Search results for: tomato yield prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4694

Search results for: tomato yield prediction

4334 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction

Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé

Abstract:

One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.

Keywords: input variable disposition, machine learning, optimization, performance, time series prediction

Procedia PDF Downloads 109
4333 Seismic Hazard Prediction Using Seismic Bumps: Artificial Neural Network Technique

Authors: Belkacem Selma, Boumediene Selma, Tourkia Guerzou, Abbes Labdelli

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. The Earthquakes prediction to prevent the loss of human lives and even property damage is an important factor; that is why it is crucial to develop techniques for predicting this natural disaster. This present study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 10^4J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines has been analyzed. The results obtained show that the ANN with high accuracy was able to predict earthquake parameters; the classification accuracy through neural networks is more than 94%, and that the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: earthquake prediction, ANN, seismic bumps

Procedia PDF Downloads 126
4332 Housing Price Prediction Using Machine Learning Algorithms: The Case of Melbourne City, Australia

Authors: The Danh Phan

Abstract:

House price forecasting is a main topic in the real estate market research. Effective house price prediction models could not only allow home buyers and real estate agents to make better data-driven decisions but may also be beneficial for the property policymaking process. This study investigates the housing market by using machine learning techniques to analyze real historical house sale transactions in Australia. It seeks useful models which could be deployed as an application for house buyers and sellers. Data analytics show a high discrepancy between the house price in the most expensive suburbs and the most affordable suburbs in the city of Melbourne. In addition, experiments demonstrate that the combination of Stepwise and Support Vector Machine (SVM), based on the Mean Squared Error (MSE) measurement, consistently outperforms other models in terms of prediction accuracy.

Keywords: house price prediction, regression trees, neural network, support vector machine, stepwise

Procedia PDF Downloads 230
4331 Evaluation of Commercial Herbicides for Weed Control and Yield under Direct Dry Seeded Rice Cultivation System in Pakistan

Authors: Sanaullah Jalil, Abid Majeed, Syed Haider Abbas

Abstract:

Direct dry seeded rice cultivation system is an emerging production technology in Pakistan. Weeds are a major constraint to the success of direct dry seeded rice (DDSR). Studies were carried out for two years during 2015 and 2016 to evaluate the performance of applications of pre-emergence herbicides (Top Max @ 2.25 lit/ha, Click @1.5 lit/ha and Pendimethaline @ 1.25 lit/ha) and post-emergence herbicides (Clover @ 200 g/ha, Pyranex Gold @ 250 g/ha, Basagran @ 2.50 lit/ha, Sunstar Gold @ 50 g/ha and Wardan @ 1.25 lit/ha) at rice research field area of National Agriculture Research Center (NARC), Islamabad. The experiments were laid out in Randomized Complete Block Design (RCBD) with three replications. All evaluated herbicides reduced weed density and biomass by a significant amount. The net plot size was 2.5 x 5 m with 10 rows. Basmati-385 was used as test variety of rice. Data indicated that Top Max and Click provided best weed control efficiency but suppressed the germination of rice seed which causes the lowest grain yield production (680.6 kg/ha and 314.5 kg/ha respectively). A weedy check plot contributed 524.7 kg/ha paddy yield with highest weed density. Pyranex Gold provided better weed control efficiency and contributed to significantly higher paddy yield 5116.6 kg/ha than that of all other herbicide applications followed by the Clover which give paddy yield 4241.7 kg/ha. The results of our study suggest that pre-emergence herbicides provided best weed control but not fit for direct dry seeded rice (DDSR) cultivation system, and therefore post-emergence herbicides (Pyranex Gold and Clover) can be suggested for weed control and higher yield.

Keywords: pyranex gold, clover, direct dry seeded rice (DDSR), yield

Procedia PDF Downloads 261
4330 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.

Keywords: feature extraction, heart rate variability, hypertension, residual networks

Procedia PDF Downloads 105
4329 The Cardiac Diagnostic Prediction Applied to a Designed Holter

Authors: Leonardo Juan Ramírez López, Javier Oswaldo Rodriguez Velasquez

Abstract:

We have designed a Holter that measures the heart´s activity for over 24 hours, implemented a prediction methodology, and generate alarms as well as indicators to patients and treating physicians. Various diagnostic advances have been developed in clinical cardiology thanks to Holter implementation; however, their interpretation has largely been conditioned to clinical analysis and measurements adjusted to diverse population characteristics, thus turning it into a subjective examination. This, however, requires vast population studies to be validated that, in turn, have not achieved the ultimate goal: mortality prediction. Given this context, our Insight Research Group developed a mathematical methodology that assesses cardiac dynamics through entropy and probability, creating a numerical and geometrical attractor which allows quantifying the normalcy of chronic and acute disease as well as the evolution between such states, and our Tigum Research Group developed a holter device with 12 channels and advanced computer software. This has been shown in different contexts with 100% sensitivity and specificity results.

Keywords: attractor , cardiac, entropy, holter, mathematical , prediction

Procedia PDF Downloads 169
4328 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework

Authors: Junyu Chen, Peng Xu

Abstract:

In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.

Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus

Procedia PDF Downloads 28
4327 Effect of Deficit Irrigation on Barley Yield and Water Productivity through Field Experiment and Modeling at Koga Irrigation Scheme, Amhara Region, Ethiopia

Authors: Bekalu Melis Alehegn, Dagnenet Sultan Alemu

Abstract:

The insufficiency of water is the most severe restraint for the expansion of agriculture in arid and semi-arid areas. An important strategy for increasing water productivity and improving water productivity deficit irrigation at different growth stages is important to advance the yield and Water Productivity of barley in water scarce areas. A field experiment was conducted at the Koga irrigation scheme in Ethiopia to examine barley yield response to different irrigation regimes and validate the aqua crop model. The experimental setup comprised six randomized treatments (T) with three replications for one irrigation season because of financial limitations. The irrigation regimes were selected 100%, 75%, and 50% application levels in different growth stages of gross irrigation requirements using trial and error in order to select the optimal water application level. The treatments were: no stress at all (T1), 25% stressed during all crop stages (T2), 50% stressed at all stages (T3), 50% stressed at the development stage (T4), 50% stressed at mid-stage (T5) and 50% stress at initial and late season (T6). The agronomic parameters, including canopy cover, biomass, and grain yield, were collected to compare the ground-based crop yield and the aqua crop model. The results showed that the initial and late stages and stress 25% through the whole season were the right time for practice deficit irrigation without significant yield reduction. The highest (2.62kg/m³) and the lowest (2.03 kg/m³) water productivity were found under T3 and T4, respectively. The stress of 50% at the mid-growth stage and stress 50% of the full irrigation water requirement at all growth stages significantly (α=5%) affected the canopy expansion, biomass and yield production. The aqua Crop model performed well in simulating the yield of barley for most of the treatments (R2 = 0.84 and RMSE = 0.7 t ha–¹).

Keywords: aqua crop, barley, deficit irrigation, irrigation regimes, water productivity

Procedia PDF Downloads 26
4326 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph

Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.

Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction

Procedia PDF Downloads 425
4325 Using Neural Networks for Click Prediction of Sponsored Search

Authors: Afroze Ibrahim Baqapuri, Ilya Trofimov

Abstract:

Sponsored search is a multi-billion dollar industry and makes up a major source of revenue for search engines (SE). Click-through-rate (CTR) estimation plays a crucial role for ads selection, and greatly affects the SE revenue, advertiser traffic and user experience. We propose a novel architecture of solving CTR prediction problem by combining artificial neural networks (ANN) with decision trees. First, we compare ANN with respect to other popular machine learning models being used for this task. Then we go on to combine ANN with MatrixNet (proprietary implementation of boosted trees) and evaluate the performance of the system as a whole. The results show that our approach provides a significant improvement over existing models.

Keywords: neural networks, sponsored search, web advertisement, click prediction, click-through rate

Procedia PDF Downloads 572
4324 Combined Application of Rice-Straw Biochar and Poultry Manure Promotes Nutrient Uptake and Yield of Capsicum Frutescens

Authors: Fawibe O. O., Mustafa A. A., Oyelakin A. S., Dada O. A., Ojo E. S.

Abstract:

Field experiment was carried out during the cropping season of 2021 to examine the influence of the sole or combined application of rice-straw biochar and poultry manure on yield, nutrient uptake, and physiological attributes of Capsicum frutescens. The experiment was a randomized complete block design with five replicates. Treatments were 10 t/ha biochar (BC), 5 t/ha biochar + 5 t/ha poultry manure (BC+PM), 10 t/ha poultry manure (PM), and no amendment as the control (NA ). Parameters determined were fruit yield, aboveground biomass, macro and micro nutrients in leaves, antinutrients content, and pigments (chlorophyll a, chlorophyll b, and carotenoids) concentration. Data were analysed with one-way analysis of variance, while means were separated using Duncan’s Multiple Range Test at p<0.05. Soil amended with PM increased the nitrogen content of C. frutescens leaves by 40.9%, while polyphenol and phytic acid were reduced by 20.5% and 29.2%, respectively, compared with NA. Moreover, PM increased chlorophyll a and chlorophyll b by 91.9% and 16.4%, whereas proline was reduced by 31.3% compared with NA. However, PM and BC+PM had comparable influence on pigments, nutrients and antinutrients contents of C. frutescens. BC+PM significantly increased yield and aboveground biomass of C. frutescens by 52.9% and 99.2%, respectively, compared with NA. BC had no significant influence on the yield and nutrient uptake of C. frutescens compared with NA. In conclusion, sole application of poultry manure or combined with rice-straw biochar increased yield and nutrients availability in the leaves of C. frutescens.

Keywords: capsicum frutescens, biochar, nutrient uptake, poultry manure, organic amendment

Procedia PDF Downloads 101
4323 Residual Life Prediction for a System Subject to Condition Monitoring and Two Failure Modes

Authors: Akram Khaleghei, Ghosheh Balagh, Viliam Makis

Abstract:

In this paper, we investigate the residual life prediction problem for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model with unknown parameters. The parameter estimation procedure based on an EM algorithm is developed and the formulas for the conditional reliability function and the mean residual life are derived, illustrated by a numerical example.

Keywords: partially observable system, hidden Markov model, competing risks, residual life prediction

Procedia PDF Downloads 415
4322 Biochemical and Antiviral Study of Peptides Isolated from Amaranthus hypochondriacus on Tomato Yellow Leaf Curl Virus Replication

Authors: José Silvestre Mendoza Figueroa, Anders Kvarnheden, Jesús Méndez Lozano, Edgar Antonio Rodríguez Negrete, Manuel Soriano García

Abstract:

Agroindustrial plants such as cereals and pseudo cereals offer a substantial source of biomacromolecules, as they contain large amounts per tissue-gram of proteins, polysaccharides and lipids in comparison with other plants. In particular, Amaranthus hypochondriacus seeds have high levels of proteins in comparison with other cereal and pseudo cereal species, which makes the plant a good source of bioactive molecules such as peptides. Geminiviruses are one principal class of pathogens that causes important economic losses in crops, affecting directly the development and production of the plant. One such virus is the Tomato yellow leaf curl virus (TYLCV), which affects mainly Solanacea family plants such as tomato species. The symptoms of the disease are curling of leaves, chlorosis, dwarfing and floral abortion. The aim of this work was to get peptides derived from enzymatic hydrolysis of globulins and albumins from amaranth seeds with specific recognition of the replication origin in the TYLCV genome, and to test the antiviral activity on host plants with the idea to generate a direct control of this viral infection. Globulins and albumins from amaranth were extracted, the fraction was enzymatically digested with papain, and the aromatic peptides fraction was selected for further purification. Six peptides were tested against the replication origin (OR) using affinity assays, surface resonance plasmon and fluorescent titration, and two of these peptides showed high affinity values to the replication origin of the virus, dissociation constant values were calculated and showed specific interaction between the peptide Ampep1 and the OR. An in vitro replication test of the total TYLCV DNA was performed, in which the peptide AmPep1 was added in different concentrations to the system reaction, which resulted in a decrease of viral DNA synthesis when the peptide concentration increased. Also, we showed that the peptide can decrease the complementary DNA chain of the virus in Nicotiana benthamiana leaves, confirming that the peptide binds to the OR and that its expected mechanism of action is to decrease the replication rate of the viral genome. In an infection assay, N. benthamiana plants were agroinfected with TYLCV-Israel and TYLCV-Guasave. After confirming systemic infection, the peptide was infiltrated in new infected leaves, and the plants treated with the peptide showed a decrease of virus symptoms and viral titer. In order to confirm the antiviral activity in a commercial crop, tomato plants were infected with TYLCV. After confirming systemic infection, plants were infiltrated with peptide solution as above, and the symptom development was monitored 21 days after treatment, showing that tomato plants treated with peptides had lower symptom rates and viral titer. The peptide was also tested against other begomovirus such as Pepper huasteco yellow vein virus (PHYVV-Guasave), showing a decrease of symptoms in N. benthamiana infected plants. The model of direct biochemical control of TYLCV infection shown in this work can be extrapolated to other begomovirus infections, and the methods reported here can be used for design of antiviral agrochemicals for other plant virus infections.

Keywords: agrochemical screening, antiviral, begomovirus, geminivirus, peptides, plasmon, TYLCV

Procedia PDF Downloads 276
4321 Effect of Drought Stress on Yield and Yield Components of Maize Cultivars in Golestan Province

Authors: Mojtaba Esmaeilzad Limoudehi, Ebrahim Amiri

Abstract:

Water scarcity is now one of the leading challenges for human societies. In this regard, recognizing the relationship between soil, water, plant growth, and plant response to stress is very significant. In this paper, considering the importance of drought stress and the role of choosing suitable cultivars in resistance against drought, a split-plot experiment using early, intermediate, and late-maturing cultivars was carried out in Katul filed, Golestan province during two cultivation years of 2015 and 2016. The main factor was irrigation intervals at four levels, including 7 days, 14 days, 21 days, and 28 days. The subfactor was the subplot of six maize cultivars (two early maturing cultivars, two medium maturing cultivars, and two late-maturing cultivars). The results of variance analysis have revealed that irrigation interval and cultivars treatment have significant effects on the number of grain in each corn, number of rows in each corn, number of grain per row, the weight of 1000 grains, grain yield, and biomass yield. Although, the interaction of these two factors on the mentioned attributes was meaningful. The best grain yield was achieved at 7 days irrigation interval and late maturing maize cultivars treatment, which was equal to 12301 kg/ha.

