes to protect kinetic mechanisms with longevity. The micro-oculus incorporates rotating gears that transmit the power to adjacent micro-oculi to minimize the number of mechanical parts. The micro-oculus rotates around its center axis with a step size of 15deg depending on the sun’s position while maximizing daylighting potentials and view-outs. A 2 ft by 2ft prototyping was undertaken to identify operational challenges and material implications of the micro-oculi facade. In this research, a systematic design methodology was proposed, that integrates multi-objectives of kinetic façade design criteria and whole building energy performance simulation within a holistic design process. This design methodology is expected to encourage multidisciplinary collaborations between designers and engineers to collaborate issues of the energy efficiency, daylighting performance and user experience during design phases. The preliminary energy simulation indicated that compared to a glass façade, the micro-oculi façade showed energy savings due to its improved thermal properties, daylighting attributes, and dynamic solar performance across the day and seasons. It is expected that the micro oculi façade provides a cost-effective, environmentally-friendly, sustainable, and aesthetically pleasing alternative to glass facades. Recommendations for future studies include lab testing to validate the simulated data of energy and optical properties of the micro-oculi façade. A 1:1 performance mock-up of the micro-oculi façade can suggest in-depth understanding of long-term operability and new development opportunities applicable for urban façade applications.

Keywords: energy efficiency, kinetic facades, sustainable architecture, urban facades

Procedia PDF Downloads 257
38 Exploring Participatory Research Approaches in Agricultural Settings: Analyzing Pathways to Enhance Innovation in Production

Authors: Michele Paleologo, Marta Acampora, Serena Barello, Guendalina Graffigna

Abstract:

Introduction: In the face of increasing demands for higher agricultural productivity with minimal environmental impact, participatory research approaches emerge as promising means to promote innovation. However, the complexities and ambiguities surrounding these approaches in both theory and practice present challenges. This Scoping Review seeks to bridge these gaps by mapping participatory approaches in agricultural contexts, analyzing their characteristics, and identifying indicators of success. Methods: Following PRISMA guidelines, we conducted a systematic Scoping Review, searching Scopus and Web of Science databases. Our review encompassed 34 projects from diverse geographical regions and farming contexts. Thematic analysis was employed to explore the types of innovation promoted and the categories of participants involved. Results: The identified innovation types encompass technological advancements, sustainable farming practices, and market integration, forming 5 main themes: climate change, cultivar, irrigation, pest and herbicide, and technical improvement. These themes represent critical areas where participatory research drives innovation to address pressing agricultural challenges. Participants were categorized as citizens, experts, NGOs, private companies, and public bodies. Understanding their roles is vital for designing effective participatory initiatives that embrace diverse stakeholders. The review also highlighted 27 theoretical frameworks underpinning participatory projects. Clearer guidelines and reporting standards are crucial for facilitating the comparison and synthesis of findings across studies, thereby enhancing the robustness of future participatory endeavors. Furthermore, we identified three main categories of barriers and facilitators: pragmatic/behavioral, emotional/relational, and cognitive. These insights underscore the significance of participant engagement and collaborative decision-making for project success beyond theoretical considerations. Regarding participation, projects were classified as contributory (5 cases), where stakeholders contributed insights; collaborative (10 cases), with active co-designing of solutions; and co-created (19 cases), featuring deep stakeholder involvement from ideation to implementation, resulting in joint ownership of outcomes. Such diverse participation modes highlight the adaptability of participatory approaches to varying agricultural contexts. Discussion: In conclusion, this Scoping Review demonstrates the potential of participatory research in driving transformative changes in farmers' practices, fostering sustainability and innovation in agriculture. Understanding the diverse landscape of participatory approaches, theoretical frameworks, and participant engagement strategies is essential for designing effective and context-specific interventions. Collaborative efforts among researchers, practitioners, and stakeholders are pivotal in harnessing the full potential of participatory approaches and driving positive change in agricultural settings worldwide. The identified themes of innovation and participation modes provide valuable insights for future research and targeted interventions in agricultural innovation.

Keywords: participatory research, co-creation, agricultural innovation, stakeholders' engagement

Procedia PDF Downloads 65
37 The Legal and Regulatory Gaps of Blockchain-Enabled Energy Prosumerism

Authors: Karisma Karisma, Pardis Moslemzadeh Tehrani

Abstract:

This study aims to conduct a high-level strategic dialogue on the lack of consensus, consistency, and legal certainty regarding blockchain-based energy prosumerism so that appropriate institutional and governance structures can be put in place to address the inadequacies and gaps in the legal and regulatory framework. The drive to achieve national and global decarbonization targets is a driving force behind climate goals and policies under the Paris Agreement. In recent years, efforts to ‘demonopolize’ and ‘decentralize’ energy generation and distribution have driven the energy transition toward decentralized systems, invoking concepts such as ownership, sovereignty, and autonomy of RE sources. The emergence of individual and collective forms of prosumerism and the rapid diffusion of blockchain is expected to play a critical role in the decarbonization and democratization of energy systems. However, there is a ‘regulatory void’ relating to individual and collective forms of prosumerism that could prevent the rapid deployment of blockchain systems and potentially stagnate the operationalization of blockchain-enabled energy sharing and trading activities. The application of broad and facile regulatory fixes may be insufficient to address the major regulatory gaps. First, to the authors’ best knowledge, the concepts and elements circumjacent to individual and collective forms of prosumerism have not been adequately described in the legal frameworks of many countries. Second, there is a lack of legal certainty regarding the creation and adaptation of business models in a highly regulated and centralized energy system, which inhibits the emergence of prosumer-driven niche markets. There are also current and prospective challenges relating to the legal status of blockchain-based platforms for facilitating energy transactions, anticipated with the diffusion of blockchain technology. With the rise of prosumerism in the energy sector, the areas of (a) network charges, (b) energy market access, (c) incentive schemes, (d) taxes and levies, and (e) licensing requirements are still uncharted territories in many countries. The uncertainties emanating from this area pose a significant hurdle to the widespread adoption of blockchain technology, a complementary technology that offers added value and competitive advantages for energy systems. The authors undertake a conceptual and theoretical investigation to elucidate the lack of consensus, consistency, and legal certainty in the study of blockchain-based prosumerism. In addition, the authors set an exploratory tone to the discussion by taking an analytically eclectic approach that builds on multiple sources and theories to delve deeper into this topic. As an interdisciplinary study, this research accounts for the convergence of regulation, technology, and the energy sector. The study primarily adopts desk research, which examines regulatory frameworks and conceptual models for crucial policies at the international level to foster an all-inclusive discussion. With their reflections and insights into the interaction of blockchain and prosumerism in the energy sector, the authors do not aim to develop definitive regulatory models or instrument designs, but to contribute to the theoretical dialogue to navigate seminal issues and explore different nuances and pathways. Given the emergence of blockchain-based energy prosumerism, identifying the challenges, gaps and fragmentation of governance regimes is key to facilitating global regulatory transitions.

Keywords: blockchain technology, energy sector, prosumer, legal and regulatory.

