Search results for: Box and Jenkins Models
2959 Applied Bayesian Regularized Artificial Neural Network for Up-Scaling Wind Speed Profile and Distribution
Authors: Aghbalou Nihad, Charki Abderafi, Saida Rahali, Reklaoui Kamal
Abstract:
Maximize the benefit from the wind energy potential is the most interest of the wind power stakeholders. As a result, the wind tower size is radically increasing. Nevertheless, choosing an appropriate wind turbine for a selected site require an accurate estimate of vertical wind profile. It is also imperative from cost and maintenance strategy point of view. Then, installing tall towers or even more expensive devices such as LIDAR or SODAR raises the costs of a wind power project. Various models were developed coming within this framework. However, they suffer from complexity, generalization and lacks accuracy. In this work, we aim to investigate the ability of neural network trained using the Bayesian Regularization technique to estimate wind speed profile up to height of 100 m based on knowledge of wind speed lower heights. Results show that the proposed approach can achieve satisfactory predictions and proof the suitability of the proposed method for generating wind speed profile and probability distributions based on knowledge of wind speed at lower heights.Keywords: bayesian regularization, neural network, wind shear, accuracy
Procedia PDF Downloads 5092958 A Study on Mesh Size Dependency on Bed Expansion Zone in a Three-Phase Fluidized Bed Reactor
Authors: Liliana Patricia Olivo Arias
Abstract:
The present study focused on the hydrodynamic study in a three-phase fluidized bed reactor and the influence of important aspects, such as volume fractions (Hold up), velocity magnitude of gas, liquid and solid phases (hydrogen, gasoil, and gamma alumina), interactions of phases, through of drag models with the k-epsilon turbulence model. For this purpose was employed a Euler-Euler model and also considers the system is constituted of three phases, gaseous, liquid and solid, characterized by its physical and thermal properties, the transport processes that are developed within the transient regime. The proposed model of the three-phase fluidized bed reactor was solved numerically using the ANSYS-Fluent software with different mesh refinements on bed expansion zone in order to observe the influence of the hydrodynamic parameters and convergence criteria. With this model and the numerical simulations obtained for its resolution, it was possible to predict the results of the volume fractions (Hold ups) and the velocity magnitude for an unsteady system from the initial and boundaries conditions were established.Keywords: three-phase fluidized bed system, CFD simulation, mesh dependency study, hydrodynamic study
Procedia PDF Downloads 1692957 Novel Recommender Systems Using Hybrid CF and Social Network Information
Authors: Kyoung-Jae Kim
Abstract:
Collaborative Filtering (CF) is a popular technique for the personalization in the E-commerce domain to reduce information overload. In general, CF provides recommending items list based on other similar users’ preferences from the user-item matrix and predicts the focal user’s preference for particular items by using them. Many recommender systems in real-world use CF techniques because it’s excellent accuracy and robustness. However, it has some limitations including sparsity problems and complex dimensionality in a user-item matrix. In addition, traditional CF does not consider the emotional interaction between users. In this study, we propose recommender systems using social network and singular value decomposition (SVD) to alleviate some limitations. The purpose of this study is to reduce the dimensionality of data set using SVD and to improve the performance of CF by using emotional information from social network data of the focal user. In this study, we test the usability of hybrid CF, SVD and social network information model using the real-world data. The experimental results show that the proposed model outperforms conventional CF models.Keywords: recommender systems, collaborative filtering, social network information, singular value decomposition
Procedia PDF Downloads 2952956 Critical Review of Oceanic and Geological Storage of Carbon Sequestration
Authors: Milad Nooshadi, Alessandro Manzardo
Abstract:
CO₂ emissions in the atmosphere continue to rise, mostly as a result of the combustion of fossil fuels. CO₂ injection into the oceans and geological formation as a process of physical carbon capture are two of the most promising emerging strategies for mitigating climate change and global warming. The purpose of this research is to evaluate the two mentioned methods of CO₂ sequestration and to assess information on previous and current advancements, limitations, and uncertainties associated with carbon sequestration in order to identify possible prospects for ensuring the timely implementation of the technology, such as determining how governments and companies can gain a better understanding of CO₂ storage in terms of which media have the most applicable capacity, which type of injection has the fewer environmental impact, and how much carbon sequestration and storage will cost. The behavior of several forms is characterized as a near field, a far field, and a see-floor in ocean storage, and three medias in geological formations as an oil and gas reservoir, a saline aquifer, and a coal bed. To determine the capacity of various forms of media, an analysis of some models and practical experiments are necessary. Additionally, as a major component of sequestration, the various injection methods into diverse media and their monitoring are associated with a variety of environmental impacts and financial consequences.Keywords: carbon sequestration, ocean storage, geologic storage, carbon transportation
