Search results for: representation of graph models
7820 Parameter Estimation in Dynamical Systems Based on Latent Variables
Authors: Arcady Ponosov
Abstract:
A novel mathematical approach is suggested, which facilitates a compressed representation and efficient validation of parameter-rich ordinary differential equation models describing the dynamics of complex, especially biology-related, systems and which is based on identification of the system's latent variables. In particular, an efficient parameter estimation method for the compressed non-linear dynamical systems is developed. The method is applied to the so-called 'power-law systems' being non-linear differential equations typically used in Biochemical System Theory.Keywords: generalized law of mass action, metamodels, principal components, synergetic systems
Procedia PDF Downloads 3577819 A Generalisation of Pearson's Curve System and Explicit Representation of the Associated Density Function
Authors: S. B. Provost, Hossein Zareamoghaddam
Abstract:
A univariate density approximation technique whereby the derivative of the logarithm of a density function is assumed to be expressible as a rational function is introduced. This approach which extends Pearson’s curve system is solely based on the moments of a distribution up to a determinable order. Upon solving a system of linear equations, the coefficients of the polynomial ratio can readily be identified. An explicit solution to the integral representation of the resulting density approximant is then obtained. It will be explained that when utilised in conjunction with sample moments, this methodology lends itself to the modelling of ‘big data’. Applications to sets of univariate and bivariate observations will be presented.Keywords: density estimation, log-density, moments, Pearson's curve system
Procedia PDF Downloads 2827818 Hybrid Inventory Model Optimization under Uncertainties: A Case Study in a Manufacturing Plant
Authors: E. Benga, T. Tengen, A. Alugongo
Abstract:
Periodic and continuous inventory models are the two classical management tools used to handle inventories. These models have advantages and disadvantages. The implementation of both continuous (r,Q) inventory and periodic (R, S) inventory models in most manufacturing plants comes with higher cost. Such high inventory costs are due to the fact that most manufacturing plants are not flexible enough. Since demand and lead-time are two important variables of every inventory models, their effect on the flexibility of the manufacturing plant matter most. Unfortunately, these effects are not clearly understood by managers. The reason is that the decision parameters of the continuous (r, Q) inventory and periodic (R, S) inventory models are not designed to effectively deal with the issues of uncertainties such as poor manufacturing performances, delivery performance supplies performances. There is, therefore, a need to come up with a predictive and hybrid inventory model that can combine in some sense the feature of the aforementioned inventory models. A linear combination technique is used to hybridize both continuous (r, Q) inventory and periodic (R, S) inventory models. The behavior of such hybrid inventory model is described by a differential equation and then optimized. From the results obtained after simulation, the continuous (r, Q) inventory model is more effective than the periodic (R, S) inventory models in the short run, but this difference changes as time goes by. Because the hybrid inventory model is more cost effective than the continuous (r,Q) inventory and periodic (R, S) inventory models in long run, it should be implemented for strategic decisions.Keywords: periodic inventory, continuous inventory, hybrid inventory, optimization, manufacturing plant
Procedia PDF Downloads 3827817 Linear Codes Afforded by the Permutation Representations of Finite Simple Groups and Their Support Designs
Authors: Amin Saeidi
Abstract:
Using a representation-theoretic approach and considering G to be a finite primitive permutation group of degree n, our aim is to determine linear codes of length n that admit G as a permutation automorphism group. We can show that in some cases, every binary linear code admitting G as a permutation automorphism group is a submodule of a permutation module defined by a primitive action of G. As an illustration of the method, we consider the sporadic simple group M₁₁ and the unitary group U(3,3). We also construct some point- and block-primitive 1-designs from the supports of some codewords of the codes in the discussion.Keywords: linear code, permutation representation, support design, simple group
Procedia PDF Downloads 787816 Towards a Large Scale Deep Semantically Analyzed Corpus for Arabic: Annotation and Evaluation
Authors: S. Alansary, M. Nagi
Abstract:
This paper presents an approach of conducting semantic annotation of Arabic corpus using the Universal Networking Language (UNL) framework. UNL is intended to be a promising strategy for providing a large collection of semantically annotated texts with formal, deep semantics rather than shallow. The result would constitute a semantic resource (semantic graphs) that is editable and that integrates various phenomena, including predicate-argument structure, scope, tense, thematic roles and rhetorical relations, into a single semantic formalism for knowledge representation. The paper will also present the Interactive Analysis tool for automatic semantic annotation (IAN). In addition, the cornerstone of the proposed methodology which are the disambiguation and transformation rules, will be presented. Semantic annotation using UNL has been applied to a corpus of 20,000 Arabic sentences representing the most frequent structures in the Arabic Wikipedia. The representation, at different linguistic levels was illustrated starting from the morphological level passing through the syntactic level till the semantic representation is reached. The output has been evaluated using the F-measure. It is 90% accurate. This demonstrates how powerful the formal environment is, as it enables intelligent text processing and search.Keywords: semantic analysis, semantic annotation, Arabic, universal networking language
Procedia PDF Downloads 5827815 Developing a Web GIS Tool for the Evaluation of Soil Erosion of a Watershed
Authors: Y. Fekir, K. Mederbal, M. A. Hamadouche, D. Anteur
Abstract:
The soil erosion by water has become one of the biggest problems of the environment in the world, threatening the majority of countries. There are several models to evaluate erosion. These models are still a simplified representation of reality. They permit the analysis of complex systems, measurements are complementary to allow an extrapolation in time and space and may combine different factors. The empirical model of soil loss proposed by Wischmeier and Smith (Universal Soil Loss Equation), is widely used in many countries. He considers that erosion is a multiplicative function of five factors: rainfall erosivity (the R factor) the soil erodibility factor (K), topography (LS), the erosion control practices (P) and vegetation cover and agricultural practices (C). In this work, we tried to develop a tool based on Web GIS functionality to evaluate soil losses caused by erosion taking into account five factors. This tool allows the user to integrate all the data needed for the evaluation (DEM, Land use, rainfall ...) in the form of digital layers to calculate the five factors taken into account in the USLE equation (R, K, C, P, LS). Accordingly, and after treatment of the integrated data set, a map of the soil losses will be achieved as a result. We tested the proposed tool on a watershed basin located in the weste of Algeria where a dataset was collected and prepared.Keywords: USLE, erosion, web gis, Algeria
Procedia PDF Downloads 3327814 Equivalent Circuit Representation of Lossless and Lossy Power Transmission Systems Including Discrete Sampler
Authors: Yuichi Kida, Takuro Kida
Abstract:
In a new smart society supported by the recent development of 5G and 6G Communication systems, the im- portance of wireless power transmission is increasing. These systems contain discrete sampling systems in the middle of the transmission path and equivalent circuit representation of lossless or lossy power transmission through these systems is an important issue in circuit theory. In this paper, for the given weight function, we show that a lossless power transmission system with the given weight is expressed by an equivalent circuit representation of the Kida’s optimal signal prediction system followed by a reactance multi-port circuit behind it. Further, it is shown that, when the system is lossy, the system has an equivalent circuit in the form of connecting a multi-port positive-real circuit behind the Kida’s optimal signal prediction system. Also, for the convenience of the reader, in this paper, the equivalent circuit expression of the reactance multi-port circuit and the positive- real multi-port circuit by Cauer and Ohno, whose information is currently being lost even in the world of the Internet.Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, power transmission
Procedia PDF Downloads 1237813 Third Eye: A Hybrid Portrayal of Visuospatial Attention through Eye Tracking Research and Modular Arithmetic
Authors: Shareefa Abdullah Al-Maqtari, Ruzaika Omar Basaree, Rafeah Legino
Abstract:
A pictorial representation of hybrid forms in science-art collaboration has become a crucial issue in the course of exploring a new painting technique development. This is straight related to the reception of an invisible-recognition phenomenology. In hybrid pictorial representation of invisible-recognition phenomenology, the challenging issue is how to depict the pictorial features of indescribable objects from its mental source, modality and transparency. This paper proposes the hybrid technique of painting Demonstrate, Resemble, and Synthesize (DRS) through a combination of the hybrid aspect-recognition representation of understanding picture, demonstrative mod, the number theory, pattern in the modular arithmetic system, and the coherence theory of visual attention in the dynamic scenes representation. Multi-methods digital gaze data analyses, pattern-modular table operation design, and rotation parameter were used for the visualization. In the scientific processes, Eye-trackingvideo-sections based was conducted using Tobii T60 remote eye tracking hardware and TobiiStudioTM analysis software to collect and analyze the eye movements of ten participants when watching the video clip, Alexander Paulikevitch’s performance’s ‘Tajwal’. Results: we found that correlation of fixation count in section one was positively and moderately correlated with section two Person’s (r=.10, p < .05, 2-tailed) as well as in fixation duration Person’s (r=.10, p < .05, 2-tailed). However, a paired-samples t-test indicates that scores were significantly higher for the section one (M = 2.2, SD = .6) than for the section two (M = 1.93, SD = .6) t(9) = 2.44, p < .05, d = 0.87. In the visual process, the exported data of gaze number N was resembled the hybrid forms of visuospatial attention using the table-mod-analyses operation. The explored hybrid guideline was simply applicable, and it could be as alternative approach to the sustainability of contemporary visual arts.Keywords: science-art collaboration, hybrid forms, pictorial representation, visuospatial attention, modular arithmetic
Procedia PDF Downloads 3647812 Dividend Policy, Overconfidence and Moral Hazard
Authors: Richard Fairchild, