Search results for: modeling strategy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7612

Search results for: modeling strategy

3742 Condom Attitudes and Self-Efficacy: Unwrapping Safer Sex Practices among Heterosexual Bahamian Men

Authors: Theresa Adderley

Abstract:

Background: Aside from abstinence, correct and consistent use of latex condoms is the best known effective method to reduce HIV transmission among sexually active heterosexual individuals. When condoms are correctly used, the risk of HIV transmission is reduced by approximately 85%, relative to risk when not protected during sexual intercourse. The literature provides evidence that heterosexual young adults continue to be the group among whom STI rates are highest and the group that engages in more sexual risk-taking behaviors such as inconsistent or no condom usage. This study examines condom attitudes, condom use self-efficacy and their contributions to safer sex behaviors among heterosexual men living in The Bahamas. Methods: Guided by the Theory of Planned Behavior, and a convenience sample of 185 heterosexual males (Mage= 31.95, SD = 11.35), three standardized instruments were used to assess behaviors that may not only place heterosexual males at risk for HIV infection but also their female partners. Results: The results of this study suggest that condom attitudes, and condom use self-efficacy are important in explaining 24% variance in safer sex behaviors among Bahamian men. Income (β= -.15, p < .01; condom attitudes, (β= .36, p < .01), and condom use self-efficacy (β= .1, p < .01) were significantly associated with safer sex behaviors. Conclusion: Rather than focusing only on the use of safer sex behaviors, an effective HIV prevention strategy must consider condom attitudes and condom use self-efficacy as specific variables that may contribute to perpetuating the transmission of HIV.

Keywords: condom attitudes, safer sex behaviors, HIV, condom self-efficacy

Procedia PDF Downloads 301
3741 Biomimetic Luminescent Textile Using Biobased Products

Authors: Sweta Iyer, Nemeshwaree Behary, Vincent Nierstrasz

Abstract:

Various organisms involve bioluminescence for their particular biological function. The bio-based molecules responsible for bioluminescence vary from one species to another, research has been done to identify the chemistry and different mechanisms involved in light production in living organisms. The light emitting chemical systems such as firefly and bacterial luminous mostly involves enzyme-catalyzed reactions and is widely used for ATP measurement, bioluminescence imaging, environmental biosensors etc. Our strategy is to design bioluminescent textiles using such bioluminescent systems. Hence, a detailed literature work was carried out to study on how to mimic bioluminescence effect seen in nature. Reaction mechanisms in various bioluminescent living organisms were studied and the components or molecules responsible for luminescence were identified. However, the challenge is to obtain the same effect on textiles by immobilizing enzymes responsible for light creation. Another challenge is also to regenerate substrates involved in the reaction system to create a longer lasting illumination in bioluminescent textiles. Natural film-forming polymers were used to immobilize the reactive components including enzymes on textile materials to design a biomimetic luminescent textile.

Keywords: bioluminescence, biomimetic, immobilize, luminescent textile

Procedia PDF Downloads 269
3740 Hydrodynamic Analysis on the Body of a Solar Autonomous Underwater Vehicle by Numerical Method

Authors: Mohammad Moonesun, Ehsan Asadi Asrami, Julia Bodnarchuk

Abstract:

In the case of Solar Autonomous Underwater Vehicle, which uses photovoltaic panels to provide its required power, due to limitation of energy, accurate estimation of resistance and energy has major sensitivity. In this work, hydrodynamic calculations by numerical method for a solar autonomous underwater vehicle equipped by two 50 W photovoltaic panels has been studied. To evaluate the required power and energy, hull hydrodynamic resistance in several velocities should be taken into account. To do this assessment, the ANSYS FLUENT 18 applied as Computational Fluid Dynamics (CFD) tool that solves Reynolds Average Navier Stokes (RANS) equations around AUV hull, and K-ω SST is used as turbulence model. To validate of solution method and modeling approach, the model of Myring submarine that it’s experimental data was available, is simulated. There is good agreement between numerical and experimental results. Also, these results showed that the K-ω SST Turbulence model is an ideal method to simulate the AUV motion in low velocities.

Keywords: underwater vehicle, hydrodynamic resistance, numerical modelling, CFD, RANS

Procedia PDF Downloads 211
3739 The Role of Creative Works Dissemination Model in EU Copyright Law Modernization

Authors: Tomas Linas Šepetys

Abstract:

In online content-sharing service platforms, the ability of creators to restrict illicit use of audiovisual creative works has effectively been abolished, largely due to specific infrastructure where a huge volume of copyrighted audiovisual content can be made available to the public. The European Union legislator has attempted to strengthen the positions of creators in the realm of online content-sharing services. Article 17 of the new Digital Single Market Directive considers online content-sharing service providers to carry out acts of communication to the public of any creative content uploaded to their platforms by users and posits requirements to obtain licensing agreements. While such regulation intends to assert authors‘ ability to effectively control the dissemination of their creative works, it also creates threats of parody content overblocking through automated content monitoring. Such potentially paradoxical outcome of the efforts of the EU legislator to deliver economic safeguards for the creators in the online content-sharing service platforms leads to presume lack of informity on legislator‘s part regarding creative works‘ economic exploitation opportunities provided to creators in the online content-sharing infrastructure. Analysis conducted in this scientific research discloses that the aforementioned irregularities of parody and other creative content dissemination are caused by EU legislators‘ lack of assessment of value extraction conditions for parody creators in the online content-sharing service platforms. Historical and modeling research method application reveals the existence of two creative content dissemination models and their unique mechanisms of commercial value creation. Obligations to obtain licenses and liability over creative content uploaded to their platforms by users set in Article 17 of the Digital Single Market Directive represent technological replication of the proprietary dissemination model where the creator is able to restrict access to creative content apart from licensed retail channels. The online content-sharing service platforms represent an open dissemination model where the economic potential of creative content is based on the infrastructure of unrestricted access by users and partnership with advertising services offered by the platform. Balanced modeling of proprietary dissemination models in such infrastructure requires not only automated content monitoring measures but also additional regulatory monitoring solutions to separate parody and other types of creative content. An example of the Digital Single Market Directive proves that regulation can dictate not only the technological establishment of a proprietary dissemination model but also a partial reduction of the open dissemination model and cause a disbalance between the economic interests of creators relying on such models. The results of this scientific research conclude an informative role of the creative works dissemination model in the EU copyright law modernization process. A thorough understanding of the commercial prospects of the open dissemination model intrinsic to the online content-sharing service platform structure requires and encourages EU legislators to regulate safeguards for parody content dissemination. Implementing such safeguards would result in a common application of proprietary and open dissemination models in the online content-sharing service platforms and balanced protection of creators‘ economic interests explicitly based on those creative content dissemination models.

Keywords: copyright law, creative works dissemination model, digital single market directive, online content-sharing services

Procedia PDF Downloads 80
3738 Adsorption of Cerium as One of the Rare Earth Elements Using Multiwall Carbon Nanotubes from Aqueous Solution: Modeling, Equilibrium and Kinetics

Authors: Saeb Ahmadi, Mohsen Vafaie Sefti, Mohammad Mahdi Shadman, Ebrahim Tangestani

Abstract:

Carbon nanotube has shown great potential for the removal of various inorganic and organic components due to properties such as large surface area and high adsorption capacity. Central composite design is widely used method for determining optimal conditions. Also due to the economic reasons and wide application, the rare earth elements are important components. The analyses of cerium (Ce(III)) adsorption as one of the Rare Earth Elements (REEs) adsorption on Multiwall Carbon Nanotubes (MWCNTs) have been studied. The optimization process was performed using Response Surface Methodology (RSM). The optimum amount conditions were pH of 4.5, initial Ce (III) concentration of 90 mg/l and MWCNTs dosage of 80 mg. Under this condition, the optimum adsorption percentage of Ce (III) was obtained about 96%. Next, at the obtained optimum conditions the kinetic and isotherm studied and result showed the pseudo-second order and Langmuir isotherm are more fitted with experimental data than other models.

Keywords: cerium, rare earth element, MWCNTs, adsorption, optimization

Procedia PDF Downloads 169
3737 Design, Molecular Modeling, Synthesize, and Biological Evaluation of Some Dual Inhibitors of Soluble Epoxide Hydrolase (sEH) and Cyclooxygenase 2 (COX-2)

Authors: Elham Rezaee, Sayyed Abbas Tabatabai

Abstract:

Dual inhibition of COX-2 and sEH enzymes represents one of the distinct pharmaceutical approaches for the treatment of inflammation, pain, cancers, and other diseases. The discovery of these inhibitors for treatment is a great deal of attention because of some advantages such as increased efficacy, a promising safety profile, ease of formulation, and better target engagement. In this research, based on the structure-activity relationship of COX-2 and sEH inhibitors, some amide derivatives with oxadiazole and dihydropyrimidinone rings against sEH and COX-2 enzymes were developed. The designed compounds showed high affinity to the active site of both enzymes in docking studies and were synthesized in good yield and characterized by IR, Mass, 1HNMR, and 13CNMR. All of the novel compounds exhibited considerable in-vitro sEH and COX-2 inhibitory activities in comparison with 12-(3-Adamantan-1-yl-ureido)- dodecanoic acid and celecoxib (a potent urea-based sEH inhibitor and selective nonsteroidal anti-inflammatory drug, respectively). Ethyl 6-methyl-4-(4-(4-(methylsulfonyl)benzamido)phenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate was found to be the most selective COX-2 inhibitor (COX-2/COX-1 ratio: 683) with IC50 value of 2.1 nM targeting sEH enzyme.