Procedia PDF Downloads 181
36 Two Houses in the Arabian Desert: Assessing the Built Work of RCR Architects in the UAE

Authors: Igor Peraza Curiel, Suzanne Strum

Abstract:

Today, when many foreign architects are receiving commissions in the United Arab Emirates, it is essential to analyze how their designs are influenced by the region's culture, environment, and building traditions. This study examines the approach to siting, geometry, construction methods, and material choices in two private homes for a family in Dubai, a project being constructed on adjacent sites by the acclaimed Spanish team of RCR Architects. Their third project in Dubai, the houses mark a turning point in their design approach to the desert. The Pritzker Prize-winning architects of RCR gained renown for building works deeply responsive to the history, landscape, and customs of their hometown in a volcanic area of the Catalonia region of Spain. Key formative projects and their entry to practice in UAE will be analyzed according to the concepts of place identity, the poetics of construction, and material imagination. The poetics of construction, a theoretical position with a long practical tradition, was revived by the British critic Kenneth Frampton. The idea of architecture as a constructional craft is related to the concepts of material imagination and place identity--phenomenological concerns with the creative engagement with local matter and topography that are at the very essence of RCR's way of designing, detailing, and making. Our study situates RCR within the challenges of building in the region, where western forms and means have largely replaced the ingenious responsiveness of indigenous architecture to the climate and material scarcity. The dwellings, iterations of the same steel and concrete vaulting system, highlight the conceptual framework of RCR's design approach to offer a study in contemporary critical regionalism. The Kama House evokes Bedouin tents, while the Alwah House takes the form of desert dunes in response to the temporality of the winds. Metal mesh screens designed to capture the shifting sands will complete the forms. The original research draws on interviews with the architects and unique documentation provided by them and collected by the authors during on-site visits. By examining the two houses in-depth, this paper foregrounds a series of timely questions: 1) What is the impact of the local climatic, cultural, and material conditions on their project in the UAE? 2) How does this work further their experiences in the region? 3) How has RCR adapted their construction techniques as their work expands beyond familiar settings? The investigation seeks to understand how the design methodology developed for more than 20 years and enmeshed in the regional milieu of their hometown can transform as the architects encounter unique characteristics and values in the Middle East. By focusing on the contemporary interpretation of Arabic geometry and elements, the houses reveal the role of geometry, tectonics, and material specificity in the realization from conceptual sketches to built form. In emphasizing the importance of regional responsiveness, the dynamics of international construction practice, and detailing this study highlights essential issues for professionals and students looking to practice in an increasingly global market.

Keywords: material imagination, regional responsiveness, place identity, poetics of construction

Procedia PDF Downloads 145
35 Developing a Sustainable Transit Planning Index Using Analytical Hierarchy Process Method for ZEB Implementation in Canada

Authors: Mona Ghafouri-Azar, Sara Diamond, Jeremy Bowes, Grace Yuan, Aimee Burnett, Michelle Wyndham-West, Sara Wagner, Anand Pariyarath

Abstract:

Transportation is the fastest growing source of greenhouse gas emissions worldwide. In Canada, it is responsible for 23% of total CO2emissions from fuel combustion, and emissions from the transportation sector are the second largest source of emissions after the oil and gas sector. Currently, most Canadian public transportation systems rely on buses that operateon fossil fuels.Canada is currently investing billions of dollars to replacediesel buses with electric busesas this isperceived to have a significant impact on climate mitigation. This paper focuses on the possible impacts of zero emission buses (ZEB) on sustainable development, considering three dimensions of sustainability; environmental quality, economic growth, and social development.A sustainable transportation system is one that is safe, affordable, accessible, efficient, and resilient and that contributes minimal emissions of carbon and other pollutants.To enable implementation of these goals, relevant indicators were selected and defined that measure progress towards a sustainable transportation system. These were drawn from Canadian and international examples. Studies compare different European cities in terms of development, sustainability, and infrastructures, by using transport performance indicators. A Normalized Transport Sustainability index measures and compares policies in different urban areas and allows fine-tuning of policies. Analysts use a number ofmethods for sustainable analysis, like cost-benefit analysis (CBA) toassess economic benefit, life-cycle assessment (LCA) to assess social, economic, and environment factors and goals, and multi-criteria decision making (MCDM) analysis which can comparediffering stakeholder preferences.A multi criteria decision making approach is an appropriate methodology to plan and evaluate sustainable transit development and to provide insights and meaningful information for decision makers and transit agencies. It is essential to develop a system thataggregates specific discrete indices to assess the sustainability of transportation systems.Theseprioritize indicators appropriate for the differentCanadian transit system agencies and theirpreferences and requirements. This studywill develop an integrating index that alliesexistingdiscrete indexes to supporta reliable comparison between the current transportation system (diesel buses) and the new ZEB system emerging in Canada. As a first step, theindexes for each category are selected, and the index matrix constructed. Second, the selected indicators arenormalized to remove anyinconsistency between them. Next, the normalized matrix isweighted based on the relative importance of each index to the main domains of sustainability using the analytical hierarchy process (AHP) method. This is accomplished through expert judgement around the relative importance of different attributes with respect to the goals through apairwise comparison matrix. The considerationof multiple environmental, economic, and social factors (including equity and health) is integrated intoa sustainable transit planning index (STPI) which supportsrealistic ZEB implementation in Canada and beyond and is useful to different stakeholders, agencies, and ministries.

Keywords: zero emission buses, sustainability, sustainable transit, transportation, analytical hierarchy process, environment, economy, social

Procedia PDF Downloads 128
34 Monte Carlo Risk Analysis of a Carbon Abatement Technology

Authors: Hameed Rukayat Opeyemi, Pericles Pilidis, Pagone Emanuele

Abstract:

Climate change represents one of the single most challenging problems facing the world today. According to the National Oceanic and Administrative Association, Atmospheric temperature rose almost 25% since 1958, Artic sea ice has shrunk 40% since 1959 and global sea levels have risen more than 5.5 cm since 1990. Power plants are the major culprits of GHG emission to the atmosphere. Several technologies have been proposed to reduce the amount of GHG emitted to the atmosphere from power plant, one of which is the less researched Advanced zero emission power plant. The advanced zero emission power plants make use of mixed conductive membrane (MCM) reactor also known as oxygen transfer membrane (OTM) for oxygen transfer. The MCM employs membrane separation process. The membrane separation process was first introduced in 1899 when Walter Hermann Nernst investigated electric current between metals and solutions. He found that when a dense ceramic is heated, current of oxygen molecules move through it. In the bid to curb the amount of GHG emitted to the atmosphere, the membrane separation process was applied to the field of power engineering in the low carbon cycle known as the Advanced zero emission power plant (AZEP cycle). The AZEP cycle was originally invented by Norsk Hydro, Norway and ABB Alstom power (now known as Demag Delaval Industrial turbo machinery AB), Sweden. The AZEP drew a lot of attention because its ability to capture ~100% CO2 and also boasts of about 30-50 % cost reduction compared to other carbon abatement technologies, the penalty in efficiency is also not as much as its counterparts and crowns it with almost zero NOx emissions due to very low nitrogen concentrations in the working fluid. The advanced zero emission power plants differ from a conventional gas turbine in the sense that its combustor is substituted with the mixed conductive membrane (MCM-reactor). The MCM-reactor is made up of the combustor, low temperature heat exchanger LTHX (referred to by some authors as air pre-heater the mixed conductive membrane responsible for oxygen transfer and the high temperature heat exchanger and in some layouts, the bleed gas heat exchanger. Air is taken in by the compressor and compressed to a temperature of about 723 Kelvin and pressure of 2 Mega-Pascals. The membrane area needed for oxygen transfer is reduced by increasing the temperature of 90% of the air using the LTHX; the temperature is also increased to facilitate oxygen transfer through the membrane. The air stream enters the LTHX through the transition duct leading to inlet of the LTHX. The temperature of the air stream is then increased to about 1150 K depending on the design point specification of the plant and the efficiency of the heat exchanging system. The amount of oxygen transported through the membrane is directly proportional to the temperature of air going through the membrane. The AZEP cycle was developed using the Fortran software and economic analysis was conducted using excel and Matlab followed by optimization case study. This paper discusses techno-economic analysis of four possible layouts of the AZEP cycle. The Simple bleed gas heat exchange layout (100 % CO2 capture), Bleed gas heat exchanger layout with flue gas turbine (100 % CO2 capture), Pre-expansion reheating layout (Sequential burning layout) – AZEP 85 % (85 % CO2 capture) and Pre-expansion reheating layout (Sequential burning layout) with flue gas turbine– AZEP 85 % (85 % CO2 capture). This paper discusses Montecarlo risk analysis of four possible layouts of the AZEP cycle.

Keywords: gas turbine, global warming, green house gases, power plants

Procedia PDF Downloads 471
33 Quality in Healthcare: An Autism-Friendly Hospital Emergency Waiting Room

Authors: Elena Bellini, Daniele Mugnaini, Michele Boschetto

Abstract:

People with an Autistic Spectrum Disorder and an Intellectual Disability who need to attend a Hospital Emergency Waiting Room frequently present high levels of discomfort and challenging behaviors due to stress-related hyperarousal, sensory sensitivity, novelty-anxiety, communication and self-regulation difficulties. Increased agitation and acting out also disturb the diagnostic and therapeutic processes, and the emergency room climate. Architectural design disciplines aimed at reducing distress in hospitals or creating autism-friendly environments are called for to find effective answers to this particular need. A growing number of researchers are considering the physical environment as an important point of intervention for people with autism. It has been shown that providing the right setting can help enhance confidence and self-esteem and can have a profound impact on their health and wellbeing. Environmental psychology has evaluated the perceived quality of care, looking at the design of hospital rooms, paths and circulation, waiting rooms, services and devices. Furthermore, many studies have investigated the influence of the hospital environment on patients, in terms of stress-reduction and therapeutic intervention’ speed, but also on health professionals and their work. Several services around the world are organizing autism-friendly hospital environments which involve the architecture and the specific staff training. In Italy, the association Spes contra spem has promoted and published, in 2013, the ‘Chart of disabled people in the hospital’. It stipulates that disabled people should have equal rights to accessible and high-quality care. There are a few Italian examples of therapeutic programmes for autistic people as the Dama project in Milan and the recent experience of Children and Autism Foundation in Pordenone. Careggi’s Emergency Waiting Room in Florence has been built to satisfy this challenge. This project of research comes from a collaboration between the technical staff of Careggi Hospital, the Center for autism PAMAPI and some architects expert in the sensory environment. The methodology of focus group involved architects, psychologists and professionals through a transdisciplinary research, centered on the links between the spatial characteristics and clinical state of people with ASD. The relationship between architectural space and quality of life is studied to pay maximum attention to users’ needs and to support the medical staff in their work by a specific program of training. The result of this research is a sum of criteria used to design the emergency waiting room, that will be illustrated. A protected room, with a clear space design, maximizes comprehension and predictability. The multisensory environment is thought to help sensory integration and relaxation. Visual communication through Ipad allows an anticipated understanding of medical procedures, and a specific technological system supports requests, choices and self-determination in order to fit sensory stimulation to personal preferences, especially for hypo and hypersensitive people. All these characteristics should ensure a better regulation of the arousal, less behavior problems, improving treatment accessibility, safety, and effectiveness. First results about patient-satisfaction levels will be presented.

Keywords: accessibility of care, autism-friendly architecture, personalized therapeutic process, sensory environment

Procedia PDF Downloads 265
32 Empirical Modeling and Spatial Analysis of Heat-Related Morbidity in Maricopa County, Arizona

Authors: Chuyuan Wang, Nayan Khare, Lily Villa, Patricia Solis, Elizabeth A. Wentz

Abstract:

Maricopa County, Arizona, has a semi-arid hot desert climate that is one of the hottest regions in the United States. The exacerbated urban heat island (UHI) effect caused by rapid urbanization has made the urban area even hotter than the rural surroundings. The Phoenix metropolitan area experiences extremely high temperatures in the summer from June to September that can reach the daily highest of 120 °F (48.9 °C). Morbidity and mortality due to the environmental heat is, therefore, a significant public health issue in Maricopa County, especially because it is largely preventable. Public records from the Maricopa County Department of Public Health (MCDPH) revealed that between 2012 and 2016, there were 10,825 incidents of heat-related morbidity incidents, 267 outdoor environmental heat deaths, and 173 indoor heat-related deaths. A lot of research has examined heat-related death and its contributing factors around the world, but little has been done regarding heat-related morbidity issues, especially for regions that are naturally hot in the summer. The objective of this study is to examine the demographic, socio-economic, housing, and environmental factors that contribute to heat-related morbidity in Maricopa County. We obtained heat-related morbidity data between 2012 and 2016 at census tract level from MCDPH. Demographic, socio-economic, and housing variables were derived using 2012-2016 American Community Survey 5-year estimate from the U.S. Census. Remotely sensed Landsat 7 ETM+ and Landsat 8 OLI satellite images and Level-1 products were acquired for all the summer months (June to September) from 2012 and 2016. The National Land Cover Database (NLCD) 2016 percent tree canopy and percent developed imperviousness data were obtained from the U.S. Geological Survey (USGS). We used ordinary least squares (OLS) regression analysis to examine the empirical relationship between all the independent variables and heat-related morbidity rate. Results showed that higher morbidity rates are found in census tracts with higher values in population aged 65 and older, population under poverty, disability, no vehicle ownership, white non-Hispanic, population with less than high school degree, land surface temperature, and surface reflectance, but lower values in normalized difference vegetation index (NDVI) and housing occupancy. The regression model can be used to explain up to 59.4% of total variation of heat-related morbidity in Maricopa County. The multiscale geographically weighted regression (MGWR) technique was then used to examine the spatially varying relationships between heat-related morbidity rate and all the significant independent variables. The R-squared value of the MGWR model increased to 0.691, that shows a significant improvement in goodness-of-fit than the global OLS model, which means that spatial heterogeneity of some independent variables is another important factor that influences the relationship with heat-related morbidity in Maricopa County. Among these variables, population aged 65 and older, the Hispanic population, disability, vehicle ownership, and housing occupancy have much stronger local effects than other variables.

