Search results for: cladding materials
3020 Microstructure of Ti – AlN Composite Produced by Selective Laser Melting
Authors: Jaroslaw Mizera, Pawel Wisniewski, Ryszard Sitek
Abstract:
Selective Laser Melting (SLM) is an advanced additive manufacturing technique used for producing parts made of wide range of materials such as: austenitic steel, titanium, nickel etc. In the our experiment we produced a Ti-AlN composite from a mixture of titanium and aluminum nitride respectively 70% at. and 30% at. using SLM technique. In order to define the size of powder particles, laser diffraction tests were performed on HORIBA LA-950 device. The microstructure and chemical composition of the composite was examined by Scanning Electron Microscopy (SEM). The chemical composition in micro areas of the obtained samples was determined by of EDS. The phase composition was analyzed by X-ray phase analysis (XRD). Microhardness Vickers tests were performed using Zwick/Roell microhardness machine under the load of 0.2kG (HV0.2). Hardness measurements were made along the building (xy) and along the plane of the lateral side of the cuboid (xz). The powder used for manufacturing of the samples had a mean particle size of 41μm. It was homogenous with a spherical shape. The specimens were built chiefly from Ti, TiN and AlN. The dendritic microstructure was porous and fine-grained. Some of the aluminum nitride remained unmelted but no porosity was observed in the interface. The formed material was characterized by high hardness exceeding 700 HV0.2 over the entire cross-section.Keywords: Selective Laser Melting, Composite, SEM, microhardness
Procedia PDF Downloads 1373019 Hollowfiber Poly Lactid Co-Glycolic Acid (PLGA)-Collagen Coated by Chitosan as a Candidate of Small Diameter Vascular Graft
Authors: Dita Mayasari, Zahrina Mardina, Riki Siswanto, Agresta Ifada, Ova Oktavina, Prihartini Widiyanti
Abstract:
Heart failure is a serious major health problem with high number of mortality per year. Bypass is one of the solutions that has often been taken. Natural vascular graft (xenograft) as the substitute in bypass is inconvenient due to ethic problems and the risk of infection transmission caused by the usage of another species transgenic vascular. Nowadays, synthetic materials have been fabricated from polymers. The aim of this research is to make a synthetic vascular graft with great physical strength, high biocompatibility, and good affordability. The method of this research was mixing PLGA and collagen by magnetic stirrer. This composite were shaped by spinneret with water as coagulant. Then it was coated by chitosan with 3 variations of weight (1 gram, 2 grams, and 3 grams) to increase hemo and cytocompatibility, proliferation, and cell attachment in order for the vascular graft candidates to be more biocompatible. Mechanical strength for each variation was 5,306 MPa (chitosan 1 gram), 3,433 MPa (chitosan 2 grams) and 3,745 MPa (chitosan 3 grams). All the tensile values were higher than human vascular tensile strength. Toxicity test showed that the living cells in all variations were more than 60% in number, thus the vascular graft is not toxic.Keywords: chitosan, collagen, PLGA, spinneret
Procedia PDF Downloads 3983018 Evaluation of the Golden Proportion and Golden Standard of Maxillary Anterior Teeth in Relation to Smile Attractiveness
Authors: Marwan Ahmed Swileh, Amal Hussein Abuaffan
Abstract:
Objective: This study aimed to explore the existence of golden proportion (GP) between the widths of maxillary anterior teeth and golden standard (GS) for width to height ratio of maxillary central incisor in individuals with attractive and non-attractive smiles. Materials and methods: A total of 82 females were recruited and divided into 2 groups: attractive smile (n= 41) and non-attractive smile (n= 41). Frontal photographs were taken, scanned, and saved on a personal computer. The apparent mesiodistal width of each anterior tooth was measured. The data were analyzed using the appropriate statistical tests at p-value < 0.05. Results: Frequency of GP was very low among the total sample, and most proportions were higher than GP. No significant differences were found between both groups in relation to central-to-lateral ratio while significant differences were found in relation to canine-to-lateral ratio. Similarly, most proportions of width to height ratio were higher than GS. Difference between groups was significant for left side and for both sides (p < 0.05) but was not for right side (p > 0.05). Conclusion: Frequency of golden proportion was very low among the study population. Smile attractiveness is not related that much to the proportions between the teeth.Keywords: golden proportion, golden standard, attractive smile, esthetic, anterior teeth
Procedia PDF Downloads 1433017 Kuwait Environmental Remediation Program: Fresh Groudwater Risk Assessement from Tarcrete Material across the Raudhatain and Sabriyah Oil Fields, North Kuwait
Authors: Nada Al-Qallaf, Aisha Al-Barood, Djamel Lekmine, Srinivasan Vedhapuri
Abstract:
Kuwait Oil Company (KOC) under the supervision of Kuwait National Focal Point (KNFP) is planning to remediate 26 million (M) m3 of oil-contaminated soil in oil fields of Kuwait as a direct and indirect fallout of the Gulf War during 1990-1991. This project is funded by the United Nations Compensation Commission (UNCC) under the Kuwait Environmental Remediation Program (KERP). Oil-contamination of the soil occurred due to the destruction of the oil wells and spilled crude oil across the land surface and created ‘oil lakes’ in low lying land. Aerial fall-out from oil spray and combustion products from oil fires combined with the sand and gravel on the ground surface to form a layer of hardened ‘Tarcrete’. The unique fresh groundwater lenses present in the Raudhatain and Sabriya subsurface areas had been impacted by the discharge and/or spills of dissolved petroleum constituents. These fresh groundwater aquifers were used for drinking water purposes until 1990, prior to invasion. This has significantly damages altered the landscape, ecology and habitat of the flora and fauna and in Kuwait Desert. Under KERP, KOC is fully responsible for the planning and execution of the remediation and restoration projects in KOC oil fields. After the initial recommendation of UNCC to construct engineered landfills for containment and disposal of heavily contaminated soils, two landfills were constructed, one in North Kuwait and another in South East Kuwait of capacity 1.7 million m3 and 0.5 million m3 respectively. KOC further developed the Total Remediation Strategy in conjunction with KNFP and has obtained UNCC approval. The TRS comprises of elements such as Risk Based Approach (RBA), Bioremediation of low Contaminated Soil levels, Remediation Treatment Technologies, Sludge Disposal via Beneficial Recycling or Re-use and Engineered landfills for Containment of untreatable materials. Risk Based Assessment as a key component to avoid any unnecessary remedial works, where it can be demonstrated that human health and the environment are sufficiently protected in the absence of active remediation. This study demonstrates on the risks of tarcrete materials spread over areas 20 Km2 on the fresh Ground water lenses/catchment located beneath the Sabriyah and Raudhatain oil fields in North Kuwait. KOC’s primary objective is to provide justification of using RBA, to support a case with the Kuwait regulators to leave the tarcrete material in place, rather than seek to undertake large-scale removal and remediation. The large-scale coverage of the tarcrete in the oil fields and perception that the residual contamination associated with this source is present in an environmentally sensitive area essentially in ground water resource. As part of this assessment, conceptual site model (CSM) and complete risk-based and fate and transport modelling was carried out which includes derivation of site-specific assessment criteria (SSAC) and quantification of risk to identified waters resource receptors posed by tarcrete impacted areas. The outcome of this assessment was determined that the residual tarcrete deposits across the site area shall not create risks to fresh groundwater resources and the remedial action to remove and remediate the surficial tarcrete deposits is not warranted.Keywords: conceptual site model, fresh groundwater, oil-contaminated soil, tarcrete, risk based assessment
Procedia PDF Downloads 1743016 Wear Assessment of SS316l-Al2O3 Composites for Heavy Wear Applications
Authors: Catherine Kuforiji, Michel Nganbe
Abstract:
The abrasive wear of composite materials is a major challenge in highly demanding wear applications. Therefore, this study focuses on fabricating, testing and assessing the properties of 50wt% SS316L stainless steel–50wt% Al2O3 particle composites. Composite samples were fabricated using the powder metallurgy route. The effects of the powder metallurgy processing parameters and hard particle reinforcement were studied. The microstructure, density, hardness and toughness were characterized. The wear behaviour was studied using pin-on-disc testing under dry sliding conditions. The highest hardness of 1085.2 HV, the highest theoretical density of 94.7% and the lowest wear rate of 0.00397 mm3/m were obtained at a milling speed of 720 rpm, a compaction pressure of 794.4 MPa and sintering at 1400 °C in an argon atmosphere. Compared to commercial SS316 and fabricated SS316L, the composites had 7.4 times and 11 times lower wear rate, respectively. However, the commercial 90WC-10Co showed 2.2 times lower wear rate compared to the fabricated SS316L-Al2O3 composites primarily due to the higher ceramic content of 90 wt.% in the reference WC-Co. However, eliminating the relatively high porosity of about 5 vol% using processes such as HIP and hot pressing can be expected to lead to further substantial improvements of the composites wear resistance.Keywords: SS316L, Al2O3, powder metallurgy, wear characterization
Procedia PDF Downloads 3043015 Study on Hysteresis in Sustainable Two-Layer Circular Tube under a Lateral Compression Load
Authors: Ami Nomura, Ken Imanishi, Yukinori Taniguchi, Etsuko Ueda, Tadahiro Wada, Shinichi Enoki
Abstract:
Recently, there have been a lot of earthquakes in Japan. It is necessary to promote seismic isolation devices for buildings. The devices have been hardly diffused in attached houses, because the devices are very expensive. We should develop a low-cost seismic isolation device for detached houses. We suggested a new seismic isolation device which uses a two-layer circular tube as a unit. If hysteresis is produced in the two-layer circular tube under lateral compression load, we think that the two-layer circular tube can have energy absorbing capacity. It is necessary to contact the outer layer and the inner layer to produce hysteresis. We have previously reported how the inner layer comes in contact with the outer layer from a perspective of analysis used mechanics of materials. We have clarified that the inner layer comes in contact with the outer layer under a lateral compression load. In this paper, we explored contact area between the outer layer and the inner layer under a lateral compression load by using FEA. We think that changing the inner layer’s thickness is effective in increase the contact area. In order to change the inner layer’s thickness, we changed the shape of the inner layer. As a result, the contact area changes depending on the inner layer’s thickness. Additionally, we experimented to check whether hysteresis occurs in fact. As a consequence, we can reveal hysteresis in the two-layer circular tube under the condition.Keywords: contact area, energy absorbing capacity, hysteresis, seismic isolation device
Procedia PDF Downloads 3613014 Studying the Possibility to Weld AA1100 Aluminum Alloy by Friction Stir Spot Welding
Authors: Ahmad K. Jassim, Raheem Kh. Al-Subar
Abstract:
Friction stir welding is a modern and an environmentally friendly solid state joining process used to joint relatively lighter family of materials. Recently, friction stir spot welding has been used instead of resistance spot welding which has received considerable attention from the automotive industry. It is environmentally friendly process that eliminated heat and pollution. In this research, friction stir spot welding has been used to study the possibility to weld AA1100 aluminum alloy sheet with 3 mm thickness by overlapping the edges of sheet as lap joint. The process was done using a drilling machine instead of milling machine. Different tool rotational speeds of 760, 1065, 1445, and 2000 RPM have been applied with manual and automatic compression to study their effect on the quality of welded joints. Heat generation, pressure applied, and depth of tool penetration have been measured during the welding process. The result shows that there is a possibility to weld AA1100 sheets; however, there is some surface defect that happened due to insufficient condition of welding. Moreover, the relationship between rotational speed, pressure, heat generation and tool depth penetration was created.Keywords: friction, spot, stir, environmental, sustainable, AA1100 aluminum alloy
Procedia PDF Downloads 1953013 Women Executives' Career Success in the Office of the Basic Education
Authors: Nipon Sasithornsaowapa
Abstract:
This research aims to study the impact of personality and family status on women executives’ career success of the primary education department of Thailand. The independent variable includes three factors, namely family status, personality, and knowledge-skill-experience, while the dependent variable is the career success. The population of this study includes 2,179 female management officials in the department of primary education. A total of 400 female managers is interviewed and utilized as a sample group. A questionnaire is developed and used as a research tool for data collection. Content analysis is performed to get the quantitative data. Descriptive statistics in this research is conducted by SPSS program. The findings revealed that personality and family status of samples have an influence on the overall career success of women executives in terms of their objective career success. However, in terms of specific factors of personality or family status, it is found that there is no relevance of each factor on the women executives’ career success. It can be concluded that the factor affecting the women executives’ career success is subjective career success including the happiness and enjoyment with the job not factor concerning materials. Their success is the result of each individual working experience. However, their personal characteristics do not affect their success.Keywords: career success, women executives, primary education, knowledge-skill-experience
Procedia PDF Downloads 4813012 Development of Biodegradable Plastic as Mango Fruit Bag
Authors: Andres M. Tuates Jr., Ofero A. Caparino
Abstract:
Plastics have achieved a dominant position in agriculture because of their transparency, lightness in weight, impermeability to water and their resistance to microbial attack. However, this generates a higher quantity of wastes that are difficult to dispose of by farmers. To address these problems, the project aim to develop and evaluate the biodegradable film for mango fruit bag during development. The PBS and starch were melt-blended in a twin-screw extruder and then blown into film extrusion machine. The physic-chemical-mechanical properties of biodegradable fruit bag were done following standard methods of test. Field testing of fruit bag was also conducted to evaluate its durability and efficiency field condition. The PHilMech-FiC fruit bag is made of biodegradable material measuring 6 x 8 inches with a thickness of 150 microns. The tensile strength is within the range of LDPE while the elongation is within the range of HDPE. It is projected that after thirty-six (36) weeks, the film will be totally degraded. Results of field testing show that the quality of harvested fruits using PHilMech-FiC biodegradable fruit bag in terms of percent marketable, non-marketable and export, peel color at the ripe stage, flesh color, TSS, oBrix, percent edible portion is comparable with the existing bagging materials such as Chinese brown paper bag and old newspaper.Keywords: cassava starch, PBS, biodegradable, chemical, mechanical properties
Procedia PDF Downloads 2783011 Recent Advances of Photo-Detectors in Single Photon Emission Computed Tomography Imaging System
Authors: Qasem A. Alyazji
Abstract:
One of the main techniques for Positron emission tomography (PET), Single photon emission computed tomography (SPECT) is the development of radiation detectors. The NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes known as the Anger camera, is the most dominant detectors system in PET and SPECT devices. Technological advances in many materials, in addition to the emerging importance of specialized applications such as preclinical imaging and cardiac imaging, have encouraged innovation so that alternatives to the anger camera are now part in alternative imaging systems. In this paper we will discuss the main performance characteristics of detectors devices and scanning developments in both scintillation detectors, semiconductor (solid state) detectors, and Photon Transducers such as photomultiplier tubes (PMTs), position sensitive photomultiplier tubes (PSPMTs), Avalanche photodiodes (APDs) and Silicon photomultiplier (SiPMT). This paper discussed the detectors that showed promising results. This study is a review of recent developments in the detectors used in single photon emission computed tomography (SPECT) imaging system.Keywords: SPECT, scintillation, PMTs, SiPMT, PSPMTs, APDs, semiconductor (solid state)
Procedia PDF Downloads 1673010 Sustainable Design through up-Cycling Crafts in the Mainstream Fashion Industry of India
Authors: Avani Chhajlani
Abstract:
Fashion is considered to be the most destructive industry, second only to the oil rigging industry, which has a greater impact on the environment. While fashion today banks upon fast fashion to generate a higher turnover of designs and patterns in apparel and related accessories, crafts push us towards a more slow and thoughtful approach with culturally identifiably unique work and slow community-centered production. Despite this strong link between indigenous crafts and sustainability, it has not been extensively researched and explored upon. In the forthcoming years, the fashion industry will have to reinvent itself to move towards a more holistic and sustainable circular model to balance the harm already caused. And closed loops of the circular economy will help the integration of indigenous craft knowledge, which is regenerative. Though sustainability and crafts of a region go hand-in-hand, the craft still have to find its standing in the mainstream fashion world; craft practices have a strong local congruence and knowledge that has been passed down generation-to-generation through oration or written materials. This paper aims to explore ways a circular economy can be created by amalgamating fashion and craft while creating a sustainable business model and how this is slowly being created today through brands like – RaasLeela, Pero, and KaSha, to name a few.Keywords: circular economy, fashion, India, indigenous crafts, slow fashion, sustainability, up-cycling
