Search results for: zig-zag cooling channels
1379 Heat Transfer Performance of a Small Cold Plate with Uni-Directional Porous Copper for Cooling Power Electronics
Authors: K. Yuki, R. Tsuji, K. Takai, S. Aramaki, R. Kibushi, N. Unno, K. Suzuki
Abstract:
A small cold plate with uni-directional porous copper is proposed for cooling power electronics such as an on-vehicle inverter with the heat generation of approximately 500 W/cm2. The uni-directional porous copper with the pore perpendicularly orienting the heat transfer surface is soldered to a grooved heat transfer surface. This structure enables the cooling liquid to evaporate in the pore of the porous copper and then the vapor to discharge through the grooves. In order to minimize the cold plate, a double flow channel concept is introduced for the design of the cold plate. The cold plate consists of a base plate, a spacer, and a vapor discharging plate, totally 12 mm in thickness. The base plate has multiple nozzles of 1.0 mm in diameter for the liquid supply and 4 slits of 2.0 mm in width for vapor discharging, and is attached onto the top surface of the porous copper plate of 20 mm in diameter and 5.0 mm in thickness. The pore size is 0.36 mm and the porosity is 36 %. The cooling liquid flows into the porous copper as an impinging jet flow from the multiple nozzles, and then the vapor, which is generated in the pore, is discharged through the grooves and the vapor slits outside the cold plate. A heated test section consists of the cold plate, which was explained above, and a heat transfer copper block with 6 cartridge heaters. The cross section of the heat transfer block is reduced in order to increase the heat flux. The top surface of the block is the grooved heat transfer surface of 10 mm in diameter at which the porous copper is soldered. The grooves are fabricated like latticework, and the width and depth are 1.0 mm and 0.5 mm, respectively. By embedding three thermocouples in the cylindrical part of the heat transfer block, the temperature of the heat transfer surface ant the heat flux are extrapolated in a steady state. In this experiment, the flow rate is 0.5 L/min and the flow velocity at each nozzle is 0.27 m/s. The liquid inlet temperature is 60 °C. The experimental results prove that, in a single-phase heat transfer regime, the heat transfer performance of the cold plate with the uni-directional porous copper is 2.1 times higher than that without the porous copper, though the pressure loss with the porous copper also becomes higher than that without the porous copper. As to the two-phase heat transfer regime, the critical heat flux increases by approximately 35% by introducing the uni-directional porous copper, compared with the CHF of the multiple impinging jet flow. In addition, we confirmed that these heat transfer data was much higher than that of the ordinary single impinging jet flow. These heat transfer data prove high potential of the cold plate with the uni-directional porous copper from the view point of not only the heat transfer performance but also energy saving.Keywords: cooling, cold plate, uni-porous media, heat transfer
Procedia PDF Downloads 3001378 Development of Thermal Regulating Textile Material Consisted of Macrocapsulated Phase Change Material
Authors: Surini Duthika Fernandopulle, Kalamba Arachchige Pramodya Wijesinghe
Abstract:
Macrocapsules containing phase change material (PCM) PEG4000 as core and Calcium Alginate as the shell was synthesized by in-situ polymerization process, and their suitability for textile applications was studied. PCM macro-capsules were sandwiched between two polyurethane foams at regular intervals, and the sandwiched foams were subsequently covered with 100% cotton woven fabrics. According to the mathematical modelling and calculations 46 capsules were required to provide cooling for a period of 2 hours at 56ºC, so a panel of 10 cm x 10 cm area with 25 parts (having 5 capsules in each for 9 parts are 16 parts spaced for air permeability) were effectively merged into one textile material without changing the textile's original properties. First, the available cooling techniques related to textiles were considered and the best cooling techniques suiting the Sri Lankan climatic conditions were selected using a survey conducted for Sri Lankan Public based on ASHRAE-55-2010 standard and it consisted of 19 questions under 3 sections categorized as general information, thermal comfort sensation and requirement of Personal Cooling Garments (PCG). The results indicated that during daytime, majority of respondents feel warm and during nighttime also majority have responded as slightly warm. The survey also revealed that around 85% of the respondents are willing to accept a PCG. The developed panels were characterized using Fourier-transform infrared spectroscopy (FTIR) and Thermogravimetric Analysis (TGA) tests and the findings from FTIR showed that the macrocapsules consisted of PEG 4000 as the core material and Calcium Alginate as the shell material and findings from TGA showed that the capsules had the average weight percentage for core with 61,9% and shell with 34,7%. After heating both control samples and samples incorporating PCM panels, it was discovered that only the temperature of the control sample increased after 56ºC, whereas the temperature of the sample incorporating PCM panels began to regulate the temperature at 56ºC, preventing a temperature increase beyond 56ºC.Keywords: phase change materials, thermal regulation, textiles, macrocapsules
Procedia PDF Downloads 1301377 Heat Source Temperature for Centered Heat Source on Isotropic Plate with Lower Surface Forced Cooling Using Neural Network and Three Different Materials
Authors: Fadwa Haraka, Ahmad Elouatouati, Mourad Taha Janan
Abstract:
In this study, we propose a neural network based method in order to calculate the heat source temperature of isotropic plate with lower surface forced cooling. To validate the proposed model, the heat source temperatures values will be compared to the analytical method -variables separation- and finite element model. The mathematical simulation is done through 3D numerical simulation by COMSOL software considering three different materials: Aluminum, Copper, and Graphite. The proposed method will lead to a formulation of the heat source temperature based on the thermal and geometric properties of the base plate.Keywords: thermal model, thermal resistance, finite element simulation, neural network
Procedia PDF Downloads 3621376 Modelling of Recovery and Application of Low-Grade Thermal Resources in the Mining and Mineral Processing Industry
Authors: S. McLean, J. A. Scott
Abstract:
The research topic is focusing on improving sustainable operation through recovery and reuse of waste heat in process water streams, an area in the mining industry that is often overlooked. There are significant advantages to the application of this topic, including economic and environmental benefits. The smelting process in the mining industry presents an opportunity to recover waste heat and apply it to alternative uses, thereby enhancing the overall process. This applied research has been conducted at the Sudbury Integrated Nickel Operations smelter site, in particular on the water cooling towers. The aim was to determine and optimize methods for appropriate recovery and subsequent upgrading of thermally low-grade heat lost from the water cooling towers in a manner that makes it useful for repurposing in applications, such as within an acid plant. This would be valuable to mining companies as it would be an opportunity to reduce the cost of the process, as well as decrease environmental impact and primary fuel usage. The waste heat from the cooling towers needs to be upgraded before it can be beneficially applied, as lower temperatures result in a decrease of the number of potential applications. Temperature and flow rate data were collected from the water cooling towers at an acid plant over two years. The research includes process control strategies and the development of a model capable of determining if the proposed heat recovery technique is economically viable, as well as assessing any environmental impact with the reduction in net energy consumption by the process. Therefore, comprehensive cost and impact analyses are carried out to determine the best area of application for the recovered waste heat. This method will allow engineers to easily identify the value of thermal resources available to them and determine if a full feasibility study should be carried out. The rapid scoping model developed will be applicable to any site that generates large amounts of waste heat. Results show that heat pumps are an economically viable solution for this application, allowing for reduced cost and CO₂ emissions.Keywords: environment, heat recovery, mining engineering, sustainability
Procedia PDF Downloads 1141375 Heritage Buildings an Inspiration for Energy Conservation under Solar Control – a Case Study of Hadoti Region of India.
Authors: Abhinav Chaturvedi, Joohi Chaturvedi, Renu Chaturvedi
Abstract:
With rapid urbanization and growth of population, more buildings are require to be constructed to meet the increasing demand of the shelter. 80 % of the world population is living in developing countries, but the adequate energy supplied to only 30% of it. In India situation get little more difficult as majority of the villages of India are still deprived of energy. 1/3 of the Indian household does not have energy supply. So there is big gap between energy demand and supply. Moreover India is producing around 65 % of the energy from Non – Renewable sources and 25 % of the Energy is imported in the form of oil and gas and only 10% of the total, is generated from other sources like solar power, wind power etc. Present modern structures are big energy consumers as they are consuming 40 % of the total energy in providing comfort conditions to the users, in from of heating and cooling,5 % in Building Construction, 20 % in transportation and 20 % in industrial process and 10 % in other processes. If we minimize this Heating and Cooling and lighting load of the building we can conserve huge amount of energy for the future. In history, buildings do not have artificial systems of cooling or heating. These buildings, especially in Hadoti Region which have Semi Arid Climatic conditions, are provided with Solar Passive Design Techniques that is the reason of comfort inside the buildings. So if we use some appropriate elements of these heritage structures, in our present age building design we can find some certain solution to energy crises. Present paper describes Various Solar Passive design techniques used in past, and the same could be used in present to reduce the consumption of energy.Keywords: energy conservation, Hadoti region, solar passive design techniques , semi - arid climatic condition
Procedia PDF Downloads 4771374 Microfluidic Method for Measuring Blood Viscosity
Authors: Eunseop Yeom
Abstract:
Many cardiovascular diseases, such as thrombosis and atherosclerosis, can change biochemical molecules in plasma and red blood cell. These alterations lead to excessive increase of blood viscosity contributing to peripheral vascular diseases. In this study, a simple microfluidic-based method is used to measure blood viscosity. Microfluidic device is composed of two parallel side channels and a bridge channel. To estimate blood viscosity, blood samples and reference fluid are separately delivered into each inlet of two parallel side channels using pumps. An interfacial line between blood samples and reference fluid occurs by blocking the outlet of one side-channel. Since width for this interfacial line is determined by pressure ratio between blood and reference flows, blood viscosity can be estimated by measuring width for this interfacial line. This microfluidic-based method can be used for evaluating variations in the viscosity of animal models with cardiovascular diseases under flow conditions.Keywords: blood viscosity, microfluidic chip, pressure, shear rate
Procedia PDF Downloads 3751373 Relationship of Internal Communication Channels Effecting to Job Satisfaction of Company Employees: in Rayong Province
Authors: Nititorn Ounpipat
Abstract:
The objective of this study was to find the relationship between internal communication and job satisfaction, and to find out the best communication channel to contact employees for a quality working within the operation or organizational rules. The sample size of 100% who were working as a shop floor level employee in the company. The study used the quantitative research method by distributing a structured questionnaire to collect data from 150 employees as the sample size. Inferential statistics and forward multiple regression analysis were used to analyze the results of this research. The result shows that communication channel correlated with job satisfaction. Each channel has a correlation with the satisfaction of working with the Department Board Information and All Employee / Weekly Meeting Relevance high. Since there is a correlation coefficient equal. 851 and. 840, respectively. Company Board Information, Memo, Letter, Leader, Supervisor, Friends and Email Relevance moderate as well.Keywords: internal communication channels, job satisfaction, personal feedback, Rayong province
Procedia PDF Downloads 2231372 The Dynamics of a Droplet Spreading on a Steel Surface