Procedia PDF Downloads 1072955 Top Management Support as an Enabling Factor for Academic Innovation through Knowledge Sharing
Authors: Sawsan J. Al-husseini, Talib A. Dosa
Abstract:
Educational institutions are today facing increasing pressures due to economic, political and social upheaval. This is only exacerbated by the nature of education as an intangible good which relies upon the intellectual assets of the organisation, its staff. Top management support has been acknowledged as having a positive general influence on knowledge management and creativity. However, there is a lack of models linking top management support, knowledge sharing, and innovation within higher education institutions, in general within developing countries, and particularly in Iraq. This research sought to investigate the impact of top management support on innovation through the mediating role of knowledge sharing in Iraqi private HEIs. A quantitative approach was taken and 262 valid responses were collected to test the causal relationships between top management support, knowledge sharing, and innovation. Employing structural equation modelling with AMOS v.25, the research demonstrated that knowledge sharing plays a pivotal role in the relationship between top management support and innovation. The research has produced some guidelines for researchers as well as leaders, and provided evidence to support the use of knowledge sharing to increase innovation within the higher education environment in developing countries, particularly Iraq.Keywords: top management support, knowledge sharing, innovation, structural equation modelling
Procedia PDF Downloads 3302954 A Comparative Study of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and Extreme Value Theory (EVT) Model in Modeling Value-at-Risk (VaR)
Authors: Longqing Li
Abstract:
The paper addresses the inefficiency of the classical model in measuring the Value-at-Risk (VaR) using a normal distribution or a Student’s t distribution. Specifically, the paper focuses on the one day ahead Value-at-Risk (VaR) of major stock market’s daily returns in US, UK, China and Hong Kong in the most recent ten years under 95% confidence level. To improve the predictable power and search for the best performing model, the paper proposes using two leading alternatives, Extreme Value Theory (EVT) and a family of GARCH models, and compares the relative performance. The main contribution could be summarized in two aspects. First, the paper extends the GARCH family model by incorporating EGARCH and TGARCH to shed light on the difference between each in estimating one day ahead Value-at-Risk (VaR). Second, to account for the non-normality in the distribution of financial markets, the paper applies Generalized Error Distribution (GED), instead of the normal distribution, to govern the innovation term. A dynamic back-testing procedure is employed to assess the performance of each model, a family of GARCH and the conditional EVT. The conclusion is that Exponential GARCH yields the best estimate in out-of-sample one day ahead Value-at-Risk (VaR) forecasting. Moreover, the discrepancy of performance between the GARCH and the conditional EVT is indistinguishable.Keywords: Value-at-Risk, Extreme Value Theory, conditional EVT, backtesting
Procedia PDF Downloads 3262953 Market Segmentation and Conjoint Analysis for Apple Family Design
Authors: Abbas Al-Refaie, Nour Bata
Abstract:
A distributor of Apple products' experiences numerous difficulties in developing marketing strategies for new and existing mobile product entries that maximize customer satisfaction and the firm's profitability. This research, therefore, integrates market segmentation in platform-based product family design and conjoint analysis to identify iSystem combinations that increase customer satisfaction and business profits. First, the enhanced market segmentation grid is created. Then, the estimated demand model is formulated. Finally, the profit models are constructed then used to determine the ideal product family design that maximizes profit. Conjoint analysis is used to explore customer preferences with their satisfaction levels. A total of 200 surveys are collected about customer preferences. Then, simulation is used to determine the importance values for each attribute. Finally, sensitivity analysis is conducted to determine the product family design that maximizes both objectives. In conclusion, the results of this research shall provide great support to Apple distributors in determining the best marketing strategies that enhance their market share.Keywords: market segmentation, conjoint analysis, market strategies, optimization
Procedia PDF Downloads 3812952 Measurement Errors and Misclassifications in Covariates in Logistic Regression: Bayesian Adjustment of Main and Interaction Effects and the Sample Size Implications
Authors: Shahadut Hossain
Abstract:
Measurement errors in continuous covariates and/or misclassifications in categorical covariates are common in epidemiological studies. Regression analysis ignoring such mismeasurements seriously biases the estimated main and interaction effects of covariates on the outcome of interest. Thus, adjustments for such mismeasurements are necessary. In this research, we propose a Bayesian parametric framework for eliminating deleterious impacts of covariate mismeasurements in logistic regression. The proposed adjustment method is unified and thus can be applied to any generalized linear and non-linear regression models. Furthermore, adjustment for covariate mismeasurements requires validation data usually in the form of either gold standard measurements or replicates of the mismeasured covariates on a subset of the study population. Initial investigation shows that adequacy of such adjustment depends on the sizes of main and validation samples, especially when prevalences of the categorical covariates are low. Thus, we investigate the impact of main and validation sample sizes on the adjusted estimates, and provide a general guideline about these sample sizes based on simulation studies.Keywords: measurement errors, misclassification, mismeasurement, validation sample, Bayesian adjustment
Procedia PDF Downloads 4152951 The Adsorption of Perfluorooctanoic Acid on Coconut Shell Activated Carbons
Authors: Premrudee Kanchanapiya, Supachai Songngam, Thanapol Tantisattayakul
Abstract:
Perfluorooctanoic acid (PFOA) is one of per- and polyfluoroalkyl substances (PFAS) that have increasingly attracted concerns due to their global distribution in environment, persistence, high bioaccumulation, and toxicity. It is important to study the effective treatment to remove PFOA from contaminated water. The feasibility of using commercial coconut shell activated carbon produced in Thailand to remove PFOA from water was investigated with regard to their adsorption kinetics and isotherms of powder activated carbon (PAC-325) and granular activated carbon (GAC-20x50). Adsorption kinetic results show that the adsorbent size significantly affected the adsorption rate of PFOA, and GAC-20x50 required at least 100 h to achieve the equilibrium, much longer than 3 h for PAC-325. Two kinetic models were fitted to the experimental data, and the pseudo-second-order model well described the adsorption of PFOA on both PAC-325 and GAC-20x50. PAC-325 trended to adsorb PFOA faster than GAC-20x50, and testing with the shortest adsorption times (5 min) still yielded substantial PFOA removal (~80% for PAC-325). The adsorption isotherms show that the adsorption capacity of PAC-325 was 0.80 mmol/g, which is 83 % higher than that for GAC-20x50 (0.13 mmol/g), according to the Langmuir fitting.Keywords: perfluorooctanoic acid, PFOA, coconut shell activated carbons, adsorption, water treatment
Procedia PDF Downloads 1492950 The Hubs of Transformation Dictated by the Innovation Wave: Boston as a Case Study. Exploring How Design is Emerging as an Essential Feature in the Process of Laboratorisation of Cities
Authors: Luana Parisi, Sohrab Donyavi
Abstract:
Cities have become the nodes of global networks, standing at the intersection points of the flows of capital, goods, workers, businesses and travellers, making them the spots where innovation, progress and economic development occur. The primary challenge for them is to create the most fertile ecosystems for triggering innovation activities. Design emerges as an essential feature in this process of laboratorisation of cities. This paper aims at exploring the spatial hubs of transformation within the knowledge economy, providing an overview of the current models of innovation spaces, before focusing on the innovation district of one of the cities that are riding the innovation wave, namely, Boston, USA. Useful lessons will be drawn from the case study of the innovation district in Boston, allowing to define precious tools for policymakers, in the form of a range of factors that define the broad strategy able to implement the model successfully. A mixed methodology is implemented, including information from observations, exploratory interviews to key stakeholders and on-desk data.Keywords: Innovation District, innovation ecosystem, economic development, urban regeneration
Procedia PDF Downloads 1342949 A Comparison of Methods for Neural Network Aggregation
Authors: John Pomerat, Aviv Segev
Abstract:
Recently, deep learning has had many theoretical breakthroughs. For deep learning to be successful in the industry, however, there need to be practical algorithms capable of handling many real-world hiccups preventing the immediate application of a learning algorithm. Although AI promises to revolutionize the healthcare industry, getting access to patient data in order to train learning algorithms has not been easy. One proposed solution to this is data- sharing. In this paper, we propose an alternative protocol, based on multi-party computation, to train deep learning models while maintaining both the privacy and security of training data. We examine three methods of training neural networks in this way: Transfer learning, average ensemble learning, and series network learning. We compare these methods to the equivalent model obtained through data-sharing across two different experiments. Additionally, we address the security concerns of this protocol. While the motivating example is healthcare, our findings regarding multi-party computation of neural network training are purely theoretical and have use-cases outside the domain of healthcare.Keywords: neural network aggregation, multi-party computation, transfer learning, average ensemble learning
Procedia PDF Downloads 1672948 RANS Simulation of Viscous Flow around Hull of Multipurpose Amphibious Vehicle
Authors: M. Nakisa, A. Maimun, Yasser M. Ahmed, F. Behrouzi, A. Tarmizi
Abstract:
The practical application of the Computational Fluid Dynamics (CFD), for predicting the flow pattern around Multipurpose Amphibious Vehicle (MAV) hull has made much progress over the last decade. Today, several of the CFD tools play an important role in the land and water going vehicle hull form design. CFD has been used for analysis of MAV hull resistance, sea-keeping, maneuvering and investigating its variation when changing the hull form due to varying its parameters, which represents a very important task in the principal and final design stages. Resistance analysis based on CFD (Computational Fluid Dynamics) simulation has become a decisive factor in the development of new, economically efficient and environmentally friendly hull forms. Three-dimensional finite volume method (FVM) based on Reynolds Averaged Navier-Stokes equations (RANS) has been used to simulate incompressible flow around three types of MAV hull bow models in steady-state condition. Finally, the flow structure and streamlines, friction and pressure resistance and velocity contours of each type of hull bow will be compared and discussed.Keywords: RANS simulation, multipurpose amphibious vehicle, viscous flow structure, mechatronic
Procedia PDF Downloads 3162947 Cost Sensitive Feature Selection in Decision-Theoretic Rough Set Models for Customer Churn Prediction: The Case of Telecommunication Sector Customers
Authors: Emel Kızılkaya Aydogan, Mihrimah Ozmen, Yılmaz Delice
Abstract:
In recent days, there is a change and the ongoing development of the telecommunications sector in the global market. In this sector, churn analysis techniques are commonly used for analysing why some customers terminate their service subscriptions prematurely. In addition, customer churn is utmost significant in this sector since it causes to important business loss. Many companies make various researches in order to prevent losses while increasing customer loyalty. Although a large quantity of accumulated data is available in this sector, their usefulness is limited by data quality and relevance. In this paper, a cost-sensitive feature selection framework is developed aiming to obtain the feature reducts to predict customer churn. The framework is a cost based optional pre-processing stage to remove redundant features for churn management. In addition, this cost-based feature selection algorithm is applied in a telecommunication company in Turkey and the results obtained with this algorithm.Keywords: churn prediction, data mining, decision-theoretic rough set, feature selection
Procedia PDF Downloads 4492946 VideoAssist: A Labelling Assistant to Increase Efficiency in Annotating Video-Based Fire Dataset Using a Foundation Model
Authors: Keyur Joshi, Philip Dietrich, Tjark Windisch, Markus König
Abstract:
In the field of surveillance-based fire detection, the volume of incoming data is increasing rapidly. However, the labeling of a large industrial dataset is costly due to the high annotation costs associated with current state-of-the-art methods, which often require bounding boxes or segmentation masks for model training. This paper introduces VideoAssist, a video annotation solution that utilizes a video-based foundation model to annotate entire videos with minimal effort, requiring the labeling of bounding boxes for only a few keyframes. To the best of our knowledge, VideoAssist is the first method to significantly reduce the effort required for labeling fire detection videos. The approach offers bounding box and segmentation annotations for the video dataset with minimal manual effort. Results demonstrate that the performance of labels annotated by VideoAssist is comparable to those annotated by humans, indicating the potential applicability of this approach in fire detection scenarios.Keywords: fire detection, label annotation, foundation models, object detection, segmentation
Procedia PDF Downloads 192945 Forecasting the Fluctuation of Currency Exchange Rate Using Random Forest
Authors: Lule Basha, Eralda Gjika
Abstract:
The exchange rate is one of the most important economic variables, especially for a small, open economy such as Albania. Its effect is noticeable in one country's competitiveness, trade and current account, inflation, wages, domestic economic activity, and bank stability. This study investigates the fluctuation of Albania’s exchange rates using monthly average foreign currency, Euro (Eur) to Albanian Lek (ALL) exchange rate with a time span from January 2008 to June 2021, and the macroeconomic factors that have a significant effect on the exchange rate. Initially, the Random Forest Regression algorithm is constructed to understand the impact of economic variables on the behavior of monthly average foreign currencies exchange rates. Then the forecast of macro-economic indicators for 12 months was performed using time series models. The predicted values received are placed in the random forest model in order to obtain the average monthly forecast of the Euro to Albanian Lek (ALL) exchange rate for the period July 2021 to June 2022.Keywords: exchange rate, random forest, time series, machine learning, prediction
Procedia PDF Downloads 1082944 Design Challenges for Severely Skewed Steel Bridges
Authors: Muna Mitchell, Akshay Parchure, Krishna Singaraju
Abstract:
There is an increasing need for medium- to long-span steel bridges with complex geometry due to site restrictions in developed areas. One of the solutions to grade separations in congested areas is to use longer spans on skewed supports that avoid at-grade obstructions limiting impacts to the foundation. Where vertical clearances are also a constraint, continuous steel girders can be used to reduce superstructure depths. Combining continuous long steel spans on severe skews can resolve the constraints at a cost. The behavior of skewed girders is challenging to analyze and design with subsequent complexity during fabrication and construction. As a part of a corridor improvement project, Walter P Moore designed two 1700-foot side-by-side bridges carrying four lanes of traffic in each direction over a railroad track. The bridges consist of prestressed concrete girder approach spans and three-span continuous steel plate girder units. The roadway design added complex geometry to the bridge with horizontal and vertical curves combined with superelevation transitions within the plate girder units. The substructure at the steel units was skewed approximately 56 degrees to satisfy the existing railroad right-of-way requirements. A horizontal point of curvature (PC) near the end of the steel units required the use flared girders and chorded slab edges. Due to the flared girder geometry, the cross-frame spacing in each bay is unique. Staggered cross frames were provided based on AASHTO LRFD and NCHRP guidelines for high skew steel bridges. Skewed steel bridges develop significant forces in the cross frames and rotation in the girder websdue to differential displacements along the girders under dead and live loads. In addition, under thermal loads, skewed steel bridges expand and contract not along the alignment parallel to the girders but along the diagonal connecting the acute corners, resulting in horizontal displacement both along and perpendicular to the girders. AASHTO LRFD recommends a 95 degree Fahrenheit temperature differential for the design of joints and bearings. The live load and the thermal loads resulted in significant horizontal forces and rotations in the bearings that necessitated the use of HLMR bearings. A unique bearing layout was selected to minimize the effect of thermal forces. The span length, width, skew, and roadway geometry at the bridges also required modular bridge joint systems (MBJS) with inverted-T bent caps to accommodate movement in the steel units. 2D and 3D finite element analysis models were developed to accurately determine the forces and rotations in the girders, cross frames, and bearings and to estimate thermal displacements at the joints. This paper covers the decision-making process for developing the framing plan, bearing configurations, joint type, and analysis models involved in the design of the high-skew three-span continuous steel plate girder bridges.Keywords: complex geometry, continuous steel plate girders, finite element structural analysis, high skew, HLMR bearings, modular joint
Procedia PDF Downloads 1982943 Individualized Emotion Recognition Through Dual-Representations and Ground-Established Ground Truth
Authors: Valentina Zhang
Abstract:
While facial expression is a complex and individualized behavior, all facial emotion recognition (FER) systems known to us rely on a single facial representation and are trained on universal data. We conjecture that: (i) different facial representations can provide different, sometimes complementing views of emotions; (ii) when employed collectively in a discussion group setting, they enable more accurate emotion reading which is highly desirable in autism care and other applications context sensitive to errors. In this paper, we first study FER using pixel-based DL vs semantics-based DL in the context of deepfake videos. Our experiment indicates that while the semantics-trained model performs better with articulated facial feature changes, the pixel-trained model outperforms on subtle or rare facial expressions. Armed with these findings, we have constructed an adaptive FER system learning from both types of models for dyadic or small interacting groups and further leveraging the synthesized group emotions as the ground truth for individualized FER training. Using a collection of group conversation videos, we demonstrate that FER accuracy and personalization can benefit from such an approach.Keywords: neurodivergence care, facial emotion recognition, deep learning, ground truth for supervised learning