Procedia PDF Downloads 1873009 Measurement of the Dynamic Modulus of Elasticity of Cylindrical Concrete Specimens Used for the Cyclic Indirect Tensile Test
Authors: Paul G. Bolz, Paul G. Lindner, Frohmut Wellner, Christian Schulze, Joern Huebelt
Abstract:
Concrete, as a result of its use as a construction material, is not only subject to static loads but is also exposed to variables, time-variant, and oscillating stresses. In order to ensure the suitability of construction materials for resisting these cyclic stresses, different test methods are used for the systematic fatiguing of specimens, like the cyclic indirect tensile test. A procedure is presented that allows the estimation of the degradation of cylindrical concrete specimens during the cyclic indirect tensile test by measuring the dynamic modulus of elasticity in different states of the specimens’ fatigue process. Two methods are used in addition to the cyclic indirect tensile test in order to examine the dynamic modulus of elasticity of cylindrical concrete specimens. One of the methods is based on the analysis of eigenfrequencies, whilst the other one uses ultrasonic pulse measurements to estimate the material properties. A comparison between the dynamic moduli obtained using the three methods that operate in different frequency ranges shows good agreement. The concrete specimens’ fatigue process can therefore be monitored effectively and reliably.Keywords: concrete, cyclic indirect tensile test, degradation, dynamic modulus of elasticity, eigenfrequency, fatigue, natural frequency, ultrasonic, ultrasound, Young’s modulus
Procedia PDF Downloads 1743008 Study of the Influence of Eccentricity Due to Configuration and Materials on Seismic Response of a Typical Building
Authors: A. Latif Karimi, M. K. Shrimali
Abstract:
Seismic design is a critical stage in the process of design and construction of a building. It includes strategies for designing earthquake-resistant buildings to ensure health, safety, and security of the building occupants and assets. Hence, it becomes very important to understand the behavior of structural members precisely, for construction of buildings that can yield a better response to seismic forces. This paper investigates the behavior of a typical structure when subjected to ground motion. The corresponding mode shapes and modal frequencies are studied to interpret the response of an actual structure using different fabricated models and 3D visual models. In this study, three different structural configurations are subjected to horizontal ground motion, and the effect of “stiffness eccentricity” and placement of infill walls are checked to determine how each parameter contributes in a building’s response to dynamic forces. The deformation data from lab experiments and the analysis on SAP2000 software are reviewed to obtain the results. This study revealed that seismic response in a building can be improved by introducing higher deformation capacity in the building. Also, proper design of infill walls and maintaining a symmetrical configuration in a building are the key factors in building stability during the earthquake.Keywords: eccentricity, seismic response, mode shape, building configuration, building dynamics
Procedia PDF Downloads 2003007 Developing of Attitude towards Using Complementary Treatments Scale in Turkey
Authors: Ayşegül Bilge, Merve Uğuryol, Şeyda Dülgerler, Mustafa Yıldız
Abstract:
The purpose of this research is to prove the Attitude towards Using Complementary Treatments Scale reliability and validity. The research is a methodological type of research that has been planned to determine the validity and reliability of the Attitude towards Using Complementary Treatments Scale. The scale has been developed by the researchers. In the scale, there are 23 questions including complementary and modern therapies individuals apply when they have health problems 4-item Likert-type evaluation has been carried out in preparing the questionnaire. High score obtained from the scale indicates a positive attitude towards complementary therapies. In the course of validity assessment of the scale, expert opinion has been received, and the content validity of the scale has been determined by using Kendall coefficient correlation test (Wa=0.200, p = 0.460). In the course of the reliability assessment of the scale, total score correlations of 23 materials have been examined, and those under 0.20 correlation limit has been removed from the scale correlation. As a result, the scale was left to be 13 items. In the internal consistency tests of the analyses, Cronbach's alpha value has been found to be 0.79. As a result, of the validity analyses of the Attitude towards Using Complementary Treatments Scale, the content and language validity analyses has been found to be at the expected level. It has been determined to be a highly reliable scale as the result of the reliability analyses. In conclusion, Attitude towards Using Complementary Treatments Scale is a valid and reliable scale.Keywords: alternative health care, complementary treatment, instrument development, nursing practice
Procedia PDF Downloads 4003006 Carbon Nitride Growth on ZnO Architectures for Enhanced Photoelectrochemical Water Splitting Application
Authors: Špela Hajduk, Sean P. Berglund, Matejka Podlogar, Goran Dražić, Fatwa F. Abdi, Zorica C. Orel, Menny Shalom
Abstract:
Graphitic carbon nitride materials (g-CN) have emerged as an attractive photocatalyst and electrocatalyst for photo and electrochemical water splitting reaction, due to their environmental benignity nature and suitable band gap. Many approaches were introduced to enhance the photoactivity and electronic properties of g-CN and resulted in significant changes in the electronic and catalytic properties. Here we demonstrate the synthesis of thin and homogenous g-CN layer on highly ordered ZnO nanowire (NW) substrate by growing a seeding layer of small supramolecular assemblies on the nanowires. The new synthetic approach leads to the formation of thin g-CN layer (~3 nm) without blocking all structure. Two different deposition methods of carbon nitride were investigated and will be presented. The amount of loaded carbon nitride significantly influences the PEC activity of hybrid material and all the ZnO/g-CNx electrodes show great improvement in photoactivity. The chemical structure, morphology and optical properties of the deposited g-CN were fully characterized by various techniques as X-ray powder spectroscopy (XRD), scanning electron microscopy (SEM), focused ion beam scanning electron microscopy (FIB-SEM), high-resolution scanning microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS).Keywords: carbon nitride, photoanode, solar water splitting, zinc oxide