Keywords: census, empirical modeling, heat-related morbidity, spatial analysis

Procedia PDF Downloads 126
31 Posts by Influencers Promoting Water Saving: The Impact of Distance and the Perception of Effectiveness on Behavior

Authors: Sancho-Esper Franco, Rodríguez Sánchez Carla, Sánchez Carolina, Orús-Sanclemente Carlos

Abstract:

Water scarcity is a reality that affects many regions of the world and is aggravated by climate change and population growth. Saving water has become an urgent need to ensure the sustainability of the planet and the survival of many communities, where youth and social networks play a key role in promoting responsible practices and adopting habits that contribute to environmental preservation. This study analyzes the persuasion capacity of messages designed to promote pro-environmental behaviors among youth. Specifically, it studies how the efficacy (effectiveness) of the response (personal response efficacy/effectiveness) and the perception of distance from the source of the message influence the water-saving behavior of the audience. To do so, two communication frameworks are combined. First, the Construal Level Theory, which is based on the concept of "psychological distance", that is, people, objects or events can be perceived as psychologically near or far, and this subjective distance (i.e., social, temporal, or spatial) determines their attitudes, emotions, and actions. This perceived distance can be social, temporal, or spatial. This research focuses on studying the spatial distance and social distance generated by cultural differences between influencers and their audience to understand how cultural distance can influence the persuasiveness of a message. Research on the effects of psychological distance between influencers-followers in the pro-environmental field is very limited, being relevant because people could learn specific behaviors suggested by opinion leaders such as influencers in social networks. Second, different approaches to behavioral change suggest that the perceived efficacy of a behavior can explain individual pro-environmental actions. People will be more likely to adopt a new behavior if they perceive that they are capable of performing it (efficacy belief) and that their behavior will effectively contribute to solving that problem (personal response efficacy). It is also important to study the different actors (social and individual) that are perceived as responsible for addressing environmental problems. Specifically, we analyze to what extent the belief individual’s water-saving actions are effective in solving the problem can influence water-saving behavior since this individual effectiveness increases people's sense of obligation and responsibility with the problem. However, in this regard, empirical evidence presents mixed results. Our study addresses the call for experimental studies manipulating different subtypes of response effectiveness to generate robust causal evidence. Based on all the above, this research analyzes whether cultural distance (local vs. international influencer) and the perception of effectiveness of behavior (personal response efficacy) (personal/individual vs. collective) affect the actual behavior and the intention to conserve water of social network users. An experiment of 2 (local influencer vs. international influencer) x 2 (effectiveness of individual vs. collective response) is designed and estimated. The results show that a message from a local influencer appealing to individual responsibility exerts greater influence on intention and actual water-saving behavior, given the cultural closeness between influencer-follower, and the appeal to individual responsibility increases the feeling of obligation to participate in pro-environmental actions. These results offer important implications for social marketing campaigns that seek to promote water conservation.

Keywords: social marketing, influencer, message framing, experiment, personal response efficacy, water saving

Procedia PDF Downloads 62
30 An Intelligence-Led Methodologly for Detecting Dark Actors in Human Trafficking Networks

Authors: Andrew D. Henshaw, James M. Austin

Abstract:

Introduction: Human trafficking is an increasingly serious transnational criminal enterprise and social security issue. Despite ongoing efforts to mitigate the phenomenon and a significant expansion of security scrutiny over past decades, it is not receding. This is true for many nations in Southeast Asia, widely recognized as the global hub for trafficked persons, including men, women, and children. Clearly, human trafficking is difficult to address because there are numerous drivers, causes, and motivators for it to persist, such as non-military and non-traditional security challenges, i.e., climate change, global warming displacement, and natural disasters. These make displaced persons and refugees particularly vulnerable. The issue is so large conservative estimates put a dollar value at around $150 billion-plus per year (Niethammer, 2020) spanning sexual slavery and exploitation, forced labor, construction, mining and in conflict roles, and forced marriages of girls and women. Coupled with corruption throughout military, police, and civil authorities around the world, and the active hands of powerful transnational criminal organizations, it is likely that such figures are grossly underestimated as human trafficking is misreported, under-detected, and deliberately obfuscated to protect those profiting from it. For example, the 2022 UN report on human trafficking shows a 56% reduction in convictions in that year alone (UNODC, 2022). Our Approach: To better understand this, our research utilizes a bespoke methodology. Applying a JAM (Juxtaposition Assessment Matrix), which we previously developed to detect flows of dark money around the globe (Henshaw, A & Austin, J, 2021), we now focus on the human trafficking paradigm. Indeed, utilizing a JAM methodology has identified key indicators of human trafficking not previously explored in depth. Being a set of structured analytical techniques that provide panoramic interpretations of the subject matter, this iteration of the JAM further incorporates behavioral and driver indicators, including the employment of Open-Source Artificial Intelligence (OS-AI) across multiple collection points. The extracted behavioral data was then applied to identify non-traditional indicators as they contribute to human trafficking. Furthermore, as the JAM OS-AI analyses data from the inverted position, i.e., the viewpoint of the traffickers, it examines the behavioral and physical traits required to succeed. This transposed examination of the requirements of success delivers potential leverage points for exploitation in the fight against human trafficking in a new and novel way. Findings: Our approach identified new innovative datasets that have previously been overlooked or, at best, undervalued. For example, the JAM OS-AI approach identified critical 'dark agent' lynchpins within human trafficking that are difficult to detect and harder to connect to actors and agents within a network. Our preliminary data suggests this is in part due to the fact that ‘dark agents’ in extant research have been difficult to detect and potentially much harder to directly connect to the actors and organizations in human trafficking networks. Our research demonstrates that using new investigative techniques such as OS-AI-aided JAM introduces a powerful toolset to increase understanding of human trafficking and transnational crime and illuminate networks that, to date, avoid global law enforcement scrutiny.

Keywords: human trafficking, open-source intelligence, transnational crime, human security, international human rights, intelligence analysis, JAM OS-AI, Dark Money

Procedia PDF Downloads 90
29 A Basic Concept for Installing Cooling and Heating System Using Seawater Thermal Energy from the West Coast of Korea

Authors: Jun Byung Joon, Seo Seok Hyun, Lee Seo Young

Abstract:

As carbon dioxide emissions increase due to rapid industrialization and reckless development, abnormal climates such as floods and droughts are occurring. In order to respond to such climate change, the use of existing fossil fuels is reduced, and the proportion of eco-friendly renewable energy is gradually increasing. Korea is an energy resource-poor country that depends on imports for 93% of its total energy. As the global energy supply chain instability experienced due to the Russia-Ukraine crisis increases, countries around the world are resetting energy policies to minimize energy dependence and strengthen security. Seawater thermal energy is a renewable energy that replaces the existing air heat energy. It uses the characteristic of having a higher specific heat than air to cool and heat main spaces of buildings to increase heat transfer efficiency and minimize power consumption to generate electricity using fossil fuels, and Carbon dioxide emissions can be minimized. In addition, the effect on the marine environment is very small by using only the temperature characteristics of seawater in a limited way. K-water carried out a demonstration project of supplying cooling and heating energy to spaces such as the central control room and presentation room in the management building by acquiring the heat source of seawater circulated through the power plant's waterway by using the characteristics of the tidal power plant. Compared to the East Sea and the South Sea, the main system was designed in consideration of the large tidal difference, small temperature difference, and low-temperature characteristics, and its performance was verified through operation during the demonstration period. In addition, facility improvements were made for major deficiencies to strengthen monitoring functions, provide user convenience, and improve facility soundness. To spread these achievements, the basic concept was to expand the seawater heating and cooling system with a scale of 200 USRT at the Tidal Culture Center. With the operational experience of the demonstration system, it will be possible to establish an optimal seawater heat cooling and heating system suitable for the characteristics of the west coast ocean. Through this, it is possible to reduce operating costs by KRW 33,31 million per year compared to air heat, and through industry-university-research joint research, it is possible to localize major equipment and materials and develop key element technologies to revitalize the seawater heat business and to advance into overseas markets. The government's efforts are needed to expand the seawater heating and cooling system. Seawater thermal energy utilizes only the thermal energy of infinite seawater. Seawater thermal energy has less impact on the environment than river water thermal energy, except for environmental pollution factors such as bottom dredging, excavation, and sand or stone extraction. Therefore, it is necessary to increase the sense of speed in project promotion by innovatively simplifying unnecessary licensing/permission procedures. In addition, support should be provided to secure business feasibility by dramatically exempting the usage fee of public waters to actively encourage development in the private sector.

