Search results for: industrial soil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5947

Search results for: industrial soil

2077 Wastewater Treatment Using Ternary Hybrid Advanced Oxidation Processes Through Heterogeneous Fenton

Authors: komal verma, V. S. Moholkar

Abstract:

In this current study, the challenge of effectively treating and mineralizing industrial wastewater prior to its discharge into natural water bodies, such as rivers and lakes, is being addressed. Particularly, the focus is on the wastewater produced by chemical process industries, including refineries, petrochemicals, fertilizer, pharmaceuticals, pesticides, and dyestuff industries. These wastewaters often contain stubborn organic pollutants that conventional techniques, such as microbial processes cannot efficiently degrade. To tackle this issue, a ternary hybrid technique comprising of adsorption, heterogeneous Fenton process, and sonication has been employed. The study aims to evaluate the effectiveness of this approach for treating and mineralizing wastewater from a fertilizer industry located in Northeast India. The study comprises several key components, starting with the synthesis of the Fe3O4@AC nanocomposite using the co-precipitation method. The nanocomposite is then subjected to comprehensive characterization through various standard techniques, including FTIR, FE-SEM, EDX, TEM, BET surface area analysis, XRD, and magnetic property determination using VSM. Next, the process parameters of wastewater treatment are statistically optimized, focusing on achieving a high level of COD (Chemical Oxygen Demand) removal as the response variable. The Fe3O4@AC nanocomposite's adsorption characteristics and kinetics are also assessed in detail. The remarkable outcome of this study is the successful application of the ternary hybrid technique, combining adsorption, Fenton process, and sonication. This approach proves highly effective, leading to nearly complete mineralization (or TOC removal) of the fertilizer industry wastewater. The results highlight the potential of the Fe3O4@AC nanocomposite and the ternary hybrid technique as a promising solution for tackling challenging wastewater pollutants from various chemical process industries. This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result results from synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Micro-convection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe3O4@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater. The Fe3O4@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.

Keywords: chemical oxygen demand (cod), fe3o4@ac nanocomposite, kinetics, lc-ms, rsm, toxicity

Procedia PDF Downloads 55
2076 A Marketplace for Indonesian Culinary Innovation

Authors: Wildan Maulana, Machfudz Sa'idi

Abstract:

Yogyakarta is a city with the most students in Indonesia, more than 250 thousand students living in Yogyakarta and more than 140 universities in Yogyakarta. Therefore, Yogyakarta is a very strategic place for the culinary business. Food is a basic requirement of all living things, and the tasty food and cheap is the target of almost all students. The objective of this paper is to give an idea and the innovation of culinary business in Yogyakarta who apply the concept sociopreneur and technology as a tool to facilitate the course of this business. KedaiKampus is a startup that brings the food business operators such as food stalls, restaurants or angkringan (a traditional restaurant of Indonesia) and people who want to find the food with the best price and the best taste. The uniqueness of this business is offered weekly and monthly food packages for students in particular or for everyone who needs and will be delivered to their homes each every hour meal. KedaiKampus is also a marketspace for industrial and culinary houses, using technology based mobile application and website will allow the food industry to connect them with customers, but it also allows them to know the customer's desire for food trending in the market. The application to be developed is designed for ease of access to customers in finding their favorite foods and convenience for the culinary home to create amazing culinary innovation.

Keywords: marketplace, sociopreneur, culinary, meal

Procedia PDF Downloads 279
2075 Application of Alumina-Aerogel in Post-Combustion CO₂ Capture: Optimization by Response Surface Methodology

Authors: S. Toufigh Bararpour, Davood Karami, Nader Mahinpey

Abstract:

Dependence of global economics on fossil fuels has led to a large growth in the emission of greenhouse gases (GHGs). Among the various GHGs, carbon dioxide is the main contributor to the greenhouse effect due to its huge emission amount. To mitigate the threatening effect of CO₂, carbon capture and sequestration (CCS) technologies have been studied widely in recent years. For the combustion processes, three main CO₂ capture techniques have been proposed such as post-combustion, pre-combustion and oxyfuel combustion. Post-combustion is the most commonly used CO₂ capture process as it can be readily retrofit into the existing power plants. Multiple advantages have been reported for the post-combustion by solid sorbents such as high CO₂ selectivity, high adsorption capacity, and low required regeneration energy. Chemical adsorption of CO₂ over alkali-metal-based solid sorbents such as K₂CO₃ is a promising method for the selective capture of diluted CO₂ from the huge amount of nitrogen existing in the flue gas. To improve the CO₂ capture performance, K₂CO₃ is supported by a stable and porous material. Al₂O₃ has been employed commonly as the support and enhanced the cyclic CO₂ capture efficiency of K₂CO₃. Different phases of alumina can be obtained by setting the calcination temperature of boehmite at 300, 600 (γ-alumina), 950 (δ-alumina) and 1200 °C (α-alumina). By increasing the calcination temperature, the regeneration capacity of alumina increases, while the surface area reduces. However, sorbents with lower surface areas have lower CO₂ capture capacity as well (except for the sorbents prepared by hydrophilic support materials). To resolve this issue, a highly efficient alumina-aerogel support was synthesized with a BET surface area of over 2000 m²/g and then calcined at a high temperature. The synthesized alumina-aerogel was impregnated on K₂CO₃ based on 50 wt% support/K₂CO₃, which resulted in the preparation of a sorbent with remarkable CO₂ capture performance. The effect of synthesis conditions such as types of alcohols, solvent-to-co-solvent ratios, and aging times was investigated on the performance of the support. The best support was synthesized using methanol as the solvent, after five days of aging time, and at a solvent-to-co-solvent (methanol-to-toluene) ratio (v/v) of 1/5. Response surface methodology was used to investigate the effect of operating parameters such as carbonation temperature and H₂O-to-CO₂ flowrate ratio on the CO₂ capture capacity. The maximum CO₂ capture capacity, at the optimum amounts of operating parameters, was 7.2 mmol CO₂ per gram K₂CO₃. Cyclic behavior of the sorbent was examined over 20 carbonation and regenerations cycles. The alumina-aerogel-supported K₂CO₃ showed a great performance compared to unsupported K₂CO₃ and γ-alumina-supported K₂CO₃. Fundamental performance analyses and long-term thermal and chemical stability test will be performed on the sorbent in the future. The applicability of the sorbent for a bench-scale process will be evaluated, and a corresponding process model will be established. The fundamental material knowledge and respective process development will be delivered to industrial partners for the design of a pilot-scale testing unit, thereby facilitating the industrial application of alumina-aerogel.

Keywords: alumina-aerogel, CO₂ capture, K₂CO₃, optimization

Procedia PDF Downloads 103
2074 A Homogeneous Catalytic System for Decolorization of a Mixture of Orange G Acid and Naphthol Blue-Black Dye Based on Hydrogen Peroxide and a Recyclable DAWSON Type Heteropolyanion

Authors: Ouahiba Bechiri, Mostefa Abbessi

Abstract:

The color removal from industrial effluents is a major concern in wastewater treatment. The main objective of this work was to study the decolorization of a mixture of Orange G acid (OG) and naphthol blue black dye (NBB) in aqueous solution by hydrogen peroxide using [H1,5Fe1,5P2W12Mo6O61,23H2O] as catalyst. [H1,5Fe1,5P2 W12Mo6O61,23H2O] is a recyclable DAWSON type heteropolyanion. Effects of various experimental parameters of the oxidation reaction of the dye were investigated. The studied parameters were: the initial pH, H2O2 concentration, the catalyst mass and the temperature. The optimum conditions had been determined, and it was found that efficiency of degradation obtained after 15 minutes of reaction was about 100%. The optimal parameters were: initial pH = 3; [H2O2]0 = 0.08 mM; catalyst mass = 0.05g; for a concentration of dyes = 30mg/L.

Keywords: Dawson type heteropolyanion, naphthol blue-black, dye degradation, orange G acid, oxidation, hydrogen peroxide

Procedia PDF Downloads 345
2073 The Assessment Groundwater Geochemistry of Some Wells in Rafsanjan Plain, Southeast of Iran

Authors: Milad Mirzaei Aminiyan, Abdolreza Akhgar, Farzad Mirzaei Aminiyan

Abstract:

Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Pistachio is a main crop that accounts for a considerable portion of Iranian agricultural exports. Give that pistachio tree is a tolerant type of tree to saline and alkaline soil and water conditions, but groundwater and irrigation water quality play important roles in main production this crop. For this purpose, 94 well water samples were taken from 25 wells and samples were analyzed. The results showed give that region’s geological, climatic characteristics, statistical analysis, and based on dominant cations and anions in well water samples (piper diagram); four main types of water were found: Na-Cl, K-Cl, Na-SO4, and K-SO4. It seems that most wells in terms of water quality (salinity and alkalinity) and based on Wilcox diagram have critical status. The analysis suggested that more than eighty-seven percentage of the well water samples have high values of EC that these values are higher than into critical limit EC value for irrigation water, which may be due to the sandy soils in this area. Most groundwater were relatively unsuitable for irrigation but it could be used by application of correct management such as removing and reducing the ion concentrations of Cl‾, SO42‾, Na+ and total hardness in groundwater and also the concentrated deep groundwater was required treatment to reduce the salinity and sodium hazard. Given that irrigation water quality in this area was relatively unsuitable for most agriculture production but pistachio tree was adapted to this area conditions. The integrated management of groundwater for irrigation is the way to solve water quality issues not only in Rafsanjan area, but also in other arid and semi-arid areas.

Keywords: groundwater quality, irrigation water quality, salinity, alkalinity, Rafsanjan plain, pistachio

Procedia PDF Downloads 400
2072 Enzymatic Synthesis of Olive-Based Ferulate Esters: Optimization by Response Surface Methodology

Authors: S. Mat Radzi, N. J. Abd Rahman, H. Mohd Noor, N. Ariffin

Abstract:

Ferulic acid has widespread industrial potential by virtue of its antioxidant properties. However, it is partially soluble in aqueous media, limiting their usefulness in oil-based processes in food, cosmetic, pharmaceutical, and material industry. Therefore, modification of ferulic acid should be made by producing of more lipophilic derivatives. In this study, a preliminary investigation of lipase-catalyzed trans-esterification reaction of ethyl ferulate and olive oil was investigated. The reaction was catalyzed by immobilized lipase from Candida antarctica (Novozym 435), to produce ferulate ester, a sunscreen agent. A statistical approach of Response surface methodology (RSM) was used to evaluate the interactive effects of reaction temperature (40-80°C), reaction time (4-12 hours), and amount of enzyme (0.1-0.5 g). The optimum conditions derived via RSM were reaction temperature 60°C, reaction time 2.34 hours, and amount of enzyme 0.3 g. The actual experimental yield was 59.6% ferulate ester under optimum condition, which compared well to the maximum predicted value of 58.0%.

Keywords: ferulic acid, enzymatic synthesis, esters, RSM

Procedia PDF Downloads 316
2071 Large Herbivores Benefit Plant Growth via Diverse and Indirect Pathways in a Temperate Grassland

Authors: Xiaofei Li, Zhiwei Zhong, Deli Wang

Abstract:

Large herbivores affect plant growth not only through their direct, consumptive effects, but also through indirect effects that alter species interactions. Indirect effects can be either positive or negative, therefore having the potential to mitigate or enhance the direct impacts of herbivores. However, until recently, we know considerably less about the indirect effects than the direct effects of large herbivores on plants, and few studies have explored multiple indirect pathways simultaneously. Here, we investigated how large domestic herbivores, cattle (Bos taurus), can shape population growth of an intermediately preferred forb species, Artemsisa scoparia, through diverse pathways in a temperate grassland of northeast China. We found that, although exposure to direct consumption of cattle, A. scoparia growth was not inhibited, but rather showed a significant increase in the grazed than ungrazed areas. This unexpected result was due to grazing-induced multiple indirect, positive effects overwhelmed the direct, negative consumption effects of cattle on plant growth. The much more intensive consumption on the dominant Leymus chinensis grass, ground litter removal, and increases in ant nest abundance induced by cattle, exerted significant indirect, positive effects on A. scoparia growth. These pathways benefited A.scoparia growth by lessening interspecific competition, mitigating negative effects of litter accumulation, and increasing soil nutrient availability, respectively. Our results highlight the need to integrate indirect effects into the traditional food web theory, which is based primary on direct, trophic linkages, to fully understand community organization and dynamics. Large herbivores are important conservation and management targets, our results suggest that these mammals should be managed with the understanding that they can affect primary producers through diverse paths.

Keywords: grasslands, large herbivores, plant growth, indirect effects

Procedia PDF Downloads 249
2070 One-Dimension Model for Positive Displacement Pump with Cavitation Algorithm

Authors: Francesco Rizzuto, Matthew Stickland, Stephan Hannot

Abstract:

The simulation of a positive displacement pump system with commercial software for Computer Fluid Dynamics (CFD), will result in an enormous computational effort due to the complexity of the pump system. This drawback restricts the use of it to a specific part of the pump in one simulation. This research focuses on developing an algorithm that provides a suitable result in agreement with experiment data, without that computational effort. The compressible equations are solved with an explicit algorithm. A comparison is presented between the FV method with Monotonic Upwind scheme for Conservative Laws (MUSCL) with slope limiter and experimental results. The source term for cavitation and friction is introduced into the algorithm with a slipping strategy and solved with a 4th order Runge-Kutta scheme (RK4). Different pumps are modeled and analyzed to evaluate the flexibility of the code. The simulation required minimal computation time and resources without compromising the accuracy of the simulation results. Therefore, this algorithm highlights the feasibility of pressure pulsation simulation as a design tool for an industrial purpose.

Keywords: cavitation, diaphragm, DVCM, finite volume, MUSCL, positive displacement pump

Procedia PDF Downloads 137
2069 Biomonitoring of Marine Environment by Using a Bioindicator Donax trunculus (Mollusca, Bivalvia) from the Gulf of Annaba (Algeria): Biomarkers Responses

Authors: Karima Sifi, Noureddine Soltani

Abstract:

Annaba gulf is the most important touristic and economic area located on the east coast of Algeria. However, these fishery resources are threatened by the pollution due to the progress of economic activity. As part of a biomonitoring program on the quality of waters of the Gulf of Annaba, the specific activity of two biomarkers, acetylcholinesterase (AChE) and glutathion S-transferase (GST) has been measured in edible bivalve Donax trunculus. The samples have been collected during the year 2013 in two sites: El Battah, distant from polluted sources, and Sidi Salem, located near the harbor and different industrial waste. The results showed a significant inhibition of AChE activity and a significant increase in the activity of the GST in samples collected from Sidi Salem as compared to El Battah. The inhibition of the AChE and the increase of the GST in Sidi Salem are in relation with the level of exposition of this site to the pollution.

Keywords: Donax trunculus, annaba gulf, acetylcholinesterase, glutathion s-transferase, biomonitoring, pollution

Procedia PDF Downloads 372
2068 The Magnetic Susceptibility of the Late Quaternary Loess in North-East of Iran and Its Correlation with Other Palaeoclimatical Parameters

Authors: Fereshteh M. Haskouei, Habib Alimohammadian

Abstract:

Magnetic susceptibility (χ) is operational to identify of late quaternary glacial-interglacial cycles in loess-paleosol sequences. It is well accepted that many loess-paleosol sequences bear witness to cold-dry/warm-humid periods, well known as glacial-interglacial cycles, respectively. For this study, loess-paleosol sequence of north-east of Iran was magnetically investigated. The study area is situated at about 8 km away of Neka city, on the main road of Sari-Behshahr, in Mazandaran Province, north of Iran. The youngest deposits of study area are the late Quaternary wind-blown accumulations. In this study, the total number of 117 samples was collected from loess-paleosols units. After that, the natural remnant magnetization (NRM) and magnetic susceptibility (MS) of the samples were measured. Variation of MS of more than 110 loess samples was plotted to reveal the correlation of the MS and paleoclimatic changes. This study aims reconstruction of climatic changes (glacial-interglacial and stadials-interstadials cycles). To confirm our results we compared MS (χ) and the curves of other investigations in paleoclimatology. This correspondence abled us to recognize worldly events in the study area such as: Younger Dryas, the Last Glacial Maximum (LGM), deglaciation of Northern Hemisphere etc. The obtained magnetic data indicate that during almost 50 ka, at least two glacial-interglacial periods occurred in north-east of Iran. Further, variation of χ values revealed short period of climatically cycles known as stadials-interstadials. We recognized 4 stadials and a single stadial as colder sub-periods for S0 (recently soil-paleosol) and S2 (lower paleosol), respectively, Moreover, we recognized 6 warmer sub-periods (interstadials) for L1 (upper loess) and one interstadial L2 (lower loess).

Keywords: glacial-interglacial cycles, Iran, last glacial maximum (LGM), loess, magnetic susceptibility (χ), Neka, stadials-interstadials sub-periods, younger dryas

Procedia PDF Downloads 112
2067 Performance of Slot-Entry Hybrid Worn Journal Bearing under Turbulent Lubrication

Authors: Nathi Ram, Saurabh K. Yadav

Abstract:

In turbomachinery, the turbulent flow occurs due to the use of high velocity of low kinematic viscosity lubricants and used in many industrial applications. In the present work, the performance of symmetric slot-entry hybrid worn journal bearing under laminar and turbulent lubrication has been investigated. For turbulent lubrication, the Reynolds equation has been modified using Constantinescu turbulent model. This modified equation has been solved using the finite element method. The effect of turbulent lubrication on bearing’s performance has been presented for symmetric hybrid journal bearing. The slot-entry hybrid worn journal bearing under turbulent/laminar regimes have been investigated. It has been observed that the stiffness and damping coefficients are more for the bearing having slot width ratio (SWR) of 0.25 than the bearing with SWR of 0.5 and 0.75 under the turbulent regime. Further, it is also observed that for constant wear depth parameter, stability threshold speed gets increased for bearing operates at slot width ratio 0.25 under turbulent lubrication.

Keywords: hydrostatic bearings, journal bearings, restrictors, turbulent flow models, finite element technique

Procedia PDF Downloads 150
2066 Study of Ambient Air Quality on Building's Roof of Dhaka City

Authors: Koninika Tanzim

Abstract:

The gaseous pollutants, SO2, NO2, CO and O3 affect the environment of Dhaka City. These pollutants are mainly released from stationary sources, like, fossil-fueled, power plants, industrial units and brickfields around the city. Suspended particulate matters including PM10 and PM2.5 are also contributing to air pollution in Dhaka City. SO2, NO2 and O3 are determined by using UV and visible spectrophotometry. The sensor type devised has been used for the determination of CO in ambient air. Lead in the suspended particulate matter was determined by using atomic absorption spectrometry. The samples were collected at ground level and on the roof of a seven-storied building. For all the criteria pollutants, the concentration at the roof was found to the lower than that at the ground level. The average concentration of PM10 and PM2.5 were found to the 241.5 and 81.1 mg/m3 at the ground level. On the roof of a 7 storied building was however 49.99 mg/m3 and 25.88 mg/m3 for PM10 and PM2.5 respectively. The concentration of Pb varied from 0.011 to 0.04 mg/m3 at the ground level. The values for Pb at the roof level were significantly lower. The values for SO2, NO2, CO and O3 were found to be higher than the USEPA values.

Keywords: gaseous air pollutant, PM, lead, gravimetry, spectrophotometry, atomic absorption, ambient air quality

Procedia PDF Downloads 400
2065 Investigation of the Effect of Anaerobic Digestate on Antifungal Activity and in Different Parameters of Maize

Authors: Nazia Zaffar, Alam Khan, Abdul Haq, Malik Badshah

Abstract:

Pakistan is an agricultural country. The increasing population leads to an increase in demand for food. A large number of crops are infected by different microbes, and nutrient deficiency of soil adversely affects the yield of crops. Furthermore, the use of chemical fertilizers like Nitrogen, Phosphorus, Potassium (NPK) Urea, and Diammonium phosphate (DAP) and pesticides have environmental consequences. Therefore, there is an urgent need to explore alternative renewable and sustainable biofertilizers. Maize is one of the top growing crops in Pakistan, but it has low yield compared to other countries due to deficiency of organic matter, widespread nutrients deficiency (phosphorus and nitrogen), unbalanced use of fertilizers and various fungal diseases. In order to get rid of all these disadvantages, Digestate emerged as a win-win opportunity for the control of a few plant diseases and a replacement for the chemical fertilizers. The present study was designed to investigate the effect of Anerobic digestate on Antifungal Activity and in different parameters of Maize. The antifungal activity, minimum inhibitory concentration (MIC), and minimum fungicidal concentration (MFC) against selected phytopathogens (Colletotrichum coccodis, Pythium ultimum, Phytophthora capsci, Rhizoctonia solani, Bipolaris oryzae and Fusarium Fujikuroi) were determined by microtiter plate method. The effect of various fertilizers in different growth parameters height, diameter, chlorophyll, leaf area, biomass, and yield were studied in field experiments. The extracts from anaerobic digestate have shown antifungal activity against selected phytopathogens, the highest activity was noted against P. ultimum, the MIC activity was high in case of P. ultimum and B. oryzae. The present study concludes that anaerobic digestate have a positive effect on maize growth and yield as well as an antifungal activity which can be potentially a good biofertilizer.

Keywords: anaerobic digestate, antifungal activity, MIC, phytopathogens

Procedia PDF Downloads 111
2064 Site Investigations and Mitigation Measures of Landslides in Sainj and Tirthan Valley of Kullu District, Himachal Pradesh, India

Authors: Laxmi Versain, R. S. Banshtu

Abstract:

Landslides are found to be the most commonly occurring geological hazards in the mountainous regions of the Himalaya. This mountainous zone is facing large number of seismic turbulences, climatic changes, and topography changes due to increasing urbanization. That eventually has lead several researchers working for best suitable methodologies to infer the ultimate results. Landslide Hazard Zonation has widely come as suitable method to know the appropriate factors that trigger the lansdslide phenomenon on higher reaches. Most vulnerable zones or zones of weaknesses are indentified and safe mitigation measures are to be suggested to mitigate and channelize the study of an effected area. Use of Landslide Hazard Zonation methodology in relative zones of weaknesses depend upon the data available for the particular site. The causative factors are identified and data is made available to infer the results. Factors like seismicity in mountainous region have closely associated to make the zones of thrust and faults or lineaments more vulnerable. Data related to soil, terrain, rainfall, geology, slope, nature of terrain, are found to be varied for various landforms and areas. Thus, the relative causes are to be identified and classified by giving specific weightage to each parameter. Factors which cause the instability of slopes are several and can be grouped to infer the potential modes of failure. The triggering factors of the landslides on the mountains are not uniform. The urbanization has crawled like ladder and emergence of concrete jungles are in a very fast pace on hilly region of Himalayas. The local terrains has largely been modified and hence instability of several zones are triggering at very fast pace. More strategic and pronounced methods are required to reduce the effect of landslide.

Keywords: zonation, LHZ, susceptible, weightages, methodology

Procedia PDF Downloads 184
2063 Movement Optimization of Robotic Arm Movement Using Soft Computing

Authors: V. K. Banga

Abstract:

Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.

Keywords: artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic

Procedia PDF Downloads 277
2062 Requirement Engineering and Software Product Line Scoping Paradigm

Authors: Ahmed Mateen, Zhu Qingsheng, Faisal Shahzad

Abstract:

Requirement Engineering (RE) is a part being created for programming structure during the software development lifecycle. Software product line development is a new topic area within the domain of software engineering. It also plays important role in decision making and it is ultimately helpful in rising business environment for productive programming headway. Decisions are central to engineering processes and they hold them together. It is argued that better decisions will lead to better engineering. To achieve better decisions requires that they are understood in detail. In order to address the issues, companies are moving towards Software Product Line Engineering (SPLE) which helps in providing large varieties of products with minimum development effort and cost. This paper proposed a new framework for software product line and compared with other models. The results can help to understand the needs in SPL testing, by identifying points that still require additional investigation. In our future scenario, we will combine this model in a controlled environment with industrial SPL projects which will be the new horizon for SPL process management testing strategies.

Keywords: requirements engineering, software product lines, scoping, process structure, domain specific language

Procedia PDF Downloads 216
2061 Review on the Role of Sustainability Techniques in Development of Green Building

Authors: Ubaid Ur Rahman, Waqar Younas, Sooraj Kumar Chhabira

Abstract:

Environmentally sustainable building construction has experienced significant growth during the past 10 years at international level. This paper shows that the conceptual framework adopts sustainability techniques in construction to develop environment friendly building called green building. Waste occurs during the different construction phases which causes the environmental problems like, deposition of waste on ground surface creates major problems such as bad smell. It also gives birth to different health diseases and produces toxic waste agent which is specifically responsible for making soil infertile. Old recycled building material is used in the construction of new building. Sustainable construction is economical and saves energy sources. Sustainable construction is the major responsibility of designer and project manager. The designer has to fulfil the client demands while keeping the design environment friendly. Project manager has to deliver and execute sustainable construction according to sustainable design. Steel is the most appropriate sustainable construction material. It is more durable and easily recyclable. Steel occupies less area and has more tensile and compressive strength than concrete, making it a better option for sustainable construction as compared to other building materials. New technology like green roof has made the environment pleasant, and has reduced the construction cost. It minimizes economic, social and environmental issues. This paper presents an overview of research related to the material use of green building and by using this research recommendation are made which can be followed in the construction industry. In this paper, we go through detailed analysis on construction material. By making suitable adjustments to project management practices it is shown that a green building improves the cost efficiency of the project, makes it environmental friendly and also meets future generation demands.

Keywords: sustainable construction, green building, recycled waste material, environment

Procedia PDF Downloads 230
2060 Diversification of Rice-Based Cropping Systems under Irrigated Condition

Authors: A. H. Nanher, N. P. Singh

Abstract:

In India, Agriculture is largely in rice- based cropping system. It has indicated decline in factor productivity along with emergence of multi - nutrient deficiency, buildup of soil pathogen and weed flora because it operates and removes nutrients from the same rooting depth. In designing alternative cropping systems, the common approaches are crop intensification, crop diversification and cultivar options. The intensification leads to the diversification of the cropping system. Intensification is achieved by introducing an additional component crop in a pre-dominant sequential system by desirable adjustments in cultivars of one or all the component crops. Invariably, this results in higher land use efficiency and productivity per unit time Crop Diversification through such crop and inclusion of fodder crops help to improve the economic situation of small and marginal farmers because of higher income. Inclusion of crops in sequential and intercropping systems reduces some obnoxious weeds through formation of canopies due to competitive planting pattern and thus provides an opportunity to utilize cropping systems as a tool of weed management with non-chemical means. Use of organic source not only acts as supplement for fertilizer (nitrogen) but also improve the physico-chemical properties of soils. Production and use of nitrogen rich biomass offer better prospect for supplementing chemical fertilizers on regular basis. Such biological diversity brings yield and economic stability because of its potential for compensation among components of the system. In a particular agro-climatic and resource condition, the identification of most suitable crop sequence is based on its productivity, stability, land use efficiency as well as production efficiency and its performance is chiefly judged in terms of productivity and net return.

Keywords: integrated farming systems, sustainable intensification, system of crop intensification, wheat

Procedia PDF Downloads 409
2059 The Status of Precision Agricultural Technology Adoption on Row Crop Farms vs. Specialty Crop Farms

Authors: Shirin Ghatrehsamani

Abstract:

Higher efficiency and lower environmental impact are the consequence of using advanced technology in farming. They also help to decrease yield variability by diminishing weather variability impact, optimizing nutrient and pest management as well as reducing competition from weeds. A better understanding of the pros and cons of applying technology and finding the main reason for preventing the utilization of the technology has a significant impact on developing technology adoption among farmers and producers in the digital agriculture era. The results from two surveys carried out in 2019 and 2021 were used to investigate whether the crop types had an impact on the willingness to utilize technology on the farms. The main focus of the questionnaire was on utilizing precision agriculture (PA) technologies among farmers in some parts of the united states. Collected data was analyzed to determine the practical application of various technologies. The survey results showed more similarities in the main reason not to use PA between the two crop types, but the present application of using technology in specialty crops is generally five times larger than in row crops. GPS receiver applications were reported similar for both types of crops. Lack of knowledge and high cost of data handling were cited as the main problems. The most significant difference was among using variable rate technology, which was 43% for specialty crops while was reported 0% for row crops. Pest scouting and mapping were commonly used for specialty crops, while they were rarely applied for row crops. Survey respondents found yield mapping, soil sampling map, and irrigation scheduling were more valuable for specialty crops than row crops in management decisions. About 50% of the respondents would like to share the PA data in both types of crops. Almost 50 % of respondents got their PA information from retailers in both categories, and as the second source, using extension agents were more common in specialty crops than row crops.

Keywords: precision agriculture, smart farming, digital agriculture, technology adoption

Procedia PDF Downloads 94
2058 Recycled Plastic Fibers for Controlling the Plastic Shrinkage Cracking of Concrete

Authors: B. S. Al-Tulaian, M. J. Al-Shannag, A. M. Al-Hozaimy

Abstract:

Manufacturing of fibers from industrial or postconsumer plastic waste is an attractive approach with such benefits as concrete performance enhancement, and reduced needs for land filling. The main objective of this study is to investigate the effect of Plastic fibers obtained locally from recycled waste on plastic shrinkage cracking of concrete. The results indicate that recycled plastic RP fiber of 50 mm length is capable of controlling plastic shrinkage cracking of concrete to some extent, but are not as effective as polypropylene PP fibers when added at the same volume fraction. Furthermore, test results indicated that there was The increase in flexural strength of RP fibers and PP fibers concrete were 12.34% and 40.30%, respectively in comparison to plain concrete. RP fiber showed a substantial increase in toughness and a slight decrease in flexural strength of concrete at a fiber volume fraction of 1.00% compared to PP fibers at fiber volume fraction of 0.50%. RP fibers caused a significant increase in compressive strengths up to 13.02% compared to concrete without fiber reinforcement.

Keywords: concrete, plastic, shrinkage cracking, compressive strength, flexural strength, toughness, RF recycled fibers, polypropylene PP fibers

Procedia PDF Downloads 543
2057 Slag-Heaps: From Piles of Waste to Valued Topography

Authors: René Davids

Abstract:

Some Western countries are abandoning coal and finding cleaner alternatives, such as solar, wind, hydroelectric, biomass, and geothermal, for the production of energy. As a consequence, industries have closed, and the toxic contaminated slag heaps formed essentially of discarded rock that did not contain coal are being colonized by spontaneously generated plant communities. In becoming green hiking territory, goat farms, viewing platforms, vineyards, great staging posts for species experiencing, and skiing slopes, many of the formerly abandoned hills of refuse have become delightful amenities to the surrounding communities. Together with the transformation of many industrial facilities into cultural venues, these changes to the slag hills have allowed the old coal districts to develop a new identity, but in the process, they have also literally buried the past. This essay reviews a few case studies to analyze the different ways slag heaps have contributed to the cultural landscape in the ex-coal county while arguing that it is important when deciding on their future, that we find ways to make the environmental damage that the extraction industry caused visibly and honor the lives of the people that worked under often appalling conditions in them.

Keywords: slag-heaps, mines, extraction, remediation, pollution

Procedia PDF Downloads 54
2056 Immobilization of Enzymes and Proteins on Epoxy-Activated Supports

Authors: Ehsan Khorshidian, Afshin Farahbakhsh, Sina Aghili

Abstract:

Enzymes are promising biocatalysts for many organic reactions. They have excellent features like high activity, specificity and selectivity, and can catalyze under mild and environment friendly conditions. Epoxy-activated supports are almost-ideal ones to perform very easy immobilization of proteins and enzymes at both laboratory and industrial scale. The activated epoxy supports (chitosan/alginate, Eupergit C) may be very suitable to achieve the multipoint covalent attachment of proteins and enzymes, therefore, to stabilize their three-dimensional structure. The enzyme is firstly covalently immobilized under conditions pH 7.0 and 10.0. The remaining groups of the support are blocked to stop additional interaction between the enzyme and support by mercaptoethanol or Triton X-100. The results show support allowed obtaining biocatalysts with high immobilized protein amount and hydrolytic activity. The immobilization of lipases on epoxy support may be considered as attractive tool for obtaining highly active biocatalysts to be used in both aqueous and anhydrous aqueous media.