Authors: Evgeniya Orlova, Dmitriy Feoktistov, Geniy Kuznetsov
Abstract:
Spreading of a droplet over a solid substrate is a key phenomenon observed in the following engineering applications: thin film coating, oil extraction, inkjet printing, and spray cooling of heated surfaces. Droplet cooling systems are known to be more effective than film or rivulet cooling systems. It is caused by the greater evaporation surface area of droplets compared with the film of the same mass and wetting surface. And the greater surface area of droplets is connected with the curvature of the interface. Location of the droplets on the cooling surface influences on the heat transfer conditions. The close distance between the droplets provides intensive heat removal, but there is a possibility of their coalescence in the liquid film. The long distance leads to overheating of the local areas of the cooling surface and the occurrence of thermal stresses. To control the location of droplets is possible by changing the roughness, structure and chemical composition of the surface. Thus, control of spreading can be implemented. The most important characteristic of spreading of droplets on solid surfaces is a dynamic contact angle, which is a function of the contact line speed or capillary number. However, there is currently no universal equation, which would describe the relationship between these parameters. This paper presents the results of the experimental studies of water droplet spreading on metal substrates with different surface roughness. The effect of the droplet growth rate and the surface roughness on spreading characteristics was studied at low capillary numbers. The shadow method using high speed video cameras recording up to 10,000 frames per seconds was implemented. A droplet profile was analyzed by Axisymmetric Drop Shape Analyses techniques. According to change of the dynamic contact angle and the contact line speed three sequential spreading stages were observed: rapid increase in the dynamic contact angle; monotonous decrease in the contact angle and the contact line speed; and form of the equilibrium contact angle at constant contact line. At low droplet growth rate, the dynamic contact angle of the droplet spreading on the surfaces with the maximum roughness is found to increase throughout the spreading time. It is due to the fact that the friction force on such surfaces is significantly greater than the inertia force; and the contact line is pinned on microasperities of a relief. At high droplet growth rate the contact angle decreases during the second stage even on the surfaces with the maximum roughness, as in this case, the liquid does not fill the microcavities, and the droplet moves over the “air cushion”, i.e. the interface is a liquid/gas/solid system. Also at such growth rates pulsation of liquid flow was detected; and the droplet oscillates during the spreading. Thus, obtained results allow to conclude that it is possible to control spreading by using the surface roughness and the growth rate of droplets on surfaces as varied factors. Also, the research findings may be used for analyzing heat transfer in rivulet and drop cooling systems of high energy equipment.Keywords: contact line speed, droplet growth rate, dynamic contact angle, shadow system, spreading
Procedia PDF Downloads 3391371 Corrosion Behavior of Steels in Molten Salt Reactors
Authors: Jana Rejková, Marie Kudrnová
Abstract:
This paper deals with the research of materials for one of the types of reactors IV. generation - reactor with molten salts. One of the advantages of molten salts applied as a coolant in reactors is the ability to operate at relatively low pressures, as opposed to cooling with water or gases. Compared to liquid metal cooling, which also allows lower operating pressures, salt melts are less prone to chemical reactions. The service life of the construction materials used is limited by the operating temperatures of the reactor and the content of impurities in the salts. For the research of corrosion resistance, an experimental device was designed and assembled, enabling exposure at high temperatures without access to oxygen in a flowing atmosphere of inert gas. Nickel alloys Inconel 601, 617, and 625 were tested in a mixture of chloride salts LiCl – KCl (58,2 - 41,8 wt. %). The experiment showed high resistance of the materials used and based on the results and XPS analysis, other construction materials were proposed for the experiments.Keywords: molten salt, corrosion, nuclear reactor, nickel alloy
Procedia PDF Downloads 1681370 Energy System for Algerian Green Building in Tlemcen, North Africa
Authors: M. A. Boukli Hacene, N. E.Chabane Sari, A. Benzair
Abstract:
This article highlights a method for natural heating and cooling of systems in areas of moderate climate. Movement of air is generated inside a space by an underground piping system. In this paper, we discuss a feasibility study in Algeria of air-conditioning using a ground source heat pump (GSHP) with vertical mounting, coupled with a solar collector. This study consists of modeling ground temperature at different depths, for a clay soil in the city of Tlemcen. Our model is developed from the non-stationary heat equation for a homogeneous medium and takes into consideration the soil thermal diffusivity. It uses the daily ambient temperature during a typical year for the locality of Tlemcen. The study shows the feasibility of using a heating/cooling GSHP in the town of Tlemcen for the particular soil type; and indicates that the duration of air flow in the borehole has a major influence on the outgoing temperature drilling.Keywords: green building, heat pump, insulation, climate change
Procedia PDF Downloads 2231369 The Study of Climate Change Effects on the Performance of Thermal Power Plants in Iran
Authors: Masoud Soltani Hosseini, Fereshteh Rahmani, Mohammad Tajik Mansouri, Ali Zolghadr
Abstract:
Climate change is accompanied with ambient temperature increase and water accessibility limitation. The main objective of this paper is to investigate the effects of climate change on thermal power plants including gas turbines, steam and combined cycle power plants in Iran. For this purpose, the ambient temperature increase and water accessibility will be analyzed and their effects on power output and efficiency of thermal power plants will be determined. According to the results, the ambient temperature has high effect on steam power plants with indirect cooling system (Heller). The efficiency of this type of power plants decreases by 0.55 percent per 1oC ambient temperature increase. This amount is 0.52 and 0.2 percent for once-through and wet cooling systems, respectively. The decrease in power output covers a range of 0.2% to 0.65% for steam power plant with wet cooling system and gas turbines per 1oC air temperature increase. Based on the thermal power plants distribution in Iran and different scenarios of climate change, the total amount of power output decrease falls between 413 and 1661 MW due to ambient temperature increase. Another limitation incurred by climate change is water accessibility. In optimistic scenario, the power output of steam plants decreases by 1450 MW in dry and hot climate areas throughout next decades. The remaining scenarios indicate that the amount of decrease in power output would be by 4152 MW in highlands and cold climate. Therefore, it is necessary to consider appropriate solutions to overcome these limitations. Considering all the climate change effects together, the actual power output falls in range of 2465 and 7294 MW and efficiency loss covers the range of 0.12 to .56 % in different scenarios.Keywords: climate, change, thermal, power plants
Procedia PDF Downloads 871368 Analytical Solution for End Depth Ratio in Rectangular Channels
Authors: Abdulrahman Abdulrahman, Abir Abdulrahman
Abstract:
Free over-fall is an instrument for measuring discharge in open channels by measuring end depth. A comprehensive researchers investigated theoretically and experimentally brink phenomenon with various approaches for different cross-sectional shapes. Anderson's method, based on Boussinq's approximation and energy approach was used to derive a pressure distribution factor at end depth. Applying the one-dimensional momentum equation and the principles of limit slope analysis, a relevant analytical solution may be derived for brink depth ratio (EDR) in prismatic rectangular channel. Also relationships between end depth ratio and slope ratio for a given non-dimensional normal or critical depth with upstream supercritical flow regime are presented. Simple indirect procedure is used to estimate the end depth discharge ratio (EDD) for subcritical and supercritical flow using measured end depth. The comparison of this analysis with all previous theoretical and experimental studies showed an excellent agreement.Keywords: analytical solution, brink depth, end depth, flow measurement, free over fall, hydraulics, rectangular channel
Procedia PDF Downloads 1861367 A Study on the Shear-Induced Crystallization of Aliphatic-Aromatic Copolyester
Authors: Ramin Hosseinnezhad, Iurii Vozniak, Andrzej Galeski
Abstract:
Shear-induced crystallization, originated from orientation of chains along the flow direction, is an inevitable part of most polymer processing technologies. It plays a dominant role in determining the final product properties and is affected by many factors such as shear rate, cooling rate, total strain, etc. Investigation of the shear-induced crystallization process become of great importance for preparation of nanocomposite, which requires crystallization of nanofibrous sheared inclusions at higher temperatures. Thus, the effects of shear time, shear rate, and also thermal condition of cooling on crystallization of two aliphatic-aromatic copolyesters have been investigated. This was performed using Linkam optical shearing system (CSS450) for both Ecoflex® F Blend C1200 produced by BASF and synthesized copolyester of butylene terephthalate and a mixture of butylene esters: adipate, succinate, and glutarate, (PBASGT), containing 60% of aromatic comonomer. Crystallization kinetics of these biodegradable copolyesters was studied at two different conditions of shearing. First, sample with a thickness of 60µm was heated to 60˚C above its melting point and subsequently subjected to different shear rates (100–800 sec-1) while cooling with specific rates. Second, the same type of sample was cooled down when shearing at constant temperature was finished. The intensity of transmitted depolarized light, recorded by a camera attached to the optical microscope, was used as a measure to follow the crystallization. Temperature dependencies of conversion degree of samples during cooling were collected and used to determine the half-temperature (Th), at which 50% conversion degree was reached. Shearing ecoflex films for 45 seconds with a shear rate of 100 sec-1 resulted in significant increase of Th from 56˚C to 70˚C. Moreover, the temperature range for the transition of molten samples to crystallized state decreased from 42˚C to 20˚C. Comparatively low shift of 10˚C in Th towards higher temperature was observed for PBASGT films at shear rate of 600 sec-1 for 45 seconds. However, insufficient melt flow strength and non-laminar flow due to Taylor vortices was a hindrance to reach more elevated Th at very high shear rates (600–800 sec-1). The shift in Th was smaller for the samples sheared at a constant temperature and subsequently cooled down. This may be attributed to the longer time gap between cessation of shearing and the onset of crystallization. The longer this time gap, the more possibility for crystal nucleus to re-melt at temperatures above Tm and for polymer chains to recoil and relax. It is found that the crystallization temperature, crystallization induction time and spherulite growth of aliphatic-aromatic copolyesters are dramatically influenced by both the cooling rate and the shear imposed during the process.Keywords: induced crystallization, shear rate, aliphatic-aromatic copolyester, ecoflex
Procedia PDF Downloads 4521366 Biaxial Buckling of Single Layer Graphene Sheet Based on Nonlocal Plate Model and Molecular Dynamics Simulation
Authors: R. Pilafkan, M. Kaffash Irzarahimi, S. F. Asbaghian Namin
Abstract:
The biaxial buckling behavior of single-layered graphene sheets (SLGSs) is studied in the present work. To consider the size-effects in the analysis, Eringen’s nonlocal elasticity equations are incorporated into classical plate theory (CLPT). A Generalized Differential Quadrature Method (GDQM) approach is utilized and numerical solutions for the critical buckling loads are obtained. Then, molecular dynamics (MD) simulations are performed for a series of zigzag SLGSs with different side-lengths and with various boundary conditions, the results of which are matched with those obtained by the nonlocal plate model to numerical the appropriate values of nonlocal parameter relevant to each type of boundary conditions.Keywords: biaxial buckling, single-layered graphene sheets, nonlocal elasticity, molecular dynamics simulation, classical plate theory
Procedia PDF Downloads 2781365 Consideration of Failed Fuel Detector Location through Computational Flow Dynamics Analysis on Primary Cooling System Flow with Two Outlets
Authors: Sanghoon Bae, Hanju Cha
Abstract:
Failed fuel detector (FFD) in research reactor is a very crucial instrument to detect the anomaly from failed fuels in the early stage around primary cooling system (PCS) outlet prior to the decay tank. FFD is considered as a mandatory sensor to ensure the integrity of fuel assemblies and mitigate the consequence from a failed fuel accident. For the effective function of FFD, the location of them should be determined by contemplating the effect from coolant flow around two outlets. For this, the analysis on computational flow dynamics (CFD) should be first performed how the coolant outlet flow including radioactive materials from failed fuels are mixed and discharged through the outlet plenum within certain seconds. The analysis result shows that the outlet flow is well mixed regardless of the position of failed fuel and ultimately illustrates the effect of detector location.Keywords: computational flow dynamics (CFD), failed fuel detector (FFD), fresh fuel assembly (FFA), spent fuel assembly (SFA)
Procedia PDF Downloads 2431364 Braiding Channel Pattern Due to Variation of Discharge
Authors: Satish Kumar, Spandan Sahu, Sarjati Sahoo, K. K. Khatua
Abstract:
An experimental investigation has been carried out in a tilting flume of 2 m wide, 13 m long, and 0.3 m deep to study the effect of flow on the formation of braided channel pattern. Sediment flow is recirculated through the flume, which passes from the headgate to the sediment/water collecting tank through the tailgate. Further, without altering the geometry of the sand bed channel, the discharge is varied to study the effect of the formation of the braided pattern with time. Then the flow rate is varied to study the effect of flow on the formation of the braided pattern. Sediment transport rate is highly variable and was found to be a nonlinear function of flow rate, aspect ratio, longitudinal slope, and time. Total braided intensity (BIT) for each discharge case is found to be more than the active braided intensity (BIA). Both the parameters first increase and then decrease as the time progresses following a similar pattern for all the observed discharge cases. When the flow is increased, the movement of sediment also increases since the active braided intensity is found to adjust quickly. The measurement of velocity and boundary shear helps to study the erosion and sedimentation processes in the channel and formation of small meandering channels and then the braided channel for different discharge conditions of a sediment river. Due to regime properties of rivers, both total braided Intensity and active braided intensity become stable for a given channel and flow conditions. In the present case, the trend of the ratio of BIA to BIT is found to be asymptotic against the time with a value of 0.4. After the particular time elapses off the flow, new small channels are also found to be formed with changes in the sinuosity of the active channels, thus forming the braided network. This is due to the continuous erosion and sedimentation processes occurring for the flow process for the flow and sediment conditions.Keywords: active braided intensity, bed load, sediment transport, shear stress, total braided intensity
Procedia PDF Downloads 1331363 The Channels through Which Energy Tax Can Affect Economic Growth: Panel Data Analysis
Authors: Mahmoud Hassan, Walid Oueslati, Damien Rousseliere
Abstract:
This paper explores the channels through which energy taxes may affect economic growth, using a simultaneous equations model for a balanced panel data of 31 OECD countries over the 1994–2013 period. The empirical results reveal a negative impact of energy taxes on physical investment in the short and long term. This impact is negatively sensitive to the existence and level of public debt. Additionally, the results show that energy taxes have an indirect effect on human capital through their impact on polluting emissions. The taxes on energy products are able to reduce both the flux and the stock of polluting emissions that have a negative impact on human capital skills in the short and long term. Finally, we found that energy taxes could encourage eco-innovation in the short and long term.Keywords: energy taxes, economic growth, public debt, simultaneous equations model, multiple imputation
Procedia PDF Downloads 2341362 Numerical Analysis of Laminar Reflux Condensation from Gas-Vapour Mixtures in Vertical Parallel Plate Channels
Authors: Foad Hassaninejadafarahani, Scott Ormiston
Abstract:
Reflux condensation occurs in a vertical channels and tubes when there is an upward core flow of vapor (or gas-vapor mixture) and a downward flow of the liquid film. The understanding of this condensation configuration is crucial in the design of reflux condensers, distillation columns, and in loss-of-coolant safety analyses in nuclear power plant steam generators. The unique feature of this flow is the upward flow of the vapor-gas mixture (or pure vapor) that retards the liquid flow via shear at the liquid-mixture interface. The present model solves the full, elliptic governing equations in both the film and the gas-vapor core flow. The computational mesh is non-orthogonal and adapts dynamically the phase interface, thus produces sharp and accurate interface. Shear forces and heat and mass transfer at the interface are accounted for fundamentally. This modeling is a big step ahead of current capabilities by removing the limitations of previous reflux condensation models which inherently cannot account for the detailed local balances of shear, mass, and heat transfer at the interface. Discretisation has been done based on a finite volume method and a co-located variable storage scheme. An in-house computer code was developed to implement the numerical solution scheme. Detailed results are presented for laminar reflux condensation from steam-air mixtures flowing in vertical parallel plate channels. The results include velocity and pressure profiles, as well as axial variations of film thickness, Nusselt number and interface gas mass fraction.Keywords: Reflux, Condensation, CFD-Two Phase, Nusselt number
Procedia PDF Downloads 3681361 Fuzzy Control of Thermally Isolated Greenhouse Building by Utilizing Underground Heat Exchanger and Outside Weather Conditions
Authors: Raghad Alhusari, Farag Omar, Moustafa Fadel
Abstract:
A traditional greenhouse is a metal frame agricultural building used for cultivation plants in a controlled environment isolated from external climatic changes. Using greenhouses in agriculture is an efficient way to reduce the water consumption, where agriculture field is considered the biggest water consumer world widely. Controlling greenhouse environment yields better productivity of plants but demands an increase of electric power. Although various control approaches have been used towards greenhouse automation, most of them are applied to traditional greenhouses with ventilation fans and/or evaporation cooling system. Such approaches are still demanding high energy and water consumption. The aim of this research is to develop a fuzzy control system that minimizes water and energy consumption by utilizing outside weather conditions and underground heat exchanger to maintain the optimum climate of the greenhouse. The proposed control system is implemented on an experimental model of thermally isolated greenhouse structure with dimensions of 6x5x2.8 meters. It uses fans for extracting heat from the ground heat exchanger system, motors for automatic open/close of the greenhouse windows and LED as lighting system. The controller is integrated also with environmental condition sensors. It was found that using the air-to-air horizontal ground heat exchanger with 90 mm diameter and 2 mm thickness placed 2.5 m below the ground surface results in decreasing the greenhouse temperature of 3.28 ˚C which saves around 3 kW of consumed energy. It also eliminated the water consumption needed in evaporation cooling systems which are traditionally used for cooling the greenhouse environment.Keywords: automation, earth-to-air heat exchangers, fuzzy control, greenhouse, sustainable buildings
Procedia PDF Downloads 1331360 Optimization of Supercritical CO2 Power Cycle for Waste Heat Recovery from Gas Turbine with Respect to Cooling Condition
Authors: Young Min Kim, Jeong Lak Sohn, Eui Soo Yoon
Abstract:
This study describes the optimization of supercritical carbon dioxide (S-CO2) power cycle for recovering waste heat from a gas turbine. An S-CO2 cycle that recovers heat from small industrial and aeroderivative gas turbines can outperform a steam-bottoming cycle despite its simplicity and compactness. In using S-CO2 power cycles for waste heat recovery, a split cycle was studied to maximize the net output power by incorporating the utilization efficiency of the waste heat (lowering the temperature of the exhaust gas through the heater) along with the thermal efficiency of the cycle (minimizing the temperature difference for the heat transfer, exergy loss). The cooling condition of the S-CO2 WHR system has a great impact on the performance and the optimum low pressure of the system. Furthermore, the optimum high pressure of the S-CO2 WHR systems for the maximum power from the given heat sources is dependent on the temperature of the waste heat source.Keywords: exergy loss, gas turbine, optimization, supercritical CO2 power cycle, split cycle, waste heat recovery
Procedia PDF Downloads 3521359 Optimization of Geometric Parameters of Microfluidic Channels for Flow-Based Studies
Authors: Parth Gupta, Ujjawal Singh, Shashank Kumar, Mansi Chandra, Arnab Sarkar
Abstract:
Microfluidic devices have emerged as indispensable tools across various scientific disciplines, offering precise control and manipulation of fluids at the microscale. Their efficacy in flow-based research, spanning engineering, chemistry, and biology, relies heavily on the geometric design of microfluidic channels. This work introduces a novel approach to optimise these channels through Response Surface Methodology (RSM), departing from the conventional practice of addressing one parameter at a time. Traditionally, optimising microfluidic channels involved isolated adjustments to individual parameters, limiting the comprehensive understanding of their combined effects. In contrast, our approach considers the simultaneous impact of multiple parameters, employing RSM to efficiently explore the complex design space. The outcome is an innovative microfluidic channel that consumes an optimal sample volume and minimises flow time, enhancing overall efficiency. The relevance of geometric parameter optimization in microfluidic channels extends significantly in biomedical engineering. The flow characteristics of porous materials within these channels depend on many factors, including fluid viscosity, environmental conditions (such as temperature and humidity), and specific design parameters like sample volume, channel width, channel length, and substrate porosity. This intricate interplay directly influences the performance and efficacy of microfluidic devices, which, if not optimized, can lead to increased costs and errors in disease testing and analysis. In the context of biomedical applications, the proposed approach addresses the critical need for precision in fluid flow. it mitigate manufacturing costs associated with trial-and-error methodologies by optimising multiple geometric parameters concurrently. The resulting microfluidic channels offer enhanced performance and contribute to a streamlined, cost-effective process for testing and analyzing diseases. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing.Keywords: microfluidic device, minitab, statistical optimization, response surface methodology
Procedia PDF Downloads 761358 Quantitative Changes in Biofilms of a Seawater Tubular Heat Exchanger Subjected to Electromagnetic Fields Treatment
Authors: Sergio Garcia, Alfredo Trueba, Luis M. Vega, Ernesto Madariaga
Abstract:
Biofilms adhesion is one of the more important cost of industries plants on wide world, which use to water for cooling heat exchangers or are in contact with water. This study evaluated the effect of Electromagnetic Fields on biofilms in tubular heat exchangers using seawater cooling. The results showed an up to 40% reduction of the biofilm thickness compared to the untreated control tubes. The presence of organic matter was reduced by 75%, the inorganic mater was reduced by 87%, and 53% of the dissolved solids were eliminated. The biofilm thermal conductivity in the treated tube was reduced by 53% as compared to the control tube. The hardness in the effluent during the experimental period was decreased by 18% in the treated tubes compared with control tubes. Our results show that the electromagnetic fields treatment has a great potential in the process of removing biofilms in heat exchanger.Keywords: biofilm, heat exchanger, electromagnetic fields, seawater
Procedia PDF Downloads 1931357 Numerical Investigation of Flow Boiling within Micro-Channels in the Slug-Plug Flow Regime
Authors: Anastasios Georgoulas, Manolia Andredaki, Marco Marengo
Abstract:
The present paper investigates the hydrodynamics and heat transfer characteristics of slug-plug flows under saturated flow boiling conditions within circular micro-channels. Numerical simulations are carried out, using an enhanced version of the open-source CFD-based solver ‘interFoam’ of OpenFOAM CFD Toolbox. The proposed user-defined solver is based in the Volume Of Fluid (VOF) method for interface advection, and the mentioned enhancements include the implementation of a smoothing process for spurious current reduction, the coupling with heat transfer and phase change as well as the incorporation of conjugate heat transfer to account for transient solid conduction. In all of the considered cases in the present paper, a single phase simulation is initially conducted until a quasi-steady state is reached with respect to the hydrodynamic and thermal boundary layer development. Then, a predefined and constant frequency of successive vapour bubbles is patched upstream at a certain distance from the channel inlet. The proposed numerical simulation set-up can capture the main hydrodynamic and heat transfer characteristics of slug-plug flow regimes within circular micro-channels. In more detail, the present investigation is focused on exploring the interaction between subsequent vapour slugs with respect to their generation frequency, the hydrodynamic characteristics of the liquid film between the generated vapour slugs and the channel wall as well as of the liquid plug between two subsequent vapour slugs. The proposed investigation is carried out for the 3 different working fluids and three different values of applied heat flux in the heated part of the considered microchannel. The post-processing and analysis of the results indicate that the dynamics of the evolving bubbles in each case are influenced by both the upstream and downstream bubbles in the generated sequence. In each case a slip velocity between the vapour bubbles and the liquid slugs is evident. In most cases interfacial waves appear close to the bubble tail that significantly reduce the liquid film thickness. Finally, in accordance with previous investigations vortices that are identified in the liquid slugs between two subsequent vapour bubbles can significantly enhance the convection heat transfer between the liquid regions and the heated channel walls. The overall results of the present investigation can be used to enhance the present understanding by providing better insight of the complex, underpinned heat transfer mechanisms in saturated boiling within micro-channels in the slug-plug flow regime.Keywords: slug-plug flow regime, micro-channels, VOF method, OpenFOAM
Procedia PDF Downloads 2691356 A Destination Marketing Study on Capitalising on the Cultural Link between Ireland and North America Using Social Media
Authors: Colm Barcoe, Garvan Whelan
Abstract:
This study examines how a destination marketing organisation can use social media channels to engage the interests of the US and Canadian markets in a way that maximises the number of visits (and revisits) to Ireland. The research reveals how the cultural link between Ireland and North America is exploited through the use of social media strategies. The findings are based on quantitative and qualitative empirical data obtained through a survey of North American holidaymakers in the pre, during and post trip phases coupled with in-depth interviews of 20 industry experts who are responsible for the implementation of relationship marketing strategies for this segment. The qualitative data was analysed using Netnography in order to provide insights into the effectiveness of various social media channels in developing cultural links between Ireland and North American tourists. The findings of this investigation will extend an under-researched body of literature pertaining to Ireland and North America. The empirical evidence of this study will be of value to both academics and industry practitioners.Keywords: Ireland, marketing, North America, relationship, strategies
Procedia PDF Downloads 1871355 Compact LWIR Borescope Sensor for Thermal Imaging of 2D Surface Temperature in Gas-Turbine Engines
Authors: Andy Zhang, Awnik Roy, Trevor B. Chen, Bibik Oleksandar, Subodh Adhikari, Paul S. Hsu
Abstract:
The durability of a combustor in gas-turbine engines is a strong function of its component temperatures and requires good control of these temperatures. Since the temperature of combustion gases frequently exceeds the melting point of the combustion liner walls, an efficient air-cooling system with optimized flow rates of cooling air is significantly important to elongate the lifetime of liner walls. To determine the effectiveness of the air-cooling system, accurate two-dimensional (2D) surface temperature measurement of combustor liner walls is crucial for advanced engine development. Traditional diagnostic techniques for temperature measurement in this application include the rmocouples, thermal wall paints, pyrometry, and phosphors. They have shown some disadvantages, including being intrusive and affecting local flame/flow dynamics, potential flame quenching, and physical damages to instrumentation due to harsh environments inside the combustor and strong optical interference from strong combustion emission in UV-Mid IR wavelength. To overcome these drawbacks, a compact and small borescope long-wave-infrared (LWIR) sensor is developed to achieve 2D high-spatial resolution, high-fidelity thermal imaging of 2D surface temperature in gas-turbine engines, providing the desired engine component temperature distribution. The compactLWIRborescope sensor makes it feasible to promote the durability of a combustor in gas-turbine engines and, furthermore, to develop more advanced gas-turbine engines.Keywords: borescope, engine, low-wave-infrared, sensor
Procedia PDF Downloads 1421354 Effect of Green Roofs to Prevent the Dissipation of Energy in Mountainous Areas
Authors: Mina Ganji Morad, Maziar Azadisoleimanieh, Sina Ganji Morad
Abstract:
A green roof is formed by green plants alive and has many positive impacts in the regional climatic, as well as indoor. Green roof system to prevent solar radiation plays a role in the cooling space. The cooling is done by reducing thermal fluctuations on the exterior of the roof and by increasing the roof heat capacity which cause to keep the space under the roof cool in the summer and heating rate increases during the winter. A roof garden is one of the recommended ways to reduce energy consumption in large cities. Despite the scale of the city green roofs have effective functions, such as beautiful view of city and decontaminating the urban landscape and reduce mental stress, and in an exchange of energy and heat from outside to inside spaces. This article is based on a review of 20 articles and 10 books and valid survey results on the positive effects of green roofs to prevent energy waste in the building. According to these publications, three of the conventional roof, green roof typical and green roof with certain administrative details (layers of glass) and the use of resistant plants and shrubs have been analyzed and compared their heat transfer. The results of these studies showed that one of the best green roof systems for mountainous climate is tree and shrub system that in addition to being resistant to climate change in mountainous regions, will benefit from the other advantages of green roof. Due to the severity of climate change in mountainous areas it is essential to prevent the waste of buildings heating and cooling energy. Proper climate design can greatly help to reduce energy.Keywords: green roof, heat transfer, reducing energy consumption, mountainous areas, sustainable architecture