Keywords: seawater thermal energy, marine energy, tidal power plant, energy consumption

Procedia PDF Downloads 102
28 Transport Hubs as Loci of Multi-Layer Ecosystems of Innovation: Case Study of Airports

Authors: Carolyn Hatch, Laurent Simon

Abstract:

Urban mobility and the transportation industry are undergoing a transformation, shifting from an auto production-consumption model that has dominated since the early 20th century towards new forms of personal and shared multi-modality [1]. This is shaped by key forces such as climate change, which has induced a shift in production and consumption patterns and efforts to decarbonize and improve transport services through, for instance, the integration of vehicle automation, electrification and mobility sharing [2]. Advanced innovation practices and platforms for experimentation and validation of new mobility products and services that are increasingly complex and multi-stakeholder-oriented are shaping this new world of mobility. Transportation hubs – such as airports - are emblematic of these disruptive forces playing out in the mobility industry. Airports are emerging as the core of innovation ecosystems on and around contemporary mobility issues, and increasingly recognized as complex public/private nodes operating in many societal dimensions [3,4]. These include urban development, sustainability transitions, digital experimentation, customer experience, infrastructure development and data exploitation (for instance, airports generate massive and often untapped data flows, with significant potential for use, commercialization and social benefit). Yet airport innovation practices have not been well documented in the innovation literature. This paper addresses this gap by proposing a model of airport innovation that aims to equip airport stakeholders to respond to these new and complex innovation needs in practice. The methodology involves: 1 – a literature review bringing together key research and theory on airport innovation management, open innovation and innovation ecosystems in order to evaluate airport practices through an innovation lens; 2 – an international benchmarking of leading airports and their innovation practices, including such examples as Aéroports de Paris, Schipol in Amsterdam, Changi in Singapore, and others; and 3 – semi-structured interviews with airport managers on key aspects of organizational practice, facilitated through a close partnership with the Airport Council International (ACI), a major stakeholder in this research project. Preliminary results find that the most successful airports are those that have shifted to a multi-stakeholder, platform ecosystem model of innovation. The recent entrance of new actors in airports (Google, Amazon, Accor, Vinci, Airbnb and others) have forced the opening of organizational boundaries to share and exchange knowledge with a broader set of ecosystem players. This has also led to new forms of governance and intermediation by airport actors to connect complex, highly distributed knowledge, along with new kinds of inter-organizational collaboration, co-creation and collective ideation processes. Leading airports in the case study have demonstrated a unique capacity to force traditionally siloed activities to “think together”, “explore together” and “act together”, to share data, contribute expertise and pioneer new governance approaches and collaborative practices. In so doing, they have successfully integrated these many disruptive change pathways and forced their implementation and coordination towards innovative mobility outcomes, with positive societal, environmental and economic impacts. This research has implications for: 1 - innovation theory, 2 - urban and transport policy, and 3 - organizational practice - within the mobility industry and across the economy.

Keywords: airport management, ecosystem, innovation, mobility, platform, transport hubs

Procedia PDF Downloads 181
27 Bridging Minds and Nature: Revolutionizing Elementary Environmental Education Through Artificial Intelligence

Authors: Hoora Beheshti Haradasht, Abooali Golzary

Abstract:

Environmental education plays a pivotal role in shaping the future stewards of our planet. Leveraging the power of artificial intelligence (AI) in this endeavor presents an innovative approach to captivate and educate elementary school children about environmental sustainability. This paper explores the application of AI technologies in designing interactive and personalized learning experiences that foster curiosity, critical thinking, and a deep connection to nature. By harnessing AI-driven tools, virtual simulations, and personalized content delivery, educators can create engaging platforms that empower children to comprehend complex environmental concepts while nurturing a lifelong commitment to protecting the Earth. With the pressing challenges of climate change and biodiversity loss, cultivating an environmentally conscious generation is imperative. Integrating AI in environmental education revolutionizes traditional teaching methods by tailoring content, adapting to individual learning styles, and immersing students in interactive scenarios. This paper delves into the potential of AI technologies to enhance engagement, comprehension, and pro-environmental behaviors among elementary school children. Modern AI technologies, including natural language processing, machine learning, and virtual reality, offer unique tools to craft immersive learning experiences. Adaptive platforms can analyze individual learning patterns and preferences, enabling real-time adjustments in content delivery. Virtual simulations, powered by AI, transport students into dynamic ecosystems, fostering experiential learning that goes beyond textbooks. AI-driven educational platforms provide tailored content, ensuring that environmental lessons resonate with each child's interests and cognitive level. By recognizing patterns in students' interactions, AI algorithms curate customized learning pathways, enhancing comprehension and knowledge retention. Utilizing AI, educators can develop virtual field trips and interactive nature explorations. Children can navigate virtual ecosystems, analyze real-time data, and make informed decisions, cultivating an understanding of the delicate balance between human actions and the environment. While AI offers promising educational opportunities, ethical concerns must be addressed. Safeguarding children's data privacy, ensuring content accuracy, and avoiding biases in AI algorithms are paramount to building a trustworthy learning environment. By merging AI with environmental education, educators can empower children not only with knowledge but also with the tools to become advocates for sustainable practices. As children engage in AI-enhanced learning, they develop a sense of agency and responsibility to address environmental challenges. The application of artificial intelligence in elementary environmental education presents a groundbreaking avenue to cultivate environmentally conscious citizens. By embracing AI-driven tools, educators can create transformative learning experiences that empower children to grasp intricate ecological concepts, forge an intimate connection with nature, and develop a strong commitment to safeguarding our planet for generations to come.

Keywords: artificial intelligence, environmental education, elementary children, personalized learning, sustainability

Procedia PDF Downloads 82
26 21st-Century Middlebrow Film: A Critical Examination of the Spectator Experience in Malayalam Film

Authors: Anupama A. P.