Keywords: corn, growth period, optimization, stress

Procedia PDF Downloads 143
4320 Response of Chickpea (Cicer arietinum L.) Genotypes to Drought Stress at Different Growth Stages

Authors: Ali. Marjani, M. Farsi, M. Rahimizadeh

Abstract:

Chickpea (Cicer arietinum L.) is one of the important grain legume crops in the world. However, drought stress is a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Field experiments were conducted to evaluate the response of 8 chickpea genotypes (MCC* 696, 537, 80, 283, 392, 361, 252, 397) and drought stress (S1: non-stress, S2: stress at vegetative growth stage, S3: stress at early bloom, S4: stress at early pod visible) at different growth stages. Experiment was arranged in split plot design with four replications. Difference among the drought stress time was found to be significant for investigated traits except biological yield. Differences were observed for genotypes in flowering time, pod information time, physiological maturation time and yield. Plant height reduced due to drought stress in vegetative growth stage. Stem dry weight reduced due to drought stress in pod visibly. Flowering time, maturation time, pod number, number of seed per plant and yield cause of drought stress in flowering was also reduced. The correlation between yield and number of seed per plant and biological yield was positive. The MCC283 and MCC696 were the high-tolerance genotypes. These results demonstrated that drought stress delayed phonological growth in chickpea and that flowering stage is sensitive.

Keywords: chickpea, drought stress, growth stage, tolerance

Procedia PDF Downloads 261
4319 The Effect of Annual Weather and Sowing Date on Different Genotype of Maize (Zea mays L.) in Germination and Yield

Authors: Ákos Tótin

Abstract:

In crop production the most modern hybrids are available for us, therefore the yield and yield stability is determined by the agro-technology. The purpose of the experiment is to adapt the modern agrotechnology to the new type of hybrids. The long-term experiment was set up in 2015-2016 on chernozem soil in the Hajdúság (eastern Hungary). The plots were set up in 75 thousand ha-1 plant density. We examined some mainly use hybrids of Hungary. The conducted studies are: germination dynamic, growing dynamic and the effect of annual weather for the yield. We use three different sowing date as early, average and late, and measure how many plant germinated during the germination process. In the experiment, we observed the germination dynamics in 6 hybrid in 4 replication. In each replication, we counted the germinated plants in 2m long 2 row wide area. Data will be shown in the average of the 6 hybrid and 4 replication. Growing dynamics were measured from the 10cm (4-6 leaf) plant highness. We measured 10 plants’ height in two weeks replication. The yield was measured buy a special plot harvester - the Sampo Rosenlew 2010 – what measured the weight of the harvested plot and also took a sample from it. We determined the water content of the samples for the water release dynamics. After it, we calculated the yield (t/ha) of each plot at 14% of moisture content to compare them. We evaluated the data using Microsoft Excel 2015. The annual weather in each crop year define the maize germination dynamics because the amount of heat is determinative for the plants. In cooler crop year the weather is prolonged the germination. At the 2015 crop year the weather was cold in the beginning what prolonged the first sowing germination. But the second and third sowing germinated faster. In the 2016 crop year the weather was much favorable for plants so the first sowing germinated faster than in the previous year. After it the weather cooled down, therefore the second and third sowing germinated slower than the last year. The statistical data analysis program determined that there is a significant difference between the early and late sowing date growing dynamics. In 2015 the first sowing date had the highest amount of yield. The second biggest yield was in the average sowing time. The late sowing date has lowest amount of yield.

Keywords: germination, maize, sowing date, yield

Procedia PDF Downloads 231
4318 Loan Repayment Prediction Using Machine Learning: Model Development, Django Web Integration and Cloud Deployment

Authors: Seun Mayowa Sunday

Abstract:

Loan prediction is one of the most significant and recognised fields of research in the banking, insurance, and the financial security industries. Some prediction systems on the market include the construction of static software. However, due to the fact that static software only operates with strictly regulated rules, they cannot aid customers beyond these limitations. Application of many machine learning (ML) techniques are required for loan prediction. Four separate machine learning models, random forest (RF), decision tree (DT), k-nearest neighbour (KNN), and logistic regression, are used to create the loan prediction model. Using the anaconda navigator and the required machine learning (ML) libraries, models are created and evaluated using the appropriate measuring metrics. From the finding, the random forest performs with the highest accuracy of 80.17% which was later implemented into the Django framework. For real-time testing, the web application is deployed on the Alibabacloud which is among the top 4 biggest cloud computing provider. Hence, to the best of our knowledge, this research will serve as the first academic paper which combines the model development and the Django framework, with the deployment into the Alibaba cloud computing application.