Procedia PDF Downloads 1522942 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features
Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan
Abstract:
Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction
Procedia PDF Downloads 2672941 Shared Versus Pooled Automated Vehicles: Exploring Behavioral Intentions Towards On-Demand Automated Vehicles
Authors: Samira Hamiditehrani
Abstract:
Automated vehicles (AVs) are emerging technologies that could potentially offer a wide range of opportunities and challenges for the transportation sector. The advent of AV technology has also resulted in new business models in shared mobility services where many ride hailing and car sharing companies are developing on-demand AVs including shared automated vehicles (SAVs) and pooled automated vehicles (Pooled AVs). SAVs and Pooled AVs could provide alternative shared mobility services which encourage sustainable transport systems, mitigate traffic congestion, and reduce automobile dependency. However, the success of on-demand AVs in addressing major transportation policy issues depends on whether and how the public adopts them as regular travel modes. To identify conditions under which individuals may adopt on-demand AVs, previous studies have applied human behavior and technology acceptance theories, where Theory of Planned Behavior (TPB) has been validated and is among the most tested in on-demand AV research. In this respect, this study has three objectives: (a) to propose and validate a theoretical model for behavioral intention to use SAVs and Pooled AVs by extending the original TPB model; (b) to identify the characteristics of early adopters of SAVs, who prefer to have a shorter and private ride, versus prospective users of Pooled AVs, who choose more affordable but longer and shared trips; and (c) to investigate Canadians’ intentions to adopt on-demand AVs for regular trips. Toward this end, this study uses data from an online survey (n = 3,622) of workers or adult students (18 to 75 years old) conducted in October and November 2021 for six major Canadian metropolitan areas: Toronto, Vancouver, Ottawa, Montreal, Calgary, and Hamilton. To accomplish the goals of this study, a base bivariate ordered probit model, in which both SAV and Pooled AV adoptions are estimated as ordered dependent variables, alongside a full structural equation modeling (SEM) system are estimated. The findings of this study indicate that affective motivations such as attitude towards AV technology, perceived privacy, and subjective norms, matter more than sociodemographic and travel behavior characteristic in adopting on-demand AVs. Also, the results of second objective provide evidence that although there are a few affective motivations, such as subjective norms and having ample knowledge, that are common between early adopters of SAVs and PooledAVs, many examined motivations differ among SAV and Pooled AV adoption factors. In other words, motivations influencing intention to use on-demand AVs differ among the service types. Likewise, depending on the types of on-demand AVs, the sociodemographic characteristics of early adopters differ significantly. In general, findings paint a complex picture with respect to the application of constructs from common technology adoption models to the study of on-demand AVs. Findings from the final objective suggest that policymakers, planners, the vehicle and technology industries, and the public at large should moderate their expectations that on-demand AVs may suddenly transform the entire transportation sector. Instead, this study suggests that SAVs and Pooled AVs (when they entire the Canadian market) are likely to be adopted as supplementary mobility tools rather than substitutions for current travel modesKeywords: automated vehicles, Canadian perception, theory of planned behavior, on-demand AVs
Procedia PDF Downloads 782940 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset
Authors: Gabriele Borg, Alexei Debono, Charlie Abela
Abstract:
There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.Keywords: graph neural networks, traffic management, big data, mobile data patterns
Procedia PDF Downloads 1382939 3D Modelling of Fluid Flow in Tunnel Kilns
Authors: Jaber H. Almutairi, Hosny Z. Abou-Ziyan, Issa F. Almesri, Mosab A. Alrahmani
Abstract:
The present work investigates the behavior of fluid flow inside tunnel kilns using 3D-CFD (Computational Fluid Dynamics) simulations. The CFD simulations are carried out with the FLUENT software and validated against experimental results on fluid flow and heat transfer in tunnel kilns. A grid dependency study is conducted in the current work to improve the accuracy of the results. Three turbulence models k–ω, standard k–ε, and RNG k–ε are tested where k–ω model gives the best results in comparison with the experiment. The numerical results reveal an intriguing phenomenon where a long flow separation zone behind the setting is observed under different geometric and operation conditions. It was found that the uniformity of flow distribution can be substantially improved by rearranging the geometrical parameters of brick setting relative to kiln/setting. This improvement of flow distribution plays a critical role to enhance the quality and quantity of the production. It can be concluded that a better design and operation of tunnel kilns in terms of productivity and energy consumption can be obtained by taking into consideration the flow uniformity inside the tunnel kilns using CFD modelling.Keywords: tunnel kilns, flow separation, flow uniformity, computational fluid dynamics