Keywords: COX-2, dual inhibitors, sEH, synthesis

Procedia PDF Downloads 57
3736 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand

Authors: Neeta Kumari, Gopal Pathak

Abstract:

Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.

Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination

Procedia PDF Downloads 555
3735 Vegetation Integrated with Architecture: A Comparative Study in Vijayawada

Authors: Clince Rodrigues

Abstract:

Due to high dense areas, there is a continuous increase in the global warming and urban pollution, thus integrating green with the built environment is vital. The paper deals with the understanding of vegetation in architecture and how a proper design strategy can aim at improving not only the performances of buildings but also the outdoor climate. In the present scenario of cities, one cannot inhale pure air. Vegetations combat global warming by absorbing the carbon emitted by vehicles, lowering carbon emissions from fossil fuel-burning plants, and reducing the energy used for climate control in buildings by the use of plants which can reduce the carbon emission and thus, making the environment less polluted. A comparative study of areas, neighborhood and dwelling unit has been used as a scope for understanding different scenarios and scale. By comparing a system (area; building) with and without vegetation, and then finding out the difference. Understanding the Vijayawada city by taking its past and present conditions, and how these changes have affected the environment and people at a macro and micro level. Built environment and climactic performance at the building level and surrounding spaces are the areas that are covered in the study.

Keywords: climate, environment, neighborhood, pollution, vegetation, Vijayawada, urban

Procedia PDF Downloads 158
3734 Factors Affecting Students' Attitude to Adapt E-Learning: A Case from Iran How to Develop Virtual Universities in Iran: Using Technology Acceptance Model

Authors: Fatemeh Keivanifard

Abstract:

E-learning is becoming increasingly prominent in higher education, with universities increasing provision and more students signing up. This paper examines factors that predict students' attitudes to adapt e-learning at the Khuzestan province Iran. Understanding the nature of these factors may assist these universities in promoting the use of information and communication technology in teaching and learning. The main focus of the paper is on the university students, whose decision supports effective implementation of e-learning. Data was collected through a survey of 300 post graduate students at the University of dezful, shooshtar and chamran in Khuzestan. The technology adoption model put forward by Davis is utilized in this study. Two more independent variables are added to the original model, namely, the pressure to act and resources availability. The results show that there are five factors that can be used in modeling students' attitudes to adapt e-learning. These factors are intention toward e-learning, perceived usefulness of e-learning, perceived ease of e-learning use, pressure to use e-learning, and the availability of resources needed to use e-learning.

Keywords: e-learning, intention, ease of use, pressure to use, usefulness

Procedia PDF Downloads 373
3733 A Phase Field Approach to Model Crack Interface Interaction in Ceramic Matrix Composites

Authors: Dhaladhuli Pranavi, Amirtham Rajagopal

Abstract:

There are various failure modes in ceramic matrix composites; notable ones are fiber breakage, matrix cracking and fiber matrix debonding. Crack nucleation and propagation in microstructure of such composites requires an understanding of interaction of crack with the multiple inclusion heterogeneous system and interfaces. In order to assess structural integrity, the material parameters especially of the interface that governs the crack growth should be determined. In the present work, a nonlocal phase field approach is proposed to model the crack interface interaction in such composites. Nonlocal approaches help in understanding the complex mechanisms of delamination growth and mitigation and operates at a material length scale. The performance of the proposed formulation is illustrated through representative numerical examples. The model proposed is implemented in the framework of the finite element method. Several parametric studies on interface crack interaction are conducted. The proposed model is easy and simple to implement and works very well in modeling fracture in composite systems.

Keywords: composite, interface, nonlocal, phase field

Procedia PDF Downloads 146
3732 Generation of Value-Added Products from Potato Peels

Authors: Jarina Joshi, Sarbesh Das Dangol, Puja Bhatt

Abstract:

Potatoes are highly consumed in the country like Nepal. A huge amount of potato peels accumulated daily in households, restaurants and industries. Production of value-added products by degrading waste is a key work in the context of the country where the gross domestic product (GDP) of people is very low. In this study, potato peels are efficiently degraded into various value-added products by electrochemical fermentation of Aspergillus niger (amylase and pectinase-producing strain) which can be a sustainable and economic strategy for solid waste management and product generation. The highest OCV observed in the electrochemical cell using KMnO₄ in catholyte was 1586 ± 63 mV/m³ with anode graphite electrode-coated multi-walled carbon nanotubules. The system in fed-batch mode was found to enhance the performance by adding 10% of the liquid sample every 24 hours. The power density observed with 100-ohm and 1000-ohm external resistors was 119 ± 7 W/m3 and 42 ± 9 W/m³, respectively. From the operation at an optimized condition removal rate of COD, ammoniacal-nitrogen, reducing sugar, and TSS were 37.69%, 67.72%, 72.64%, and 65.95%, respectively. Various value-added products were found to be generated from waste samples, i.e., citric acid, succinic acid, glucose, fructose, propionic acid, etc, with electricity as alternative energy.