Procedia PDF Downloads 1953005 Building Bricks Made of Fly-Ash Mixed with Sand or Ceramic Dust: Synthesis and a Comparative Study
Authors: Md. R. Shattique, Md. T. Zaki, Md. G. Kibria
Abstract:
Fly-ash bricks give a comprehensive solution towards recycling of fly-ash and since there is no requirement of firing to produce them, they are also eco-friendly bricks; little or no carbon-dioxide is emitted during their entire production cycle. As bricks are the most essential and widely utilized building materials in the construction industry, the significance of developing an alternate eco-friendly brick is substantial in modern times. In this paper, manufacturing and potential utilization of Fly-ash made building bricks have been studied and was found to be a prospective substitute for fired clay bricks that contribute greatly to polluting the environment. Also, a comparison between sand made and ceramic dust made Fly-ash bricks have been carried out experimentally. The ceramic dust made bricks seem to show higher compressive strength at lower unit volume weight compared to sand made Fly-ash bricks. Moreover, the water absorption capacity of ceramic dust Fly-ash bricks was lower than sand made bricks. Then finally a statistical comparison between fired clay bricks and fly-ash bricks were carried out. All the requirements for good quality building bricks are matched by the fly-ash bricks. All the facts from this study pointed out that these bricks give a new opportunity for being an alternate building material.Keywords: coal fly-ash, ceramic dust, burnt clay bricks, sand, gypsum, absorption capacity, unit volume weight, compressive strength
Procedia PDF Downloads 4223004 Assessment of cellulase and xylanase Production by chryseobacterium sp. Isolated from Decaying Biomass in Alice, Eastern Cape, South Africa
Authors: A. Nkohla, U. Nwodo, L. V. Mabinya, A. I. Okoh
Abstract:
A potential source for low-cost production of value added products is the utilization of lignocellulosic materials. However, the huddle needing breaching would be the dismantlement of the complex lignocellulosic structure as to free sugar base therein. the current lignocellosic material treatment process is expensive and not eco-friendly hence, the advocacy for enzyme based technique which is both cheap and eco-friendly is highly imperative. Consequently, this study aimed at the screening of cellulose and xylan degrading bacterial strain isolated from decaying sawdust samples. This isolate showed high activity for cellulase and xylanase when grown on carboxymethyl cellulose and birtchwood xylan as the sole carbon source respectively. The 16S rDNA nucleotide sequence of the isolate showed 98% similarity with that of Chryseobacterium taichungense thus, it was identified as a Chryseobacterium sp. Optimum culture conditions for cellulase and xylanase production were medium pH 6, incubation temperature of 25 °C at 50 rpm and medium pH 6, incubation temperature of 25 °C at 150 rpm respectively. The high enzyme activity obtained from this bacterial strain portends it as a good candidate for industrial use in the degradation of complex biomass for value added products.Keywords: lignocellulosic material, chryseobacterium sp., submerged fermentation, cellulase, xylanase
Procedia PDF Downloads 3103003 Comparative Assessment of MRR, TWR, and Surface Integrity in Rotary and Stationary Tool EDM for Machining AISI D3 Tool Steel
Authors: Anand Prakash Dwivedi, Sounak Kumar Choudhury
Abstract:
Electric Discharge Machining (EDM) is a well-established and one of the most primitive unconventional manufacturing processes, that is used world-wide for the machining of geometrically complex or hard and electrically conductive materials which are extremely difficult to cut by any other conventional machining process. One of the major flaws, over all its advantages, is its very slow Material Removal Rate (MRR). In order to eradicate this slow machining rate, various researchers have proposed various methods like; providing rotational motion to the tool or work-piece or to both, mixing of conducting additives (such as SiC, Cr, Al, graphite etc) powders in the dielectric, providing vibrations to the tool or work-piece or to both etc. Present work is a comparative study of Rotational and Stationary Tool EDM, which deals with providing rotational motion to the copper tool for the machining of AISI D3 Tool Steel and the results have been compared with stationary tool EDM. It has been found that the tool rotation substantially increases the MRR up to 28%. The average surface finish increases around 9-10% by using the rotational tool EDM. The average tool wear increment is observed to be around 19% due to the tool rotation. Apart from this, the present work also focusses on the recast layer analysis, which are being re-deposited on the work-piece surface during the operation. The recast layer thickness is less in case of Rotational EDM and more for Stationary Tool EDM. Moreover, the cracking on the re-casted surface is also more for stationary tool EDM as compared with the rotational EDM. Procedia PDF Downloads 3203002 Advances in Fiber Optic Technology for High-Speed Data Transmission
Authors: Salim Yusif
Abstract:
Fiber optic technology has revolutionized telecommunications and data transmission, providing unmatched speed, bandwidth, and reliability. This paper presents the latest advancements in fiber optic technology, focusing on innovations in fiber materials, transmission techniques, and network architectures that enhance the performance of high-speed data transmission systems. Key advancements include the development of ultra-low-loss optical fibers, multi-core fibers, advanced modulation formats, and the integration of fiber optics into next-generation network architectures such as Software-Defined Networking (SDN) and Network Function Virtualization (NFV). Additionally, recent developments in fiber optic sensors are discussed, extending the utility of optical fibers beyond data transmission. Through comprehensive analysis and experimental validation, this research offers valuable insights into the future directions of fiber optic technology, highlighting its potential to drive innovation across various industries.Keywords: fiber optics, high-speed data transmission, ultra-low-loss optical fibers, multi-core fibers, modulation formats, coherent detection, software-defined networking, network function virtualization, fiber optic sensors
Procedia PDF Downloads 613001 Process Optimization of Electrospun Fish Sarcoplasmic Protein Based Nanofibers
Authors: Sena Su, Burak Ozbek, Yesim M. Sahin, Sevil Yucel, Dilek Kazan, Faik N. Oktar, Nazmi Ekren, Oguzhan Gunduz
Abstract:
In recent years, protein, lipid or polysaccharide-based polymers have been used in order to develop biodegradable materials and their chemical nature determines the physical properties of the resulting films. Among these polymers, proteins from different sources have been extensively employed because of their relative abundance, film forming ability, and nutritional qualities. In this study, the biodegradable composite nanofiber films based on fish sarcoplasmic protein (FSP) were prepared via electrospinning technique. Biodegradable polycaprolactone (PCL) was blended with the FSP to obtain hybrid FSP/PCL nanofiber mats with desirable physical properties. Mixture solutions of FSP and PCL were produced at different concentrations and their density, viscosity, electrical conductivity and surface tension were measured. Mechanical properties of electrospun nanofibers were evaluated. Morphology of composite nanofibers was observed using scanning electron microscopy (SEM). Moreover, Fourier transform infrared spectrometer (FTIR) studies were used for analysis chemical composition of composite nanofibers. This study revealed that the FSP based nanofibers have the potential to be used for different applications such as biodegradable packaging, drug delivery, and wound dressing, etc.Keywords: edible film, electrospinning, fish sarcoplasmic protein, nanofiber
Procedia PDF Downloads 2973000 Investigating the Effect of the Flipped Classroom Using E-Learning on Language Proficiency, Learner's Autonomy, and Class Participation of English Language Learners
Authors: Michelle Siao-Cing Guo
Abstract:
Technology is widely adopted to assist instruction and learning across disciplines. Traditional teaching method fails to capture the attention of the generation of digital native and does not accommodate diverse needs of today’s learners. The innovation in technology allows new pedagogical approaches. One approach that converts the traditional learning classroom to a more flexible learning time and space is known as the flipped classroom. This new pedagogy extends and enhances learning and accommodates different learning styles. The flipped classroom employs technology to offer course materials online 24 hours/day and to promote active class learning. However, will Taiwanese students who are used to more traditional instructional methods embrace the flipped classroom using E-learning? Will the flipped approach have an effect on Taiwanese students’ English mastery and learning autonomy? The researcher compares a flipped classroom model using E-learning and the traditional-lecture model. A pre- and post-test and a questionnaire were utilized to examine the effect of the flipped classroom on Taiwanese college students. The test results showed that the flipped approach had a positive effect on learners’ English proficiency level, topical knowledge, and willingness to participate in class. The questionnaire also demonstrates the acceptance of the new teaching model.Keywords: flipped classroom , E-learning, innovative teaching, technology
Procedia PDF Downloads 3762999 The Effect of Acrylic Gel Grouting on Groundwater in Porous Media
Authors: S. Wagner, C. Boley, Y. Forouzandeh
Abstract:
When digging excavations, groundwater bearing layers are often encountered. In order to allow anhydrous excavation, soil groutings are carried out, which form a water-impermeable layer. As it is injected into groundwater areas, the effects of the materials used on the environment must be known. Developing an eco-friendly, economical and low viscous acrylic gel which has a sealing effect on groundwater is therefore a significant task. At this point the study begins. Basic investigations with the rheometer and a reverse column experiment have been performed with different mixing ratios of an acrylic gel. A dynamic rheology study was conducted to determine the time at which the gel still can be processed and the maximum gel strength is reached. To examine the effect of acrylic gel grouting on determine the parameters pH value, turbidity, electric conductivity, and total organic carbon on groundwater, an acrylic gel was injected in saturated sand filled the column. The structure was rinsed with a constant flow and the eluate was subsequently examined. The results show small changes in pH values and turbidity but there is a dependency between electric conductivity and total organic carbon. The curves of the two parameters react at the same time, which means that the electrical conductivity in the eluate can be measured constantly until the maximum is reached and only then must total organic carbon (TOC) samples be taken.Keywords: acrylic gel grouting, dynamic rheology study, electric conductivity, total organic carbon
Procedia PDF Downloads 1462998 Electro-Thermo-Mechanical Behaviour of Functionally Graded Material Usage in Lead Acid Storage Batteries and the Benefits
Authors: Sandeep Das
Abstract:
Terminal post is one of the most important features of a Battery. The design and manufacturing of post are very much critical especially when threaded inserts (Bolt-on type) are used since all the collected energy is delivered from the lead part to the threaded insert (Cu or Cu alloy). Any imperfection at the interface may cause Voltage drop, high resistance, high heat generation, etc. This may be because of sudden change of material properties from lead to Cu alloys. To avoid this problem, a scheme of material gradation is proposed for achieving continuous variation of material properties for the Post used in commercially available lead acid battery. The Functionally graded (FG) material for the post is considered to be composed of different layers of homogeneous material. The volume fraction of the materials used corresponding to each layer is calculated by considering its variation along the direction of current flow (z) according to a power law. Accordingly, the effective properties of the homogeneous layers are estimated and the Post composed of this FG material is modeled using the commercially available ANSYS software. The solid 186 layered structural solid element has been used for discretization of the model of the FG Post. A thermal electric analysis is performed on the layered FG model. The model developed has been validated by comparing the results of the existing Post model& experimental analysisKeywords: ANSYS, functionally graded material, lead-acid battery, terminal post
Procedia PDF Downloads 1402997 Conversion of Atmospheric Carbone Dioxide into Minerals at Room Conditions by Using the Sea Water Plus Various Additives
Authors: Muthana A. M. Jamel Al-Gburi
Abstract:
Elimination of carbon dioxide (CO2) gas from the atmosphere is very important but complicated since there is increasing in the amounts of carbon dioxide and other greenhouse gases in the atmosphere, which mainly caused by some of the human activities and the burning of fossil fuels. So that will lead to global warming. The global warming affects the earth temperature causing an increase to a higher level and, at the same time, creates tornadoes and storms. In this project, we are going to do a new technique for extracting carbon dioxide directly from the air and change it to useful minerals and Nano scale fibers made of carbon by using several chemical processes through chemical reactions. So, that could lead to an economical and healthy way to make some valuable building materials. Also, it may even work as a weapon against environmental change. In our device (Carbone Dioxide Domestic Extractor), we are using Ocean-seawater to dissolve the CO₂ gas and then converted it into carbonate minerals by using a number of additives like Shampoo, clay, and MgO. Note that the atmospheric air includes CO₂ gas, has circulated within the seawater by the air pump. More, that we will use a number of chemicals agents to convert the water acid into useful minerals. After we constructed the system, we did intense experiments and investigations to find the optimum chemical agent, which must be work at the environmental condition. Further to that, we will measure the solubility of CO₂ and other salts in the seawater.Keywords: global warming, CO₂ gas, ocean-sea water, additives, solubility level
Procedia PDF Downloads 1112996 Effects of Bacterial Inoculants and Enzymes Inoculation on the Fermentation and Aerobic Stability of Potato Hash Silage
Authors: B. D. Nkosi, T. F. Mutavhatsindi, J. J. Baloyi, R. Meeske, T. M. Langa, I. M. M. Malebana, M. D. Motiang
Abstract:
Potato hash (PH), a by-product from food production industry, contains 188.4 g dry matter (DM)/kg and 3.4 g water soluble carbohydrate (WSC)/kg DM, and was mixed with wheat bran (70:30 as is basis) to provide 352 g DM/kg and 315 g WSC/kg DM. The materials were ensiled with or without silage additives in 1.5L anaerobic jars (3 jars/treatment) that were kept at 25-280 C for 3 months. Four types of silages were produced which were: control (no additive, denoted as T1), celluclast enzyme (denoted as T2), emsilage bacterial inoculant (denoted as T3) and silosolve bacterial inoculant (denoted as T4). Three jars per treatment were opened after 3 months of ensiling for the determination of nutritive values, fermentation characteristics and aerobic stability. Aerobic stability was done by exposing silage samples to air for 5 days. The addition of enzyme (T2) was reduced (P<0.05) silage pH, fiber fractions (NDF and ADF) while increasing (P < 0.05) residual WSC and lactic acid (LA) production, compared to other treatments. Silage produced had pH of < 4.0, indications of well-preserved silage. Bacterial inoculation (T3 and T4) improved (P < 0.05) aerobic stability of the silage, as indicated by increased number of hours and lower CO2 production, compared to other treatments. However, the aerobic stability of silage was worsen (P < 0.05) with the addition of an enzyme (T2). Further work to elucidate these effects on nutrient digestion and growth performance on ruminants fed the silage is needed.Keywords: by-products, digestibility, feeds, inoculation, ruminants, silage
Procedia PDF Downloads 4392995 Recycled Asphalt Pavement with Warm Mix Additive for Sustainable Road Construction
Authors: Meor Othman Hamzah, Lillian Gungat, Nur Izzi Md. Yusoff, Jan Valentin
Abstract:
The recent hike in raw materials costs and the quest for preservation of the environment has prompted asphalt industries to adopt greener road construction technology. This paper presents a study on such technology by means of asphalt recycling and use of warm mix asphalt (WMA) additive. It evaluates the effects of a WMA named RH-WMA on binder rheological properties and asphalt mixture performance. The recycled asphalt, obtained from local roads, was processed, fractionated, and incorporated with virgin aggregate and binder. For binder testing, the recycled asphalt was extracted and blended with virgin binder. The binder and mixtures specimen containing 30 % and 50 % recycled asphalt contents were mixed with 3 % RH-WMA. The rheological properties of the binder were evaluated based on fundamental, viscosity, and frequency sweep tests. Indirect tensile strength and resilient modulus tests were carried out to assess the mixture’s performances. The rheological properties and strength performance results showed that the addition of RH-WMA slightly reduced the binder and mixtures stiffness. The percentage of recycled asphalt increased the stiffness of binder and mixture, and thus improves the resistance to rutting. Therefore, the integration of recycled asphalt and RH-WMA can be an alternative material for road sustainable construction for countries in the tropics.Keywords: recycled asphalt, warm mix additive, rheological, mixture performance
Procedia PDF Downloads 5162994 Studying the Load Sharing and Failure Mechanism of Hybrid Composite Joints Using Experiment and Finite Element Modeling