Abstract:

The Malayalam film industry, known as Mollywood, has a rich tradition of storytelling and cultural significance within Indian cinema. Middlebrow films have emerged as a distinct influential category, particularly in the 1980s, with directors like K.G. George, who engaged with female subjectivity and drew inspiration from the ‘women’s cinema’ of the 1950s and 1960s. In recent decades, particularly post-2010, the industry has transformed significantly with a new generation of filmmakers diverging from melodrama and new wave of the past, incorporating advanced technology and modern content. This study examines the evolution and impact of Malayalam middlebrow cinema in the 21st century, focusing on post-2000 films and their influence on contemporary spectator experiences. These films appeal to a wide range of audiences without compromising on their artistic integrity, tackling social issues and personal dramas with thematic and narrative complexity. Historically, middlebrow films in Malayalam cinema have portrayed realism and addressed the socio-political climate of Kerala, blending realism with reflexivity and moving away from traditional sentimentality. This shift is evident in the new generation of Malayalam films, which present a global representation of characters and a modern treatment of individuals. To provide a comprehensive understanding of this evolution, the study analyzes a diverse selection of films such as Kerala Varma Pazhassi Raja (2009), Drishyam (2013), Maheshinte Prathikaaram (2016), Take Off (2017), and Thondimuthalum Driksakshiyum (2017) and Virus (2019) illustrating the broad thematic range and innovative narrative techniques characteristic of this genre. These films exemplify how middlebrow cinema continues to evolve, adapting to changing societal contexts and audience expectations. This research employs a theoretical methodology, drawing on cultural studies and audience reception theory, utilizing frameworks such as Bordwell’s narrative theory, Deleuze’s concept of deterritorialization, and Hall’s encoding/decoding model to analyze the changes in Malayalam middlebrow cinema and interpret the storytelling methods, spectator experience, and audience reception of these films. The findings indicate that Malayalam middlebrow cinema post-2010 offers a spectator experience that is both intellectually stimulating and broadly appealing. This study highlights the critical role of middlebrow cinema in reflecting and shaping societal values, making it a significant cultural artefact within the broader context of Indian and global cinema. By bridging entertainment with thought-provoking narratives, these films engage audiences and contribute to wider cultural discourse, making them pivotal in contemporary cinematic landscapes. To conclude, this study highlights the importance of Malayalam middle-brow cinema in influencing contemporary cinematic tastes. The nuanced and approachable narratives of post-2010 films are posited to assume an increasingly pivotal role in the future of Malayalam cinema. By providing a deeper understanding of Malayalam middlebrow cinema and its societal implications, this study enriches theoretical discourse, promotes regional cinema, and offers valuable insights into contemporary spectator experiences and the future trajectory of Malayalam cinema.

Keywords: Malayalam cinema, middlebrow cinema, spectator experience, audience reception, deterritorialization

Procedia PDF Downloads 32
25 Shifting Contexts and Shifting Identities: Campus Race-related Experiences, Racial Identity, and Achievement Motivation among Black College Students during the Transition to College

Authors: Tabbye Chavous, Felecia Webb, Bridget Richardson, Gloryvee Fonseca-Bolorin, Seanna Leath, Robert Sellers

Abstract:

There has been recent renewed attention to Black students’ experiences at predominantly White U.S. universities (PWIs), e.g., the #BBUM (“Being Black at the University of Michigan”), “I too am Harvard” social media campaigns, and subsequent student protest activities nationwide. These campaigns illuminate how many minority students encounter challenges to their racial/ethnic identities as they enter PWI contexts. Students routinely report experiences such as being ignored or treated as a token in classes, receiving messages of low academic expectations by faculty and peers, being questioned about their academic qualifications or belonging, being excluded from academic and social activities, and being racially profiled and harassed in the broader campus community due to race. Researchers have linked such racial marginalization and stigma experiences to student motivation and achievement. One potential mechanism is through the impact of college experiences on students’ identities, given the relevance of the college context for students’ personal identity development, including personal beliefs systems around social identities salient in this context. However, little research examines the impact of the college context on Black students’ racial identities. This study examined change in Black college students’ (N=329) racial identity beliefs over the freshman year at three predominantly White U.S. universities. Using cluster analyses, we identified profile groups reflecting different patterns of stability and change in students’ racial centrality (importance of race to overall self-concept), private regard (personal group affect/group pride), and public regard (perceptions of societal views of Blacks) from beginning of year (Time 1) to end of year (Time 2). Multinomial logit regression analyses indicated that the racial identity change clusters were predicted by pre-college background (racial composition of high school and neighborhood), as well as college-based experiences (racial discrimination, interracial friendships, and perceived campus racial climate). In particular, experiencing campus racial discrimination related to high, stable centrality, and decreases in private regard and public regard. Perceiving racial climates norms of institutional support for intergroup interactions on campus related to maintaining low and decreasing in private and public regard. Multivariate Analyses of Variance results showed change cluster effects on achievement motivation outcomes at the end of students’ academic year. Having high, stable centrality and high private regard related to more positive outcomes overall (academic competence, positive academic affect, academic curiosity and persistence). Students decreasing in private regard and public regard were particularly vulnerable to negative motivation outcomes. Findings support scholarship indicating both stability in racial identity beliefs and the importance of critical context transitions in racial identity development and adjustment outcomes among emerging adults. Findings also are consistent with research suggesting promotive effects of a strong, positive racial identity on student motivation, as well as research linking awareness of racial stigma to decreased academic engagement.

Keywords: diversity, motivation, learning, ethnic minority achievement, higher education

Procedia PDF Downloads 517
24 Cloud-Based Multiresolution Geodata Cube for Efficient Raster Data Visualization and Analysis

Authors: Lassi Lehto, Jaakko Kahkonen, Juha Oksanen, Tapani Sarjakoski

Abstract:

The use of raster-formatted data sets in geospatial analysis is increasing rapidly. At the same time, geographic data are being introduced into disciplines outside the traditional domain of geoinformatics, like climate change, intelligent transport, and immigration studies. These developments call for better methods to deliver raster geodata in an efficient and easy-to-use manner. Data cube technologies have traditionally been used in the geospatial domain for managing Earth Observation data sets that have strict requirements for effective handling of time series. The same approach and methodologies can also be applied in managing other types of geospatial data sets. A cloud service-based geodata cube, called GeoCubes Finland, has been developed to support online delivery and analysis of most important geospatial data sets with national coverage. The main target group of the service is the academic research institutes in the country. The most significant aspects of the GeoCubes data repository include the use of multiple resolution levels, cloud-optimized file structure, and a customized, flexible content access API. Input data sets are pre-processed while being ingested into the repository to bring them into a harmonized form in aspects like georeferencing, sampling resolutions, spatial subdivision, and value encoding. All the resolution levels are created using an appropriate generalization method, selected depending on the nature of the source data set. Multiple pre-processed resolutions enable new kinds of online analysis approaches to be introduced. Analysis processes based on interactive visual exploration can be effectively carried out, as the level of resolution most close to the visual scale can always be used. In the same way, statistical analysis can be carried out on resolution levels that best reflect the scale of the phenomenon being studied. Access times remain close to constant, independent of the scale applied in the application. The cloud service-based approach, applied in the GeoCubes Finland repository, enables analysis operations to be performed on the server platform, thus making high-performance computing facilities easily accessible. The developed GeoCubes API supports this kind of approach for online analysis. The use of cloud-optimized file structures in data storage enables the fast extraction of subareas. The access API allows for the use of vector-formatted administrative areas and user-defined polygons as definitions of subareas for data retrieval. Administrative areas of the country in four levels are available readily from the GeoCubes platform. In addition to direct delivery of raster data, the service also supports the so-called virtual file format, in which only a small text file is first downloaded. The text file contains links to the raster content on the service platform. The actual raster data is downloaded on demand, from the spatial area and resolution level required in each stage of the application. By the geodata cube approach, pre-harmonized geospatial data sets are made accessible to new categories of inexperienced users in an easy-to-use manner. At the same time, the multiresolution nature of the GeoCubes repository facilitates expert users to introduce new kinds of interactive online analysis operations.