Keywords: OCV, potato peels, value added products, electrochemical

Procedia PDF Downloads 6
3731 The Application of Artificial Neural Networks for the Performance Prediction of Evacuated Tube Solar Air Collector with Phase Change Material

Authors: Sukhbir Singh

Abstract:

This paper describes the modeling of novel solar air collector (NSAC) system by using artificial neural network (ANN) model. The objective of the study is to demonstrate the application of the ANN model to predict the performance of the NSAC with acetamide as a phase change material (PCM) storage. Input data set consist of time, solar intensity and ambient temperature wherever as outlet air temperature of NSAC was considered as output. Experiments were conducted between 9.00 and 24.00 h in June and July 2014 underneath the prevailing atmospheric condition of Kurukshetra (city of the India). After that, experimental results were utilized to train the back propagation neural network (BPNN) to predict the outlet air temperature of NSAC. The results of proposed algorithm show that the BPNN is effective tool for the prediction of responses. The BPNN predicted results are 99% in agreement with the experimental results.

Keywords: Evacuated tube solar air collector, Artificial neural network, Phase change material, solar air collector

Procedia PDF Downloads 126
3730 Study of Two Adsorbent-Refrigerant Pairs for the Application of Solar-Powered Adsorption Refrigeration System

Authors: Mohammed Ali Hadj Ammar, Fethi Bouras, Kamel Sahlaoui

Abstract:

This article presents a detailed study of two working pairs intended for use in solar adsorption refrigeration (SAR) system. The study was based on two indicators: the daily production and coefficient of performance (COP). The thermodynamic cycle of the system is based on the adsorption phenomena at a constant temperature. A computer simulation program has been developed for modeling and performance evaluation for the solar-powered adsorption refrigeration cycle. It was found that maximal cycled mass is obtained by S40/water (0.280kg/kg) followed by CarboTech C40/1/methanol (0.260kg/kg). At a condenser temperature of 30°C, with an adsorbent mass of 38.59 kg, and an integrated collector/bed configuration, the couple CarboTech C40/1/methanol for the ice-maker purpose can reach cycle COP of 0.63 and can produce about 13.6kg ice per day, while the couple S40/water for the air-conditioning can reach cycle COP of 0.66 and 212kg as daily cold-water production. Additionally, adequate indicators are evaluated addressing the economic and environmental associated with each working pair.

Keywords: solar adsorption, refrigeration, activated carbon, silica gel

Procedia PDF Downloads 136
3729 Influence Analysis of Macroeconomic Parameters on Real Estate Price Variation in Taipei, Taiwan

Authors: Li Li, Kai-Hsuan Chu

Abstract:

It is well known that the real estate price depends on a lot of factors. Each house current value is dependent on the location, room number, transportation, living convenience, year and surrounding environments. Although, there are different experienced models for housing agent to estimate the price, it is a case by case study without overall dynamic variation investigation. However, many economic parameters may more or less influence the real estate price variation. Here, the influences of most macroeconomic parameters on real estate price are investigated individually based on least-square scheme and grey correlation strategy. Then those parameters are classified into leading indices, simultaneous indices and laggard indices. In addition, the leading time period is evaluated based on least square method. The important leading and simultaneous indices can be used to establish an artificial intelligent neural network model for real estate price variation prediction. The real estate price variation of Taipei, Taiwan during 2005 ~ 2017 are chosen for this research data analysis and validation. The results show that the proposed method has reasonable prediction function for real estate business reference.

Keywords: real estate price, least-square, grey correlation, macroeconomics

Procedia PDF Downloads 203
3728 Protection against the Hazards of Stress on Health in Older Adults through Mindfulness

Authors: Cindy de Frias, Erum Whyne

Abstract:

Objectives: The current study examined whether the link between stress and health-related quality of life was buffered by protective factors, namely mindfulness, in a sample of middle-aged and older adults. Method: In this cross-sectional study, 134 healthy, community-dwelling adults (aged 50–85 years) were recruited from Dallas, Texas. The participants were screened for depressive symptoms and severity (using the Patient Health Questionnaire [PHQ-9]). All participants completed measures of self-reported health status (i.e., SF-36v2: mental and physical health composites), life stress (using the Elder’s Life Stress Inventory [ELSI]), and trait mindfulness (i.e., Mindful Attention Awareness Scale). Results: Hierarchical regressions (covarying for age, gender, and education) showed that life stress was inversely related to physical and mental health. Mindfulness was positively related to mental health. The negative effect of life stress on mental health was weakened for those individuals with greater trait mindfulness. Discussion: The results suggest that mindfulness is a powerful, adaptive strategy that may protect middle-aged and older adults from the well-known harmful effects of stress on healthy aging.