Keywords: k-nearest neighbor, random forest, logistic regression, decision tree, django, cloud computing, alibaba cloud

Procedia PDF Downloads 135
4317 Response of Wheat (Triticum aestivum L.) to Deficit Irrigation Management in the Semi-Arid Awash Basin of Ethiopia

Authors: Gobena D. Bayisa, A. Mekonen, Megersa O. Dinka, Tilahun H. Nebi, M. Boja

Abstract:

Crop production in arid and semi-arid regions of Ethiopia is largely limited by water availability. Changing climate conditions and declining water resources increase the need for appropriate approaches to improve water use and find ways to increase production through reduced and more reliable water supply. In the years 2021/22 and 2022/23, a field experiment was conducted to evaluate the effect of limited irrigation water use on bread wheat (Triticum aestivum L.) production, water use efficiency, and financial benefits. Five irrigation treatments, i.e., full irrigation (100% ETc/ control), 85% ETc, 70% ETc, 55% ETc, and 40% ETc, were evaluated using a randomized complete block design (RCBD) with four replicates in the semi-arid climate condition of Awash basin of Ethiopia. Statistical analysis showed a significant effect of irrigation levels on wheat grain yield, water use efficiency, crop water response factor, economic profit, wheat grain quality, aboveground biomass, and yield index. The highest grain yield (5085 kg ha⁻¹) was obtained with 100% ETc irrigation (417.2 mm), and the lowest grain yield with 40% ETc (223.7 mm). Of the treatments, 70% ETc produced the higher wheat grain yield (4555 kg ha⁻¹), the highest water use efficiency (1.42 kg m⁻³), and the highest yield index (0.43). Using the saved water, wheat could be produced 23.4% more with a 70% ETc deficit than full irrigation on 1.38 ha of land, and it could get the highest profit (US$2563.9) and higher MRR (137%). The yield response factor and crop-water production function showed potential reductions associated with increased irrigation deficits. However, a 70% ETc deficit is optimal for increasing wheat grain yield, water use efficiency, and economic benefits of irrigated wheat production. The result indicates that deficit irrigation of wheat under the typical arid and semi-arid climatic conditions of the Awash Basin can be a viable irrigation management approach for enhancing water use efficiency while minimizing the decrease in crop yield could be considered effective.

Keywords: crop-water response factor, deficit irrigation, water use efficiency, wheat production

Procedia PDF Downloads 69
4316 Improving the Growth, Biochemical Parameters and Content and Composition of Essential Oil of Mentha piperita L. through Soil-Applied N, P, and K

Authors: Bilal Bhat, M. Masroor A. Khan, Moin Uddin, M. Naeem

Abstract:

Aromatic herb, peppermint (Mentha piperita L.), is a natural hybrid (M. aquatica × M. spicata) with immense therapeutic uses, apart from other potential uses. Peppermint oil is one of the most popular and widely used essential oil (EO), because of its main components menthol and menthone. In view of enhancing growth, yield and quality of this medicinally important herb, a pot experiment was conducted in the net-house of the department. The experiment was aimed at studying the effect of graded levels of N, P, and K on growth, biochemical characteristics, and content and composition of EO in Mentha piperita L. Six NPK treatments (viz. N0P0K0, N20P20K20, N40P40K40, N20+20 P20+20 K20+20, N60P60K60, and N30+30 P30+30 K30+30) were tested. The plants were harvested 150 days after transplanting. The crop performance was assessed in terms of growth attributes, physiological activities, herbage yield and content as well as yield of active constituents of Mentha piperita L. Biochemical parameters were analyzed spectrophotometrically. The EO was extracted using Clevenger’s apparatus and the active constituents of the oil were determined using Gas Chromatography. Split-dose application of N, P and K (N30+30 P30+30 K30+30) ameliorated most of the parameters significantly including, fresh and dry weight of plant, NPK content, chlorophyll and carotenoids content, and the activities of carbonic anhydrase and nitrate reductase in the leaves. It also enhanced the EO content (44.0%), EO yield (91.0%), menthol content (14.1%), menthone content (34.0%), menthyl acetate content (16.9%) and 1, 8-cineole content (43.7%) but decreased the pulegone content (36.8%). Conclusively, the fertilization proved useful in enhancing the EO content, yield and other EO components of the plant. Thus, the yield and quality of EO of peppermint may be improved by this agricultural strategy.

Keywords: mentha piperita, menthol, menthone, EO

Procedia PDF Downloads 498
4315 Effect of Slag Application to Soil Chemical Properties and Rice Yield on Acid Sulphate Soils with Different Pyrite Depth

Authors: Richardo Y. E. Sihotang, Atang Sutandi, Joshua Ginting

Abstract:

The expansion of marginal soil such as acid sulphate soils for the development of staple crops, including rice was unavoidable. However, acid sulphate soils were less suitable for rice field due to the low fertility and the threats of pyrite oxidation. An experiment using Randomized Complete Block Design was designed to investigate the effect of slag in stabilizing soil reaction (pH), improving soil fertility and rice yield. Experiments were conducted in two locations with different pyrite depth. The results showed that slag application was able to decrease the exchangeable Al and available iron (Fe) as well as increase the soil pH, available-P, soil exchangeable Ca2+, Mg2+, and K+. Furthermore, the slag application increased the plant nutrient uptakes, particularly N, P, K, followed by the increasing of rice yield significantly. Nutrients availability, nutrient uptake, and rice yield were higher in the shallow pyrite soil instead of the deep pyrite soil. In addition, slag application was economically feasible due to the ability to reduce standard fertilizer requirements.