Keywords: cloud service, geodata cube, multiresolution, raster geodata

Procedia PDF Downloads 135
23 Smart Laboratory for Clean Rivers in India - An Indo-Danish Collaboration

Authors: Nikhilesh Singh, Shishir Gaur, Anitha K. Sharma

Abstract:

Climate change and anthropogenic stress have severely affected ecosystems all over the globe. Indian rivers are under immense pressure, facing challenges like pollution, encroachment, extreme fluctuation in the flow regime, local ignorance and lack of coordination between stakeholders. To counter all these issues a holistic river rejuvenation plan is needed that tests, innovates and implements sustainable solutions in the river space for sustainable river management. Smart Laboratory for Clean Rivers (SLCR) an Indo-Danish collaboration project, provides a living lab setup that brings all the stakeholders (government agencies, academic and industrial partners and locals) together to engage, learn, co-creating and experiment for a clean and sustainable river that last for ages. Just like every mega project requires piloting, SLCR has opted for a small catchment of the Varuna River, located in the Middle Ganga Basin in India. Considering the integrated approach of river rejuvenation, SLCR embraces various techniques and upgrades for rejuvenation. Likely, maintaining flow in the channel in the lean period, Managed Aquifer Recharge (MAR) is a proven technology. In SLCR, Floa-TEM high-resolution lithological data is used in MAR models to have better decision-making for MAR structures nearby of the river to enhance the river aquifer exchanges. Furthermore, the concerns of quality in the river are a big issue. A city like Varanasi which is located in the last stretch of the river, generates almost 260 MLD of domestic waste in the catchment. The existing STP system is working at full efficiency. Instead of installing a new STP for the future, SLCR is upgrading those STPs with an IoT-based system that optimizes according to the nutrient load and energy consumption. SLCR also advocate nature-based solutions like a reed bed for the drains having less flow. In search of micropollutants, SLCR uses fingerprint analysis involves employing advanced techniques like chromatography and mass spectrometry to create unique chemical profiles. However, rejuvenation attempts cannot be possible without involving the entire catchment. A holistic water management plan that includes storm management, water harvesting structure to efficiently manage the flow of water in the catchment and installation of several buffer zones to restrict pollutants entering into the river. Similarly, carbon (emission and sequestration) is also an important parameter for the catchment. By adopting eco-friendly practices, a ripple effect positively influences the catchment's water dynamics and aids in the revival of river systems. SLCR has adopted 4 villages to make them carbon-neutral and water-positive. Moreover, for the 24×7 monitoring of the river and the catchment, robust IoT devices are going to be installed to observe, river and groundwater quality, groundwater level, river discharge and carbon emission in the catchment and ultimately provide fuel for the data analytics. In its completion, SLCR will provide a river restoration manual, which will strategise the detailed plan and way of implementation for stakeholders. Lastly, the entire process is planned in such a way that will be managed by local administrations and stakeholders equipped with capacity-building activity. This holistic approach makes SLCR unique in the field of river rejuvenation.

Keywords: sustainable management, holistic approach, living lab, integrated river management

Procedia PDF Downloads 59
22 The Plight of the Rohingyas: Design Guidelines to Accommodate Displaced People in Bangladesh

Authors: Nazia Roushan, Maria Kipti

Abstract:

The sensitive issue of a large-scale entry of Rohingya refugees to Bangladesh has arisen again since August of 2017. Incited by ethnic and religious conflict, the Rohingyas—an ethnic group concentrated in the north-west state of Rakhine in Myanmar—have been fleeing to what is now Bangladesh from as early as the late 1700s in four main exoduses. This long-standing persecution has recently escalated, and accommodating the recent wave of exodus has been especially challenging due to the sheer volume of a million refugees concentrated in refugee camps in two small administrative units (upazilas) in the south-east of the country: the host area. This drastic change in the host area’s social fabric is putting a lot of strain on the country’s economic, demographic and environmental stability, and security. Although Bangladesh’s long-term experience with disaster management has enabled it to respond rapidly to the crisis, the government is failing to cope with this enormous problem and has taken insufficient steps towards improving the living conditions to inhibit the inflow of more refugees. On top of that, the absence of a comprehensive national refugee policy, and the density of the structures of the camps are constricting the upgrading of the shelters to international standards. As of December 2016, the combined number of internally displaced persons (IDPs) due to conflict and violence (stock), and new displacements due to disasters (flow) in Bangladesh had exceeded 1 million. These numbers have increased dramatically in the last few months. Moreover, by 2050, Bangladesh will have as much as 25 million climate refugees just from its coastal districts. To enhance the resilience of the vulnerable, it is crucial to methodically factorize further interventions between Disaster Risk Reduction for Resilience (DRR) and the concept of Building Back Better (BBB) in the rehabilitation-reconstruction period. Considering these points, this paper provides a palette of options for design guidelines related to the living spaces and infrastructures for refugees. This will encourage the development of national standards for refugee camps, and the national and local level rehabilitation-reconstruction practices. Unhygienic living conditions, vulnerability, and the general lack of control over life are pervasive throughout the camps. This paper, therefore, proposes site-specific strategic and physical planning and design for shelters for refugees in Bangladesh that will lead to sustainable living environments through the following: a) site survey of existing two registered and one makeshift unregistered refugee camps to document and study their physical conditions, b) questionnaires and semi-structured focus group discussions carried out among the refugees and stakeholders to understand what the lived experiences and needs are; and c) combining the findings with international minimum standards for shelter and settlement from International Federation of Red Cross and Red Crescent (IFRC), Médecins Sans Frontières (MSF), United Nations High Commissioner for Refugees (UNHCR). These proposals include temporary shelter solutions that balance between lived spaces and regimented, repetitive plans using readily available and cheap materials, erosion control and slope stabilization strategies, and most importantly, coping mechanisms for the refugees to be self-reliant and resilient.

Keywords: architecture, Bangladesh, refugee camp, resilience, Rohingya

Procedia PDF Downloads 237
21 Impacts of School-Wide Positive Behavioral Interventions and Supports on Student Academics, Behavior and Mental Health

Authors: Catherine Bradshaw

Abstract:

Educators often report difficulty managing behavior problems and other mental health concerns that students display at school. These concerns also interfere with the learning process and can create distraction for teachers and other students. As such, schools play an important role in both preventing and intervening with students who experience these types of challenges. A number of models have been proposed to serve as a framework for delivering prevention and early intervention services in schools. One such model is called Positive Behavioral Interventions and Supports (PBIS), which has been scaled-up to over 26,000 schools in the U.S. and many other countries worldwide. PBIS aims to improve a range of student outcomes through early detection of and intervention related to behavioral and mental health symptoms. PBIS blends and applies social learning, behavioral, and organizational theories to prevent disruptive behavior and enhance the school’s organizational health. PBIS focuses on creating and sustaining tier 1 (universal), tier 2 (selective), and tier 3 (individual) systems of support. Most schools using PBIS have focused on the core elements of the tier 1 supports, which includes the following critical features. The formation of a PBIS team within the school to lead implementation. Identification and training of a behavioral support ‘coach’, who serves as a on-site technical assistance provider. Many of the individuals identified to serve as a PBIS coach are also trained as a school psychologist or guidance counselor; coaches typically have prior PBIS experience and are trained to conduct functional behavioral assessments. The PBIS team also identifies a set of three to five positive behavioral expectations that are implemented for all students and by all staff school-wide (e.g., ‘be respectful, responsible, and ready to learn’); these expectations are posted in all settings across the school, including in the classroom, cafeteria, playground etc. All school staff define and teach the school-wide behavioral expectations to all students and review them regularly. Finally, PBIS schools develop or adopt a school-wide system to reward or reinforce students who demonstrate those 3-5 positive behavioral expectations. Staff and administrators create an agreed upon system for responding to behavioral violations that include definitions about what constitutes a classroom-managed vs. an office-managed discipline problem. Finally, a formal system is developed to collect, analyze, and use disciplinary data (e.g., office discipline referrals) to inform decision-making. This presentation provides a brief overview of PBIS and reports findings from a series of four U.S. based longitudinal randomized controlled trials (RCTs) documenting the impacts of PBIS on school climate, discipline problems, bullying, and academic achievement. The four RCTs include 80 elementary, 40 middle, and 58 high schools and results indicate a broad range of impacts on multiple student and school-wide outcomes. The session will highlight lessons learned regarding PBIS implementation and scale-up. We also review the ways in which PBIS can help educators and school leaders engage in data-based decision-making and share data with other decision-makers and stakeholders (e.g., students, parents, community members), with the overarching goal of increasing use of evidence-based programs in schools.