Keywords: health, stress, mindfulness, aging

Procedia PDF Downloads 466
3727 Managing the Baltic Sea Region Resilience: Prevention, Treatment Actions and Circular Economy

Authors: J. Burlakovs, Y. Jani, L. Grinberga, M. Kriipsalu, O. Anne, I. Grinfelde, W. Hogland

Abstract:

The worldwide future sustainable economies are oriented towards the sea: the maritime economy is becoming one of the strongest driving forces in many regions as population growth is the highest in coastal areas. For hundreds of years sea resources were depleted unsustainably by fishing, mining, transportation, tourism, and waste. European Sustainable Development Strategy is identifying and developing actions to enable the EU to achieve a continuous, long-term improvement of the quality of life through the creation of sustainable communities. The aim of this paper is to provide insight in Baltic Sea Region case studies on implemented actions on tourism industry waste and beach wrack management in coastal areas, hazardous contaminants and plastic flow treatment from waste, wastewaters and stormwaters. These projects mentioned in study promote successful prevention of contaminant flows to the sea environments and provide perspectives for creation of valuable new products from residuals for future circular economy are the step forward to green innovation winning streak.

Keywords: resilience, hazardous waste, phytoremediation, water management, circular economy

Procedia PDF Downloads 178
3726 Optimization of 3D Printing Parameters Using Machine Learning to Enhance Mechanical Properties in Fused Deposition Modeling (FDM) Technology

Authors: Darwin Junnior Sabino Diego, Brando Burgos Guerrero, Diego Arroyo Villanueva

Abstract:

Additive manufacturing, commonly known as 3D printing, has revolutionized modern manufacturing by enabling the agile creation of complex objects. However, challenges persist in the consistency and quality of printed parts, particularly in their mechanical properties. This study focuses on addressing these challenges through the optimization of printing parameters in FDM technology, using Machine Learning techniques. Our aim is to improve the mechanical properties of printed objects by optimizing parameters such as speed, temperature, and orientation. We implement a methodology that combines experimental data collection with Machine Learning algorithms to identify relationships between printing parameters and mechanical properties. The results demonstrate the potential of this methodology to enhance the quality and consistency of 3D printed products, with significant applications across various industrial fields. This research not only advances understanding of additive manufacturing but also opens new avenues for practical implementation in industrial settings.

Keywords: 3D printing, additive manufacturing, machine learning, mechanical properties

Procedia PDF Downloads 59
3725 Geo-Additive Modeling of Family Size in Nigeria

Authors: Oluwayemisi O. Alaba, John O. Olaomi

Abstract:

The 2013 Nigerian Demographic Health Survey (NDHS) data was used to investigate the determinants of family size in Nigeria using the geo-additive model. The fixed effect of categorical covariates were modelled using the diffuse prior, P-spline with second-order random walk for the nonlinear effect of continuous variable, spatial effects followed Markov random field priors while the exchangeable normal priors were used for the random effects of the community and household. The Negative Binomial distribution was used to handle overdispersion of the dependent variable. Inference was fully Bayesian approach. Results showed a declining effect of secondary and higher education of mother, Yoruba tribe, Christianity, family planning, mother giving birth by caesarean section and having a partner who has secondary education on family size. Big family size is positively associated with age at first birth, number of daughters in a household, being gainfully employed, married and living with partner, community and household effects.

Keywords: Bayesian analysis, family size, geo-additive model, negative binomial

Procedia PDF Downloads 550
3724 Antecedents of Knowledge Sharing: Investigating the Influence of Knowledge Sharing Factors towards Postgraduate Research Supervision

Authors: Arash Khosravi, Mohamad Nazir Ahmad

Abstract:

Today’s economy is a knowledge-based economy in which knowledge is a crucial facilitator to individuals, as well as being an instigator of success. Due to the impact of globalization, universities face new challenges and opportunities. Accordingly, they ought to be more innovative and have their own competitive advantages. One of the most important goals of universities is the promotion of students as professional knowledge workers. Therefore, knowledge sharing and transferring at tertiary level between students and supervisors is vital in universities, as it decreases the budget and provides an affordable way of doing research. Knowledge-sharing impact factors can be categorized into three groups, namely: organizational, individual and technical factors. There are some individual barriers to knowledge sharing, namely: lack of time and trust, lack of communication skills and social networks. IT systems such as e-learning, blogs and portals can increase knowledge sharing capability. However, it must be stated that IT systems are only tools and not solutions. Individuals are still responsible for sharing information and knowledge. This paper proposes new research model to examine the effect of individual factors and organisational factors, namely: learning strategy, trust culture, supervisory support, as well as technological factor on knowledge sharing in a research supervision process at the University of Technology Malaysia.