Keywords: acid sulphate soils, available nutrients, pyrite, slag

Procedia PDF Downloads 303
4314 The Response to Various Planting Conditions of Thein Corn Inbred Lines

Authors: K. Boonlertnirun, C. Rawdsiri, R. Suvannasara, S. Boonlertnirun

Abstract:

Thein corn variety well adapted to several planting conditions is usually accepted by most farmers. The objectives of this work were to evaluate yield potential of Thein corn inbred line grown in various nitrogen rates and plant conditions for selecting good inbred lines to be germ plasm for further breeding program. Split plot design with three replications was utilized as experimental design, three planting conditions: normal (control), low nitrogen, and high plant density condition, and sixteen inbred lines of Thein corn were used as main and subplot respectively. The results showed that no interaction between inbred line and planting condition in terms of yield. Correlation between planting conditions based on yield of inbred line was positive at medium level. Thein corn inbreds, namely L7, L5, L16, and L14 lines were tolerant to low nitrogen condition because they could produce high yield under all planting conditions and they were selected to be germ plasm for further breeding program.

Keywords: inbred line, planting condition, Thein corn, planting conditions

Procedia PDF Downloads 372
4313 Evaluation of Bollworm Tolerance in F1 and F2 BT Cotton under Unprotected Condition

Authors: N. K. Bhute, B. B. Bhosle

Abstract:

Field experiment was conducted during kharif 2005, at the experimental farm of the Department of Genetics and Plant Breeding, College of Agriculture, Marathwada Agricultural University, Parbhani, Maharashtra. F1 and F2 hybrids of 23 Bt and 5 non-Bt hybrids were grown in a randomized block design with two replications. The results showed that among F1 hybrids, open boll damage due to bollworm complex was not noticed in 4233 Bt and 4247 Bt cotton hybrids which were found significantly superior over MECH 6301 Bt (3.2 %), 4255 Bt (3.28 %) and it was at par with rest of the hybrids. Among F2 hybrids minimum open boll damage (3.10 %) was noticed in Proagro 144 Bt, which was found significantly superior over rest of the hybrids except 4234 Bt (4.17 %) and 4254 Bt (4.98 %) which were at par with each other. In respect of seed cotton yield, among F1 hybrids maximum yield (15.51 q/ha) was recorded in 4233 Bt which was found significantly superior over rest of the hybrids except 4237 Bt (15.24 q/ha). Among F2 maximum yield (15.44 q/ha) was recorded in 4233 Bt which was found significantly superior over rest of the hybrids except 4258 Bt (15.41 q/ha), 4239 Bt (15.098 q/ha) which were at par with each other. Thus F2 Bt cotton express Bt protein in segregated pattern in which bollworm attack was more as compared to F1 which affects yield as well as quality of lint.

Keywords: Bt cotton, bollworms, F1 and F2 generations, unprotected condition

Procedia PDF Downloads 299
4312 Deadline Missing Prediction for Mobile Robots through the Use of Historical Data

Authors: Edwaldo R. B. Monteiro, Patricia D. M. Plentz, Edson R. De Pieri

Abstract:

Mobile robotics is gaining an increasingly important role in modern society. Several potentially dangerous or laborious tasks for human are assigned to mobile robots, which are increasingly capable. Many of these tasks need to be performed within a specified period, i.e., meet a deadline. Missing the deadline can result in financial and/or material losses. Mechanisms for predicting the missing of deadlines are fundamental because corrective actions can be taken to avoid or minimize the losses resulting from missing the deadline. In this work we propose a simple but reliable deadline missing prediction mechanism for mobile robots through the use of historical data and we use the Pioneer 3-DX robot for experiments and simulations, one of the most popular robots in academia.

Keywords: deadline missing, historical data, mobile robots, prediction mechanism

Procedia PDF Downloads 401
4311 Useful Lifetime Prediction of Rail Pads for High Speed Trains

Authors: Chang Su Woo, Hyun Sung Park

Abstract:

Useful lifetime evaluations of rail-pads were very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of rail pads. In this study, we performed properties and accelerated heat aging tests of rail pads considering degradation factors and all environmental conditions including operation, and then derived a lifetime prediction equation according to changes in hardness, thickness, and static spring constants in the Arrhenius plot to establish how to estimate the aging of rail pads. With the useful lifetime prediction equation, the lifetime of e-clip pads was 2.5 years when the change in hardness was 10% at 25°C; and that of f-clip pads was 1.7 years. When the change in thickness was 10%, the lifetime of e-clip pads and f-clip pads is 2.6 years respectively. The results obtained in this study to estimate the useful lifetime of rail pads for high speed trains can be used for determining the maintenance and replacement schedule for rail pads.