Keywords: positive behavioral interventions and supports, mental health, randomized trials, school-based prevention

Procedia PDF Downloads 227
20 Policies for Circular Bioeconomy in Portugal: Barriers and Constraints

Authors: Ana Fonseca, Ana Gouveia, Edgar Ramalho, Rita Henriques, Filipa Figueiredo, João Nunes

Abstract:

Due to persistent climate pressures, there is a need to find a resilient economic system that is regenerative in nature. Bioeconomy offers the possibility of replacing non-renewable and non-biodegradable materials derived from fossil fuels with ones that are renewable and biodegradable, while a Circular Economy aims at sustainable and resource-efficient operations. The term "Circular Bioeconomy", which can be summarized as all activities that transform biomass for its use in various product streams, expresses the interaction between these two ideas. Portugal has a very favourable context to promote a Circular Bioeconomy due to its variety of climates and ecosystems, availability of biologically based resources, location, and geomorphology. Recently, there have been political and legislative efforts to develop the Portuguese Circular Bioeconomy. The Action Plan for a Sustainable Bioeconomy, approved in 2021, is composed of five axes of intervention, ranging from sustainable production and the use of regionally based biological resources to the development of a circular and sustainable bioindustry through research and innovation. However, as some statistics show, Portugal is still far from achieving circularity. According to Eurostat, Portugal has circularity rates of 2.8%, which is the second lowest among the member states of the European Union. Some challenges contribute to this scenario, including sectorial heterogeneity and fragmentation, prevalence of small producers, lack of attractiveness for younger generations, and absence of implementation of collaborative solutions amongst producers and along value chains.Regarding the Portuguese industrial sector, there is a tendency towards complex bureaucratic processes, which leads to economic and financial obstacles and an unclear national strategy. Together with the limited number of incentives the country has to offer to those that pretend to abandon the linear economic model, many entrepreneurs are hesitant to invest the capital needed to make their companies more circular. Absence of disaggregated, georeferenced, and reliable information regarding the actual availability of biological resources is also a major issue. Low literacy on bioeconomy among many of the sectoral agents and in society in general directly impacts the decisions of production and final consumption. The WinBio project seeks to outline a strategic approach for the management of weaknesses/opportunities in the technology transfer process, given the reality of the territory, through road mapping and national and international benchmarking. The developed work included the identification and analysis of agents in the interior region of Portugal, natural endogenous resources, products, and processes associated with potential development. Specific flow of biological wastes, possible value chains, and the potential for replacing critical raw materials with bio-based products was accessed, taking into consideration other countries with a matured bioeconomy. The study found food industry, agriculture, forestry, and fisheries generate huge amounts of waste streams, which in turn provide an opportunity for the establishment of local bio-industries powered by this biomass. The project identified biological resources with potential for replication and applicability in the Portuguese context. The richness of natural resources and potentials known in the interior region of Portugal is a major key to developing the Circular Economy and sustainability of the country.

Keywords: circular bioeconomy, interior region of portugal, regional development., public policy

Procedia PDF Downloads 91
19 Organic Tuber Production Fosters Food Security and Soil Health: A Decade of Evidence from India

Authors: G. Suja, J. Sreekumar, A. N. Jyothi, V. S. Santhosh Mithra

Abstract:

Worldwide concerns regarding food safety, environmental degradation and threats to human health have generated interest in alternative systems like organic farming. Tropical tuber crops, cassava, sweet potato, yams, and aroids are food-cum-nutritional security-cum climate resilient crops. These form stable or subsidiary food for about 500 million global population. Cassava, yams (white yam, greater yam, and lesser yam) and edible aroids (elephant foot yam, taro, and tannia) are high energy tuberous vegetables with good taste and nutritive value. Seven on-station field experiments at ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India and seventeen on-farm trials in three districts of Kerala, were conducted over a decade (2004-2015) to compare the varietal response, yield, quality and soil properties under organic vs conventional system in these crops and to develop a learning system based on the data generated. The industrial, as well as domestic varieties of cassava, the elite and local varieties of elephant foot yam and taro and the three species of Dioscorea (yams), were on a par under both systems. Organic management promoted yield by 8%, 20%, 9%, 11% and 7% over conventional practice in cassava, elephant foot yam, white yam, greater yam and lesser yam respectively. Elephant foot yam was the most responsive to organic management followed by yams and cassava. In taro, slight yield reduction (5%) was noticed under organic farming with almost similar tuber quality. The tuber quality was improved with higher dry matter, starch, crude protein, K, Ca and Mg contents. The anti-nutritional factors, oxalate content in elephant foot yam and cyanogenic glucoside content in cassava were lowered by 21 and 12.4% respectively. Organic plots had significantly higher water holding capacity, pH, available K, Fe, Mn and Cu, higher soil organic matter, available N, P, exchangeable Ca and Mg, dehydrogenase enzyme activity and microbial count. Organic farming scored significantly higher soil quality index (1.93) than conventional practice (1.46). The soil quality index was driven by water holding capacity, pH and available Zn followed by soil organic matter. Organic management enhanced net profit by 20-40% over chemical farming. A case in point is the cost-benefit analysis in elephant foot yam which indicated that the net profit was 28% higher and additional income of Rs. 47,716 ha-1 was obtained due to organic farming. Cost-effective technologies were field validated. The on-station technologies developed were validated and popularized through on-farm trials in 10 sites (5 ha) under National Horticulture Mission funded programme in elephant foot yam and seven sites in yams and taro. The technologies are included in the Package of Practices Recommendations for crops of Kerala Agricultural University. A learning system developed using artificial neural networks (ANN) predicted the performance of elephant foot yam organic system. Use of organically produced seed materials, seed treatment in cow-dung, neem cake, bio-inoculant slurry, farmyard manure incubated with bio-inoculants, green manuring, use of neem cake, bio-fertilizers and ash formed the strategies for organic production. Organic farming is an eco-friendly management strategy that enables 10-20% higher yield, quality tubers and maintenance of soil health in tuber crops.

Keywords: eco-agriculture, quality, root crops, healthy soil, yield

Procedia PDF Downloads 335