Keywords: knowledge management, knowledge sharing, research supervision, knowledge transferring

Procedia PDF Downloads 453
3723 Development of Closed System for Bacterial CO2 Mitigation

Authors: Somesh Misha, Smita Raghuvanshi, Suresh Gupta

Abstract:

Increasing concentration of green house gases (GHG's), such as CO2 is of major concern and start showing its impact nowadays. The recent studies are focused on developing the continuous system using photoautotrophs for CO2 mitigation and simultaneous production of primary and secondary metabolites as a value addition. The advent of carbon concentrating mechanism had blurred the distinction between autotrophs and heterotrophs and now the paradigm has shifted towards the carbon capture and utilization (CCU) rather than carbon capture and sequestration (CCS). In the present work, a bioreactor was developed utilizing the chemolithotrophic bacterial species using CO2 mitigation and simultaneous value addition. The kinetic modeling was done and the biokinetic parameters are obtained for developing the bioreactor. The bioreactor was developed and studied for its operation and performance in terms of volumetric loading rate, mass loading rate, elimination capacity and removal efficiency. The characterization of effluent from the bioreactor was carried out for the products obtained using the analyzing techniques such as FTIR, GC-MS, and NMR. The developed bioreactor promised an economic, efficient and effective solution for CO2 mitigation and simultaneous value addition.

Keywords: CO2 mitigation, bio-reactor, chemolithotrophic bacterial species, FTIR, GC-MS, NMR

Procedia PDF Downloads 475
3722 Thermodynamic Modeling of Cryogenic Fuel Tanks with a Model-Based Inverse Method

Authors: Pedro A. Marques, Francisco Monteiro, Alessandra Zumbo, Alessia Simonini, Miguel A. Mendez

Abstract:

Cryogenic fuels such as Liquid Hydrogen (LH₂) must be transported and stored at extremely low temperatures. Without expensive active cooling solutions, preventing fuel boil-off over time is impossible. Hence, one must resort to venting systems at the cost of significant energy and fuel mass loss. These losses increase significantly in propellant tanks installed on vehicles, as the presence of external accelerations induces sloshing. Sloshing increases heat and mass transfer rates and leads to significant pressure oscillations, which might further trigger propellant venting. To make LH₂ economically viable, it is essential to minimize these factors by using advanced control techniques. However, these require accurate modelling and a full understanding of the tank's thermodynamics. The present research aims to implement a simple thermodynamic model capable of predicting the state of a cryogenic fuel tank under different operating conditions (i.e., filling, pressurization, fuel extraction, long-term storage, and sloshing). Since this model relies on a set of closure parameters to drive the system's transient response, it must be calibrated using experimental or numerical data. This work focuses on the former approach, wherein the model is calibrated through an experimental campaign carried out on a reduced-scale model of a cryogenic tank. The thermodynamic model of the system is composed of three control volumes: the ullage, the liquid, and the insulating walls. Under this lumped formulation, the governing equations are derived from energy and mass balances in each region, with mass-averaged properties assigned to each of them. The gas-liquid interface is treated as an infinitesimally thin region across which both phases can exchange mass and heat. This results in a coupled system of ordinary differential equations, which must be closed with heat and mass transfer coefficients between each control volume. These parameters are linked to the system evolution via empirical relations derived from different operating regimes of the tank. The derivation of these relations is carried out using an inverse method to find the optimal relations that allow the model to reproduce the available data. This approach extends classic system identification methods beyond linear dynamical systems via a nonlinear optimization step. Thanks to the data-driven assimilation of the closure problem, the resulting model accurately predicts the evolution of the tank's thermodynamics at a negligible computational cost. The lumped model can thus be easily integrated with other submodels to perform complete system simulations in real time. Moreover, by setting the model in a dimensionless form, a scaling analysis allowed us to relate the tested configurations to a representative full-size tank for naval applications. It was thus possible to compare the relative importance of different transport phenomena between the laboratory model and the full-size prototype among the different operating regimes.

Keywords: destratification, hydrogen, modeling, pressure-drop, pressurization, sloshing, thermodynamics

Procedia PDF Downloads 98
3721 Migration-Related Challenges during the Covid-19 Pandemic in South Africa. A Case of Alexandra Township

Authors: Edwin Mwasakidzeni Mutyenyoka

Abstract:

Without ignoring migration-related challenges in transit zones and places of origin, this inquiry focuses on arrived international immigrants’ exacerbated vulnerability during crises. The aim is to underline longstanding inequalities and demonstrate that crises merely amplify and exacerbate challenges that low-income migrants already face during ‘non-crises’ periods. Social protection, as an agenda for reducing vulnerability, poverty, and risk for low-income households, with regard to basic consumption and services, has been foregrounded in the post-apartheid development discourse in South Africa. Evidently, however, the state, through the South African Social Security Agency (SASSA), systemically excludes the majority of non-citizens from state-sponsored social assistance programs - often leaving them heavily dependent on sporadic non-state options and erosive coping mechanisms. In this paper, migration itself should not only be understood as a social protection strategy against poverty and risk but also as a source of vulnerability that often requires social protection. For quasi-ethnographic, it use one migrant destination, Alex Park Township, as a “contact zone” and space of negotiation during the pandemic.