Keywords: immobilization of enzymes, epoxy supports, enzyme multipoint covalent attachment, microbial lipases

Procedia PDF Downloads 374
2055 Testing of Small Local Zones by Means of Small Punch Test at Room and Creep Temperatures

Authors: Vaclav Mentl, Josef Volak

Abstract:

In many industrial applications, materials are subjected to degradation of mechanical properties as a result of real service conditions, temperature, cyclic loading, humidity or other corrosive media, irradiation, their combination etc. The assessment of the remaining lifetime of components and structures is commonly based on correlated procedures including numerous destructive, non-destructive and mathematical techniques that should guarantee reasonably precise assessment of the current damage extent of materials in question and the remaining lifetime evaluation of the component under consideration. The answers to demands of customers to extend the lifetime of existing components beyond their original design life must be based on detailed assessment of the current degradation extent, what can be rarely realised by means of traditional mechanical (standardised) tests that need relatively large volumes of representative material for the test specimen manufacturing. This fact accelerated the research of miniaturised test specimen that can be sampled non-invasively from the component.

Keywords: small punch test, correlation, creep, mechanical properties

Procedia PDF Downloads 263
2054 Geomorphologic Evolution of the Southern Habble-Rud River Basin, North of Iran

Authors: Maryam Jaberi, Siavosh Shayan, Mojtaba Yamani

Abstract:

Habble-Rud River basin (HR), up to 100 km length, one of the largest watersheds which drain into deserts to the north of Central Iran (Dasht-e Kavir). This stream is oblique with the NE-SW trending, flow in the southern range of central Alborz Mountains and the northern border of Central Iran. The end of the ~17 km suddenly change direction and with the southern trending to have a morphology which meanders passes through the Alborz Mountain ridge and flows into the Garmsar plain where it forms one of the largest alluvial fans in Iran, i.e. the vast Garmsar alluvial fan with an area of 476 km2. This study was carried out through morphometric analyses, longitudinal river profiles, and study of geomorpholic evidence such as fluvial terraces, gypsum-salt domes, seismic data, and satellite images. This study aimed to investigate the changes in the pattern of rivers in the southern part of the HR river basin. The southern part of HR river basin located at the southern foothills of the Central Alborz is characterized the thrust faults (Sorkheh-Kalut and Garmsar faults), folds,diapirs and arid climate. The activity of more than 10 salt domes that belong to the Oligocene-Miocene period has considerably influenced the pattern of streams in this region. Dissolution of these domes has not only reduced the quality of water and soil resources, but also has led to the formation of badlands and gullies.Our results indicated that the pattern of rivers in the southern part of HR river basin was influenced by discharge of the HR river in Quaternary, geological structure, subsidence of Central Iran and vertical uplift of Alborz mountain. These agents caused the formation meanders in the southern part of the HR River and evaluation of the seasonal rivers like Shoor-Darre and Garmabsar.

Keywords: geomorphologic evaluation, rivers pattern, Habble-Rud River basin, seasonal rivers

Procedia PDF Downloads 491
2053 Intercropping Immature Oil Palm (Elaeisguineensis) with Banana, Ginger and Turmeric in Galle District, Sri Lanka

Authors: S. M. Dissanayake, I. R. Palihakkara , K. G. Premathilaka

Abstract:

Oil palm (Elaeisguineensis) is the world’s leading vegetable oil-producing plant and is well established as a perennial plantation crop in tropical countries. Oil palm in Sri Lanka has spread over 10,000 hectares in the wet zone of the Island. In immature plantations, land productivity can be increased with some selected intercrops. At the immature stage of the plantations (age up to 3-5 years), there is a large amount of free space available inside the plantations. This study attempts to determine the suitability of different intercrops during the immature phase of the oil palm. A field experiment is being conducted at Thalgaswella estate (WL2a) in Galle district, Sri Lanka. The objectives of the study are to evaluate and recommend a suitable immature oil palm-based intercropping system/s. This experiment was established with randomized complete block design (RCBD) with four treatments, including control in three replicates. Banana, ginger, and turmeric were selected as intercrops. Growth parameters of intercrops (plant height, length, width of D-leaf, and yield of intercrops) and girth, length, and number of leaflets of 17th frond in oil palms were taken at two months intervals. In addition to this, chlorophyll content was also measured in both intercrops and oil palm trees. Soil chemical parameters were measured annually. Results were statistically analyzed with SAS software. Results revealed that intercropped banana, turmeric, and ginger had given yields of 7.61Mt/ha, 4.92Mt/ha, and 4.53Mt/ha, respectively. When comparing these yields with mono-crop, banana, turmeric, and ginger intercrop yields as percentages of 16.9%, 24.6%, and 30.2%, respectively. The results of this study could be used to make appropriate policies to increase the unit land productivity in oil palm plantations in a low country wet zone (WL2a) of Sri Lanka.

Keywords: inter-cropping, oil palm, policies, mono-crop, land productivity

Procedia PDF Downloads 139
2052 Impact of Urbanization on Natural Drainage Pattern in District of Larkana, Sindh Pakistan

Authors: Sumaira Zafar, Arjumand Zaidi

Abstract:

During past few years, several floods have adversely affected the areas along lower Indus River. Besides other climate related anomalies, rapidly increasing urbanization and blockage of natural drains due to siltation or encroachments are two other critical causes that may be responsible for these disasters. Due to flat topography of river Indus plains and blockage of natural waterways, drainage of storm water takes time adversely affecting the crop health and soil properties of the area. Government of Sindh is taking a keen interest in revival of natural drainage network in the province and has initiated this work under Sindh Irrigation and Drainage Authority. In this paper, geospatial techniques are used to analyze landuse/land-cover changes of Larkana district over the past three decades (1980-present) and their impact on natural drainage system. Satellite derived Digital Elevation Model (DEM) and topographic sheets (recent and 1950) are used to delineate natural drainage pattern of the district. The urban landuse map developed in this study is further overlaid on drainage line layer to identify the critical areas where the natural floodwater flows are being inhibited by urbanization. Rainfall and flow data are utilized to identify areas of heavy flow, whereas, satellite data including Landsat 7 and Google Earth are used to map previous floods extent and landuse/cover of the study area. Alternatives to natural drainage systems are also suggested wherever possible. The output maps of natural drainage pattern can be used to develop a decision support system for urban planners, Sindh development authorities and flood mitigation and management agencies.