Procedia PDF Downloads 3322938 Impact of Air Pressure and Outlet Temperature on Physicochemical and Functional Properties of Spray-dried Skim Milk Powder
Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit
Abstract:
Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder, to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed and the use of genetic algorithm will allow the optimization of powder functionalities.Keywords: dairy powders, spray-drying, powders functionalities, design of experiment
Procedia PDF Downloads 1002937 UNIX Source Code Leak: Evaluation and Feasible Solutions
Authors: Gu Dongxing, Li Yuxuan, Nong Tengxiao, Burra Venkata Durga Kumar
Abstract:
Since computers are widely used in business models, more and more companies choose to store important information in computers to improve productivity. However, this information can be compromised in many cases, such as when it is stored locally on the company's computers or when it is transferred between servers and clients. Of these important information leaks, source code leaks are probably the most costly. Because the source code often represents the core technology of the company, especially for the Internet companies, source code leakage may even lead to the company's core products lose market competitiveness, and then lead to the bankruptcy of the company. In recent years, such as Microsoft, AMD and other large companies have occurred source code leakage events, suffered a huge loss. This reveals to us the importance and necessity of preventing source code leakage. This paper aims to find ways to prevent source code leakage based on the direction of operating system, and based on the fact that most companies use Linux or Linux-like system to realize the interconnection between server and client, to discuss how to reduce the possibility of source code leakage during data transmission.Keywords: data transmission, Linux, source code, operating system
Procedia PDF Downloads 2772936 Hydrogen Storage in Salt Caverns: Rock Mechanical Design
Authors: Dirk Zapf, Bastian Leuger
Abstract:
For several years, natural gas and crude oil have been stored in salt caverns in Germany and also worldwide. The dimensioning concepts have been continuously developed from a rock mechanics point of view. In addition to the possibilities of realizing large numerical calculation models based on real survey data nowadays, especially the consideration of mechanical processes such as damage and healing played a role in the development of adequate material laws. In addition, thermodynamic aspects have had to be considered for some years in the operation of a gas storage cavern since temperature changes have a significant influence on the stress states in the vicinity of a storage cavern. The possibility of thermally induced fracturing processes is also investigated in the context of rock mechanics dimensioning. In recent years, the energy crisis and the finite nature of fossil fuel use have led to increased discussion of the use of salt caverns for hydrogen storage. In this paper, state of the art is presented, the current research work is described, and an outlook is given as to which questions still need to be answered from a rock mechanics point of view in connection with large-scale storage of hydrogen in salt caverns.Keywords: cavern design, hydrogen, rock salt, thermomechanical coupled calculations
Procedia PDF Downloads 1262935 Influence of the Financial Crisis on the Month and the Trading Month Effects: Evidence from the Athens Stock Exchange
Authors: Aristeidis Samitas, Evangelos Vasileiou
Abstract:
The aim of this study is to examine the month and the trading month effect under changing financial trends. We choose the Greek stock market to implement our assumption because there are clear and long term periods of financial growth and recession. Daily financial data from Athens Exchange General Index for the period 2002-2012 are considered. The paper employs several linear and non-linear models, although the TGARCH asymmetry model best fits in this sample and for this reason we mainly present the TGARCH results. Empirical results show that changing economic and financial conditions influences the calendar effects. Especially, the trading month effect totally changes in each fortnight according to the financial trend. On the other hand, in Greece the January effect exists during the growth periods, although it does not exist when the financial trend changes. The findings are helpful to anybody who invest and deals with the Greek stock market. Moreover, they may pave the way for an alternative calendar anomalies research approach, so it may be useful to investors who take into account these anomalies when they draw their investment strategy.Keywords: month effect, trading month effect, economic cycles, crisis