Keywords: rail pads, accelerated test, Arrhenius plot, useful lifetime prediction, mechanical engineering design

Procedia PDF Downloads 326
4310 Production Radionuclide Therapy 161-Terbium Using by Talys1.6 and Empire 3.2 Codes in Reactions Cyclotron

Authors: Shohreh Rahimi Lascokalayeh, Hasan Yousefnia, Mojtaba Tajik, Samaneh Zolghadri, Bentehoda Abdolhosseini

Abstract:

In this study, the production of terbium-161 as new therapeutic radionuclide was investigated using TALYS1.6& EMPIRE 3.2 codes. For this purpose, cross section for the reactions reactor to produce 161Tb were extracted by mean of this code In the following step, stopping power of the reactions reactor was calculated by SRIM code. The best reaction in the production of 161Tb is160 Gd(d,n)161Tb Production yield of the 161Tb was obtained by utilization of MATLAB calculation code and based on the charged particle reaction formalism.The results showed that Production yield of the 161Tb was obtained 0.8 (mci/ A*h).

Keywords: terbium161, TALYS1.6, EMPIRE3.2, yield, cross-section

Procedia PDF Downloads 451
4309 Meat Yield and Proximate Composition Relations of Seabream (Sparus aurata) and Seabass (Dicentrarchus labrax) in Different Sizes

Authors: Mehmet Celik, Celal Erbas, Mehtap Baykal, Aygül Kucukgulmez, Mahmut Ali Gokce, Bilge Kaan Tekelioglu

Abstract:

In this study, determination of differences in fresh meat yield and proximate compositions of different weight groups of sea bream and sea bass grown in cages in Izmir region of the Aegean Sea were aimed. For this purpose, the length and weight of five different weight groups of sea bass (I: 175.8±5.2, II: 227.3±10.2, III: 293.3±21.3, IV: 404±9.9, V: 508.7±46 g) and sea bream (I: 146.6±13.6, II: 239.8±21.7, III: 279.2±20.8, IV: 400.9±10.5, V: 546.8±0.8 g) were measured and the amount of edible and non-edible parts were determined. Besides this, protein, lipid, dry matter, ash, condition factor, HSI and VSI values were compared according to different weight groups for each species. According to the results of analysis, while the absolute meat yields of sea bream was between 69-294 g, it was between 71-252 g for the sea bass and the highest meat yields were found in fifth (V) weight groups of fish for both species. The relative meat yield (%) was determined in weight group II for sea bass and in the IV. group in sea bream with 51.9%. However, the amount of muscle tissue lipids in I. and V. weight groups of sea bream ranged between 3.6 to 11.9 % and ranged between 6.2 to 9.0 % for sea bass respectively. Protein, fillet and ash content increased in direct proportion to the weight. As a result, it can be speculated that when the meat yield and lipid rates were considered, IV. group in sea bream and II. group in sea bass are the most advantageous groups for the consumers. Acknowledgement: This work was supported by the Scientific Research Project Unit of the University of Cukurova, Turkey under grant no FBA-2015-3830.

Keywords: sea bream, sea bass, meat yield, proximate composition, different weight

Procedia PDF Downloads 357
4308 Effect of Organic Fertilization and Intercropping of Potato (Solanum Tuberosum) With Faba Bean (Vicia Faba) on Potato’s Yield

Authors: Laila Nassiri, Aziza Irhza, Jamal Ibijbijen, Fouad Rachidi, Ghizlane Echchgadda

Abstract:

The introduction of agroecological practices in ecosystems can contribute to meeting the challenges posed by the diversion of current agricultural production systems towards efficient production methods that are more respectful of the environment, including a reasoned use of inputs and resources. Intercropping is one of these practices that requires the production of two or more crops on the same plot and during the same growing season. Organic fertilization also can contribute to increase the yield due to the potential availability of nutrients. The objective of this work is to study the effect of intercropping and organic fertilization, which are two important practices of agroecology, on potato yield. Intercropping of potato and faba bean was carried out at the Agroecology and Environment platform (ENA, Meknes). The soil is silty-clay, the climate is warm with an average temperature of 17.1°C, and the annual average rainfall of 511mm. Four treatments were tested: Potato sole crop (T1), potato + organic fertilization (T2), Potato + faba bean (T3), Potato + faba bean + organic fertilization (T4). The results showed that there is a significant effect of the treatment on the evolution of the agronomical characters studied, especially the number of leaves and the yield. The number of stems at t0 was equal to 1 in all treatments; it began to grow after 30 days from the date of sowing with a slight increase in treatments containing organic fertilization (T2-T4), then it stabilized 60 days after sowing. In terms of the mean value of the number of leaves, a significant difference was noted between the treatments, the highest value was recorded in treatment T2. The T2 treatment showed the highest average yield, followed by the control (T1). As for the yield, treatments T2 and T1 recorded the highest number of tubers. In order to evaluate two of the practices of agroecology, this work focuses on the evaluation of the effect of intercropping and organic fertilization on the growth and yield parameters of the potato. The results obtained show that agroecological practices have a significant effect on the measured parameters.