Keywords: south-south migration, crises, social protection, Covid-19 pandemic

Procedia PDF Downloads 95
3720 Case Study Analysis for Driver's Company in the Transport Sector with the Help of Data Mining

Authors: Diana Katherine Gonzalez Galindo, David Rolando Suarez Mora

Abstract:

With this study, we used data mining as a new alternative of the solution to evaluate the comments of the customers in order to find a pattern that helps us to determine some behaviors to reduce the deactivation of the partners of the LEVEL app. In one of the greatest business created in the last times, the partners are being affected due to an internal process that compensates the customer for a bad experience, but these comments could be false towards the driver, that’s why we made an investigation to collect information to restructure this process, many partners have been disassociated due to this internal process and many of them refuse the comments given by the customer. The main methodology used in this case study is the observation, we recollect information in real time what gave us the opportunity to see the most common issues to get the most accurate solution. With this new process helped by data mining, we could get a prediction based on the behaviors of the customer and some basic data recollected such as the age, the gender, and others; this could help us in future to improve another process. This investigation gives more opportunities to the partner to keep his account active even if the customer writes a message through the app. The term is trying to avoid a recession of drivers in the future offering improving in the processes, at the same time we are in search of stablishing a strategy which benefits both the app’s managers and the associated driver.

Keywords: agent, driver, deactivation, rider

Procedia PDF Downloads 285
3719 Top-Down and Bottom-up Effects in Rhizosphere-Plant-Aphid Interactions

Authors: Anas Cherqui, Audrey Pecourt, Manuella Catterou, Candice Mazoyon, Hervé Demailly, Vivien Sarazin, Frédéric Dubois, Jérôme Duclercq

Abstract:

Aphids are pests that can cause severe yield losses in field crops. Chemical control is currently widely used to control aphids, but this method is increasingly controversial. The pea is able to recruit bacteria that are beneficial to its development, growth and health. However, the effects of this microbial recruitment on plant-insect interactions have generally been underestimated. This study investigated the interactions between Pisum sativum, key bacteria of pea rhizosphere (Rhizobium and Sphingomonas species) and the pea aphid, Acyrthosiphon pisum. We assessed the bottom-up effects of single and combined bacterial inoculations on pea plant health and subsequent aphid performance, as well as the top-down effects of aphid infestation on soil functionality. The presence of S. sediminicola or S. daechungensis limited the fecundity of the pea aphid without strongly affecting its feeding behaviour. Nevertheless, these bacteria limited the effect of A. pisum on the plant phenotype. In addition, the aphid infestation decreased the soil functionality, suggesting a potential strategy to hinder the recruitment of beneficial microorganisms.

Keywords: Acyrthosiphon pisum, Pisum sativum, Sphingomonas, rhizobium, EPG, productivity

Procedia PDF Downloads 26
3718 Deployment of Electronic Healthcare Records and Development of Big Data Analytics Capabilities in the Healthcare Industry: A Systematic Literature Review

Authors: Tigabu Dagne Akal

Abstract:

Electronic health records (EHRs) can help to store, maintain, and make the appropriate handling of patient histories for proper treatment and decision. Merging the EHRs with big data analytics (BDA) capabilities enable healthcare stakeholders to provide effective and efficient treatments for chronic diseases. Though there are huge opportunities and efforts that exist in the deployment of EMRs and the development of BDA, there are challenges in addressing resources and organizational capabilities that are required to achieve the competitive advantage and sustainability of EHRs and BDA. The resource-based view (RBV), information system (IS), and non- IS theories should be extended to examine organizational capabilities and resources which are required for successful data analytics in the healthcare industries. The main purpose of this study is to develop a conceptual framework for the development of healthcare BDA capabilities based on past works so that researchers can extend. The research question was formulated for the search strategy as a research methodology. The study selection was made at the end. Based on the study selection, the conceptual framework for the development of BDA capabilities in the healthcare settings was formulated.

Keywords: EHR, EMR, Big data, Big data analytics, resource-based view

Procedia PDF Downloads 136
3717 Behavior of the Masonry Infill in Structures Subjected to the Horizontal Loads

Authors: Mezigheche Nawel, Gouasmia Abdelhacine, Athmani Allaeddine, Merzoud Mouloud

Abstract:

Masonry infill walls are inevitable in the self-supporting structures, but their contribution in the resistance of earthquake loads is generally neglected in the structural analyses. The principal aim of this work through a numerical study of the behavior of masonry infill walls in structures subjected to horizontal load is to propose by finite elements numerical modeling, a more reliable approach, faster and close to reality. In this study, 3D finite element analysis was developed to study the behavior of masonry infill walls in structures subjected to horizontal load: The finite element software being used was ABAQUS, it is observed that more rigidity of the masonry filling is significant, more the structure is rigid, so we can conclude that the filling brings an additional rigidity to the structure not to be neglected. It is also observed that when the framework is subjected to horizontal loads, the framework separates from the filling on the level of the tended diagonal.

Keywords: finite element, masonry infill walls, rigidity of the masonry, tended diagonal

Procedia PDF Downloads 494
3716 Carbohydrate Intake Estimation in Type I Diabetic Patients Described by UVA/Padova Model

Authors: David A. Padilla, Rodolfo Villamizar

Abstract:

In recent years, closed loop control strategies have been developed in order to establish a healthy glucose profile in type 1 diabetic mellitus (T1DM) patients. However, the controller itself is unable to define a suitable reference trajectory for glucose. In this paper, a control strategy Is proposed where the shape of the reference trajectory is generated bases in the amount of carbohydrates present during the digestive process, due to the effect of carbohydrate intake. Since there no exists a sensor to measure the amount of carbohydrates consumed, an estimator is proposed. Thus this paper presents the entire process of designing a carbohydrate estimator, which allows estimate disturbance for a predictive controller (MPC) in a T1MD patient, the estimation will be used to establish a profile of reference and improve the response of the controller by providing the estimated information of ingested carbohydrates. The dynamics of the diabetic model used are due to the equations described by the UVA/Padova model of the T1DMS simulator, the system was developed and simulated in Simulink, taking into account the noise and limitations of the glucose control system actuators.

Keywords: estimation, glucose control, predictive controller, MPC, UVA/Padova

Procedia PDF Downloads 269
3715 Modelling Ibuprofen with Human Albumin

Authors: U. L. Fulco, E. L. Albuquerque, José X. Lima Neto, L. R. Da Silva

Abstract:

The binding of the nonsteroidal anti-inflammatory drug ibuprofen (IBU) to human serum albumin (HSA) is investigated using density functional theory (DFT) calculations within a fragmentation strategy. Crystallographic data for the IBU–HSA supramolecular complex shows that the ligand is confined to a large cavity at the subdomain IIIA and at the interface between the subdomains IIA and IIB, whose binding sites are FA3/FA4 and FA6, respectively. The interaction energy between the IBU molecule and each amino acid residue of these HSA binding pockets was calculated using the Molecular Fractionation with Conjugate Caps (MFCC) approach employing a dispersion corrected exchange–correlation functional. Our investigation shows that the total interaction energy of IBU bound to HSA at binding sites of the fatty acids FA3/FA4 (FA6) converges only for a pocket radius of at least 8.5 °A, mainly due to the action of residues Arg410, Lys414 and Ser489 (Lys351, Ser480 and Leu481) and residues in nonhydrophobic domains, namely Ile388, Phe395, Phe403, Leu407, Leu430, Val433, and Leu453 (Phe206, Ala210, Ala213, and Leu327), which is unusual. Our simulations are valuable for a better understanding of the binding mechanism of IBU to albumin and can lead to the rational design and the development of novel IBU-derived drugs with improved potency.

Keywords: ibuprofen, human serum albumin, density functional theory, binding energies

Procedia PDF Downloads 349
3714 Grid-Connected Doubly-Fed Induction Generator under Integral Backstepping Control Combined with High Gain Observer

Authors: Oluwaseun Simon Adekanle, M'hammed Guisser, Elhassane Abdelmounim, Mohamed Aboulfatah

Abstract:

In this paper, modeling and control of a grid connected 660KW Doubly-Fed Induction Generator wind turbine is presented. Stator flux orientation is used to realize active-reactive power decoupling to enable independent control of active and reactive power. The recursive Integral Backstepping technique is used to control generator speed to its optimum value and to obtain unity power factor. The controller is combined with High Gain Observer to estimate the mechanical torque of the machine. The most important advantage of this combination of High Gain Observer and the Integral Backstepping controller is the annulation of static error that may occur due to incertitude between the actual value of a parameter and its estimated value by the controller. Simulation results under Matlab/Simulink show the robustness of this control technique in presence of parameter variation.

Keywords: doubly-fed induction generator, field orientation control, high gain observer, integral backstepping control

Procedia PDF Downloads 366
3713 Software Engineering Inspired Cost Estimation for Process Modelling

Authors: Felix Baumann, Aleksandar Milutinovic, Dieter Roller

Abstract:

Up to this point business process management projects in general and business process modelling projects in particular could not rely on a practical and scientifically validated method to estimate cost and effort. Especially the model development phase is not covered by a cost estimation method or model. Further phases of business process modelling starting with implementation are covered by initial solutions which are discussed in the literature. This article proposes a method of filling this gap by deriving a cost estimation method from available methods in similar domains namely software development or software engineering. Software development is regarded as closely similar to process modelling as we show. After the proposition of this method different ideas for further analysis and validation of the method are proposed. We derive this method from COCOMO II and Function Point which are established methods of effort estimation in the domain of software development. For this we lay out similarities of the software development rocess and the process of process modelling which is a phase of the Business Process Management life-cycle.

Keywords: COCOMO II, busines process modeling, cost estimation method, BPM COCOMO

Procedia PDF Downloads 446