Procedia PDF Downloads 4021353 The Hair Growth Effects of Undariopsis peterseniana
Authors: Jung-Il Kang, Jeon Eon Park, Yu-Jin Moon, Young-Seok Ahn, Eun-Sook Yoo, Hee-Kyoung Kang
Abstract:
This study was conducted to evaluate the effect of Undariopsis peterseniana, a seaweed native to Jeju Island, Korea, on the growth of hair. The dermal papilla cells (DPCs) have known to regulate hair growth cycle and length of hair follicle through interact with epithelial cells. When immortalized vibrissa DPCs were treated with the U. peterseniana extract, the U. peterseniana extract significantly increased the proliferation of DPCs. The effect of U. peterseniana extract on the growth of vibrissa follicles was also examined. U. peterseniana extract significantly increased the hair-fiber lengths of the vibrissa follicles. Hair loss is partly caused by dihydrotestosterone (DHT) binding to androgen receptor in hair follicles, and the inhibition of 5α-reductase activity can prevent hair loss through the decrease of DHT level. The U. peterseniana extract inhibited 5α-reductase activity. Minoxidil, a potent hair-growth agent, can induce proliferation in NIH3T3 fibroblasts by opening KATP channels. We thus examined the proliferative effects of U. peterseniana extract in NIH3T3 fibroblasts. U. peterseniana extract significantly increased the proliferation of NIH3T3 fibroblasts. Tetraethylammonium chloride (TEA), a K+ channel blocker, inhibited U. peterseniana-induced proliferation in NIH3T3 fibroblasts. These results suggest that U. peterseniana could have the potential to treat alopecia through the proliferation of DPCs, the inhibition of 5α-reductase activity and the opening of KATP channels. [Acknowledgement] This research was supported by The Leading Human Resource Training Program of Regional Neo industry through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and future Planning (2016H1D5A1908786).Keywords: hair growth, Undariopsis peterseniana, vibrissa follicles, dermal papilla cells, 5α-reductase, KATP channels
Procedia PDF Downloads 3011352 Steady State Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates
Authors: Djalal Hamed
Abstract:
The aim of this paper is to perform an analytic solution of steady state natural convection in a narrow rectangular channel between two vertical parallel MTR-type fuel plates, imposed under a cosine shape heat flux to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not be reach the specific safety limits (90 °C). For this purpose, a simple computer program is developed to determine the principal parameter related to the nuclear core safety such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor power. Our results are validated throughout a comparison against the results of another published work, which is considered like a reference of this study.Keywords: buoyancy force, friction force, natural convection, thermal hydraulic analysis, vertical heated rectangular channel
Procedia PDF Downloads 3181351 Parameter and Lose Effect Analysis of Beta Stirling Cycle Refrigerating Machine
Authors: Muluken Z. Getie, Francois Lanzetta, Sylvie Begot, Bimrew T. Admassu
Abstract:
This study is aimed at the numerical analysis of the effects of phase angle and losses (shuttle heat loss and gas leakage to the crankcase) that could have an impact on the pressure and temperature of working fluid for a β-type Stirling cycle refrigerating machine. First, the developed numerical model incorporates into the ideal adiabatic analysis, the shuttle heat transfer (heat loss from compression space to expansion space), and gas leakage from the working space to the buffer space into the crankcase. The other losses that may not have a direct effect on the temperature and pressure of working fluid are simply incorporated in a simple analysis. The model is then validated by reversing the model to the engine model and compared with other literature results using (GPU-3) engine. After validating the model with other engine model and experiment results, analysis of the effect of phase angle, shuttle heat lose and gas leakage on temperature, pressure, and performance (power requirement, cooling capacity and coefficient of performance) of refrigerating machine considering the FEMTO 60 Stirling engine as a case study have been conducted. Shuttle heat loss has a greater effect on the temperature of working gas; gas leakage to the crankcase has more effect on the pressure of working spaces and hence both have a considerable impact on the performance of the Stirling cycle refrigerating machine. The optimum coefficient of performance exists between phase angles of 900-950, and optimum cooling capacity could be found between phase angles of 950-980.Keywords: beta configuration, engine model, moderate cooling, stirling refrigerator, and validation
Procedia PDF Downloads 1071350 The Contribution of Lower Visual Channels and Evolutionary Origin of the Tunnel Effect
Authors: Shai Gabay
Abstract:
The tunnel effect describes the phenomenon where a moving object seems to persist even when temporarily hidden from view. Numerous studies indicate that humans, infants, and nonhuman primates possess object persistence, relying on spatiotemporal cues to track objects that are dynamically occluded. While this ability is associated with neural activity in the cerebral neocortex of humans and mammals, the role of subcortical mechanisms remains ambiguous. In our current investigation, we explore the functional contribution of monocular aspects of the visual system, predominantly subcortical, to the representation of occluded objects. This is achieved by manipulating whether the reappearance of an object occurs in the same or different eye from its disappearance. Additionally, we employ Archerfish, renowned for their precision in dislodging insect prey with water jets, as a phylogenetic model to probe the evolutionary origins of the tunnel effect. Our findings reveal the active involvement of subcortical structures in the mental representation of occluded objects, a process evident even in species that do not possess cortical tissue.Keywords: archerfish, tunnel effect, mental representations, monocular channels, subcortical structures
Procedia PDF Downloads 50