Keywords: agroecology, intercropping, organic fertilization, potato yield

Procedia PDF Downloads 87
4307 Climate Change Impact on Whitefly (Bemisia tabaci) Population Infesting Tomato (Lycopersicon esculentus) in Sub-Himalayan India and Their Sustainable Management Using Biopesticides

Authors: Sunil Kumar Ghosh

Abstract:

Tomato (Lycopersicon esculentus L.) is an annual vegetable crop grown in the sub-Himalayan region of north east India throughout the year except rainy season in normal field cultivation. The crop is susceptible to various insect pests of which whitefly (Bemesia tabaci Genn.) causes heavy damage. Thus, a study on its occurrence and sustainable management is needed for successful cultivation. The pest was active throughout the growing period. During 38th standard week to 41st standard week that is during 3rd week of September to 2nd week of October minimum population was observed. The maximum population level was maintained during 11th standard week to 18th standard week that is during 2nd week of March to 3rd week of March with peak population (0.47/leaf) was recorded. Weekly population counts on white fly showed non-significant negative correlation (p=0.05) with temperature and weekly total rainfall where as significant negative correlation with relative humidity. Eight treatments were taken to study the management of the white fly pest such as botanical insecticide azadirachtin botanical extracts, Spilanthes paniculata flower, Polygonum hydropiper L. flower, tobacco leaf and garlic and mixed formulation like neem and floral extract of Spilanthes were evaluated and compared with the ability of acetamiprid. The insectide acetamiprid was found most lethal against whitefly providing 76.59% suppression, closely followed by extracts of neem + Spilanthes providing 62.39% suppression. Spectophotometric scanning of crude methanolic extract of Polygonum flower showed strong absorbance wave length between 645-675 nm. Considering the level of peaks of wave length the flower extract contain some important chemicals like Spirilloxanthin, Quercentin diglycoside, Quercentin 3-O-rutinoside, Procyanidin B1 and Isorhamnetin 3-O-rutinoside. These chemicals are responsible for pest control. Spectophotometric scanning of crude methanolic extract of Spilanthes flower showed strong absorbance wave length between 645-675 nm. Considering the level of peaks of wave length the flower extract contain some important chemicals of which polysulphide compounds are important and responsible of pest control. Neem and Spilanthes individually did not produce good results but when used as a mixture they recorded better results. Highest yield (30.15 t/ha) were recorded from acetamiprid treated plots followed by neem + Spilanthes (27.55 t/ha). Azadirachtin and Plant extracts are biopesticides having less or no hazardous effects on human health and environment. Thus they can be incorporated in IPM programmes and organic farming in vegetable cultivation.

Keywords: biopesticides, organic farming, seasonal fluctuation, vegetable IPM

Procedia PDF Downloads 309
4306 Experimental Squeeze Flow of Bitumen: Rheological Properties

Authors: A. Kraiem, A. Ayadi

Abstract:

The squeeze flow tests were studied by many authors to measure the rheological properties of fluid. Experimental squeezing flow test with constant area between two parallel disks of bitumen is investigated in the present work. The effect of the temperature, the process of preparing the sample and the gap between the discs were discussed. The obtained results were compared with the theoretical models. The behavior of bitumen depends on the viscosity and the yield stress. Thus, the bitumen was presented as a power law for a small power law exponent and as a biviscous fluid when the viscosity ratio was smaller than one. Also, the influence of the ambient temperature is required for the compression test. Therefore, for a high temperature the yield stress decrease.

Keywords: bitumen, biviscous fluid, squeeze flow, viscosity, yield stress

Procedia PDF Downloads 140
4305 Sustainable Management of Water and Soil Resources for Agriculture in Dry Areas

Authors: Alireza Nejadmohammad Namaghi

Abstract:

Investigators have reported that mulches increase production potential in arid and semi arid lands. Mulches are covering materials that are used on soil surface for efficiency irrigation, erosion control, weed control, evaporation decrease and improvement of water perpetration. Our aim and local situation determine the kind of material that we can use. In this research we used different mulches including chemical mulch (M1), Aquasorb polymer, manure mulch (M2), Residue mulch (M3) and polyethylene mulch (M4), with control treatment (M0), without usage of mulch, on germination, biomass dry matter and cottonseed yield (Varamin variety) in Kashan area. Randomized complete block (RCB) design have measured the cotton yield with 3 replications for measuring the biomass dry matter and 4 replication in tow irrigation periods as 7 and 14 days. Germination percentage for M0, M1, M2, M3 and M4 treatment were receptivity 64, 65, 76, 57 and 72% Biomass dry matter average for M0, M1, M2, M3 and M4 treatment were receptivity 276, 306, 426, 403 and 476 gram per plot. M4 treatment (polyethylene Mulch) had the most effect, M2 and M3 had no significant as well as M0 and M1. Total yield average with respect to 7 days irrigation for M0, M1, M2, M3 and M4 treatment were receptivity 700, 725, 857, 1057 and 1273 gram per plot. Dunken ne multiple showed no significant different among M0, M1, M2, and M3, but M4 ahs the most effect on yield. Total yield average with respect to 14 days irrigation for M0, M1, M2, M3 and M4 treatment were receptivity 535, 507, 690, 957 and 1047 gram per plot. These were significant difference between all treatments and control treatment. Results showed that used different mulches with water decrease in dry situation can increase the yield significantly.

Keywords: mulch, cotton, arid land management, irrigation systems

Procedia PDF Downloads 84