Keywords: geospatial techniques, satellite data, natural drainage, flood, urbanization

Procedia PDF Downloads 492
2051 Adsorption of Methylene Blue by Pectin from Durian (Durio zibethinus) Seeds

Authors: Siti Nurkhalimah, Devita Wijiyanti, Kuntari

Abstract:

Methylene blue is a popular water-soluble dye that is used for dyeing a variety of substrates such as bacteria, wool, and silk. Methylene blue discharged into the aquatic environment will cause health problems for living things. Treatment method for industrial wastewater may be divided into three main categories: physical, chemical, and biological. Among them, adsorption technology is generally considered to be an effective method for quickly lowering the concentration of dissolved dyes in a wastewater. This has attracted considerable research into low-cost alternative adsorbents for adsorbing or removing coloring matter. In this research, pectin from durian seeds was utilized here to assess their ability for the removal of methylene blue. Adsorption parameters are contact time and dye concentration were examined in the batch adsorption processes. Pectin characterization was performed by FTIR spectrometry. Methylene blue concentration was determined by using UV-Vis spectrophotometer. FTIR results show that the samples showed the typical fingerprint in IR spectrogram. The adsorption result on 10 mL of 5 mg/L methylene blue solution achieved 95.12% when contact time 10 minutes and pectin 0.2 g.

Keywords: pectin, methylene blue, adsorption, durian seed

Procedia PDF Downloads 169
2050 Hybrid PWM Techniques for the Reduction of Switching Losses and Voltage Harmonics in Cascaded Multilevel Inverters

Authors: Venkata Reddy Kota

Abstract:

These days, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements. Also, it is difficult to connect the traditional converters to the high and medium voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Different modulation topologies like Sinusoidal Pulse Width Modulation (SPWM), Selective Harmonic Elimination Pulse Width Modulation (SHE-PWM) are available for multilevel inverters. In this work, different hybrid modulation techniques which are combination of fundamental frequency modulation and multilevel sinusoidal-modulation are compared. The main characteristic of these modulations are reduction of switching losses with good harmonic performance and balanced power loss dissipation among the device. The proposed hybrid modulation schemes are developed and simulated in Matlab/Simulink for cascaded H-bridge inverter. The results validate the applicability of the proposed schemes for cascaded multilevel inverter.

Keywords: hybrid PWM techniques, cascaded multilevel inverters, switching loss minimization

Procedia PDF Downloads 602
2049 Innovative Pump Design Using the Concept of Viscous Fluid Sinusoidal Excitation

Authors: Ahmed H. Elkholy

Abstract:

The concept of applying a prescribed oscillation to viscous fluids to aid or increase flow is used to produce a maintenance free pump. Application of this technique to fluids presents unique problems such as physical separation; control of heat and mass transfer in certain industrial applications; and improvement of some fluid process methods. The problem as stated is to obtain the velocity distribution, wall shear stress and energy expended when a pipe containing a stagnant viscous fluid is externally excited by a sinusoidal pulse, one end of the pipe being pinned. On the other hand, the effect of different parameters on the results are presented. Such parameters include fluid viscosity, frequency of oscillations and pipe geometry. It was found that the flow velocity through the pump is maximum at the pipe wall, and it decreases rapidly towards the pipe centerline. The frequency of oscillation should be above a certain value in order to obtain meaningful flow velocity. The amount of energy absorbed in the system is mainly due to pipe wall strain energy, while the fluid pressure and kinetic energies are comparatively small.

Keywords: sinusoidal excitation, pump, shear stress, flow

Procedia PDF Downloads 301
2048 Effects of Spray Dryer Atomizer Speed on Casein Micelle Size in Whole Fat Milk Powder and Physicochemical Properties of White Cheese

Authors: Mohammad Goli, Akram Sharifi, Mohammad Yousefi Jozdani, Seyed Ali Mortazavi

Abstract:

An industrial spray dryer was used, and the effects of atomizer speed on the physicochemical properties of milk powder, the textural and sensory characteristics of white cheese made from this milk powder, were evaluated. For this purpose, whole milk was converted into powder by using three different speeds (10,000, 11,000, and 12,000 rpm). Results showed that with increasing atomizer speed in the spray dryer, the average size of casein micelle is significantly decreased (p < 0.05), whereas no significant effect is observed on the chemical properties of milk powder. White cheese characteristics indicated that with increasing atomizer speed, texture parameters, such as hardness, mastication, and gumminess, were significantly reduced (p < 0.05). Sensory evaluation also revealed that cheese samples prepared with dried milk produced at 12,000 rpm were highly accepted by panelists. Overall, the findings suggested that 12,000 rpm is the optimal atomizer speed for milk powder production.

Keywords: spray drying, powder technology, atomizer speed, particle size, white cheese physical properties

Procedia PDF Downloads 458