Procedia PDF Downloads 4182934 Development of a Robust Procedure for Generating Structural Models of Calcium Aluminosilicate Glass Surfaces
Authors: S. Perera, T. R. Walsh, M. Solvang
Abstract:
The structure-property relationships of calcium aluminosilicate (CAS) glass surfaces are of scientific and technological interest regarding dissolution phenomena. Molecular dynamics (MD) simulations can provide atomic-scale insights into the structure and properties of the CAS interfaces in vacuo as the first step to conducting computational dissolution studies on CAS surfaces. However, one limitation to date is that although the bulk properties of CAS glasses have been well studied by MD simulation, corresponding efforts on CAS surface properties are relatively few in number (both theoretical and experimental). Here, a systematic computational protocol to create CAS surfaces in vacuo is developed by evaluating the sensitivity of the resultant surface structure with respect to different factors. Factors such as the relative thickness of the surface layer, the relative thickness of the bulk region, the cooling rate, and the annealing schedule (time and temperature) are explored. Structural features such as ring size distribution, defect concentrations (five-coordinated aluminium (AlV), non-bridging oxygen (NBO), and tri-cluster oxygen (TBO)), and linkage distribution are identified as significant features in dissolution studies.Keywords: MD simulation, CAS glasses, surface structure, structure-property, CAS interface
Procedia PDF Downloads 1032933 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method
Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri
Abstract:
Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method
Procedia PDF Downloads 5052932 Physically Informed Kernels for Wave Loading Prediction
Authors: Daniel James Pitchforth, Timothy James Rogers, Ulf Tyge Tygesen, Elizabeth Jane Cross
Abstract:
Wave loading is a primary cause of fatigue within offshore structures and its quantification presents a challenging and important subtask within the SHM framework. The accurate representation of physics in such environments is difficult, however, driving the development of data-driven techniques in recent years. Within many industrial applications, empirical laws remain the preferred method of wave loading prediction due to their low computational cost and ease of implementation. This paper aims to develop an approach that combines data-driven Gaussian process models with physical empirical solutions for wave loading, including Morison’s Equation. The aim here is to incorporate physics directly into the covariance function (kernel) of the Gaussian process, enforcing derived behaviors whilst still allowing enough flexibility to account for phenomena such as vortex shedding, which may not be represented within the empirical laws. The combined approach has a number of advantages, including improved performance over either component used independently and interpretable hyperparameters.Keywords: offshore structures, Gaussian processes, Physics informed machine learning, Kernel design
Procedia PDF Downloads 1992931 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements
Authors: Yasmeen A. S. Essawy, Khaled Nassar
Abstract:
With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.Keywords: building information modeling (BIM), elemental graph data model (EGDM), geometric and topological data models, graph theory
Procedia PDF Downloads 3862930 Systematic Review of Misconceptions: Tools for Diagnostics and Remediation Models for Misconceptions in Physics
Authors: Muhammad Iqbal, Edi Istiyono
Abstract:
Misconceptions are one of the problems in physics learning where students' understanding is not in line with scientific theory. The aim of this research is to find diagnostic tools to identify misconceptions and how to remediate physics misconceptions. In this research, the articles that will be reviewed come from the Scopus database related to physics misconceptions from 2013-2023. The articles obtained from the Scopus database were then selected according to the Prisma model, so 29 articles were obtained that focused on discussing physics misconceptions, especially regarding diagnostic tools and remediation methods. Currently, the most widely used diagnostic tool is the four-tier test, which is able to measure students' misconceptions in depth by knowing whether students are guessing or not and from then on, there is also a trend toward five-tier diagnostic tests with additional sources of information obtained. So that the origin of students' misconceptions is known. There are several ways to remediate student misconceptions, namely 11 ways and one of the methods used is digital practicum so that abstract things can be visualized into real ones. This research is limited to knowing what tools are used to diagnose and remediate misconceptions, so it is not yet known how big the effect of remediation methods is on misconceptions. The researcher recommends that in the future further research can be carried out to find out the most appropriate remediation method for remediating student misconceptions.Keywords: misconception, remediation, systematic review, tools
Procedia PDF Downloads 44