Authors: Seyyed Mohammad Hasheminia, Heoung Jae Chun, Jong Chan Park, Hong Suk Chang
Abstract:
Composite joints have been getting attention recently due to their high specific mechanical strength to weight ratio that is crucial for structures such as aircrafts and automobiles. In this study on hybrid joints, quasi-static experiments and finite element analysis were performed to investigate the failure mechanism of hybrid composite joint with respect to the joint properties such as the adhesive material, clamping force, and joint geometry. The outcomes demonstrated that the stiffness of the adhesive is the most imperative design parameter. In this investigation, two adhesives with various stiffness values were utilized. Regarding the joints utilizing the adhesive with the lower stiffness modulus, it was observed that the load was exchanged promptly through the adhesive since it was shared more proficiently between the bolt and adhesive. This phenomenon permitted the hybrid joints with low-modulus adhesive to support more prominent loads before failure when contrasted with the joints that utilize the stiffer adhesive. In the next step, the stress share between the bond and bolt as a function of various design parameters was studied using a finite element model in which it was understood that the geometrical parameters such as joint overlap and width have a significant influence on the load sharing between the bolt and the adhesive.Keywords: composite joints, composite materials, hybrid joints, single-lap joint
Procedia PDF Downloads 4062993 The Relationship between Eating Disorders (Anorexia and Bulimia Nervosa) with Some of the Demographic Factors among University Students
Authors: Shima Hashemi, Firoozeh Ghazanfari
Abstract:
Introduction: Eating disorder is a psychiatric disorder that is increasingly growing. This study aimed to determine the relationship between eating disorders (anorexia and bulimia nervosa) with some of the demographic factors among Lorestan University of Medical Sciences students. Materials and Methods: This study is a cross-sectional and descriptive study that was done at Lorestan University of Medical Sciences in 2019. Four hundred fifty students were studied by stratified and cluster sampling methods. For gathering data, we use the standard questionnaire Eating Attitudes Test EAT (26). Data were analyzed using statistical software SPSS. Results: According to the results, 144 (32%) males and 305 (67.8%) females were studied. 88.7% were single, and 8.9% were married. In the anorexia nervosa group, the results showed that there was a significant meaning between demographic information, and the number of family members, marital status, BMI, level of education, family income, father and mother education, as well as in the bulimia nervosa group, there was no significant meaning with any demographic information (p>0.05). Conclusion: Anorexia and bulimia nervosa are two known types of eating disorders, and some demographic factors can be effective in causing or aggravating these disorders.Keywords: eating disorder, anorexia nervosa, bulimia nervosa, students
Procedia PDF Downloads 972992 The Effect of Austempering Temperature on Anisotropy of TRIP Steel
Authors: Abdolreza Heidari Noosh Abad, Amir Abedi, Davood Mirahmadi khaki
Abstract:
The high strength and flexibility of TRIP steels are the major reasons for them being widely used in the automobile industry. Deep drawing is regarded as a common metal sheet manufacturing process is used extensively in the modern industry, particularly automobile industry. To investigate the potential of deep drawing characteristic of materials, steel sheet anisotropy is studied and expressed as R-Value. The TRIP steels have a multi-phase microstructure consisting typically of ferrite, bainite and retained austenite. The retained austenite appears to be the most effective phase in the microstructure of the TRIP steels. In the present research, Taguchi method has been employed to study investigates the effect of austempering temperature parameters on the anisotropy property of the TRIP steel. To achieve this purpose, a steel with chemical composition of 0.196C -1.42Si-1.41Mn, has been used and annealed at 810oC, and then austempered at 340-460oC for 3, 6, and 9 minutes. The results shows that the austempering temperature has a direct relationship with R-value, respectively. With increasing austempering temperature, residual austenite grain size increases as well as increased solubility, which increases the amount of R-value. According to the results of the Taguchi method, austempering temperature’s p-value less than 0.05 is due to effective on R-value.Keywords: Taguchi method, hot rolling, thermomechanical process, anisotropy, R-value
Procedia PDF Downloads 3262991 A Digital Representation of a Microstructure and Determining Its Mechanical Behavior
Authors: Burak Bal
Abstract:
Mechanical characterization tests might come with a remarkable cost of time and money for both companies and academics. The inquiry to transform laboratory experiments to the computational media is getting a trend; accordingly, the literature supplies many analytical ways to explain the mechanics of deformation. In our work, we focused on the crystal plasticity finite element modeling (CPFEM) analysis on various materials in various crystal structures to predict the stress-strain curve without tensile tests. For FEM analysis, which we used in this study was ABAQUS, a standard user-defined material subroutine (UMAT) was prepared. The geometry of a specimen was created via DREAM 3D software with the inputs of Euler angles taken by Electron Back-Scattered Diffraction (EBSD) technique as orientation, or misorientation angles. The synthetic crystal created with DREAM 3D is also meshed in a way the grains inside the crystal meshed separately, and the computer can realize interaction of inter, and intra grain structures. The mechanical deformation parameters obtained from the literature put into the Fortran based UMAT code to describe how material will response to the load applied from specific direction. The mechanical response of a synthetic crystal created with DREAM 3D agrees well with the material response in the literature.Keywords: crystal plasticity finite element modeling, ABAQUS, Dream.3D, microstructure
Procedia PDF Downloads 154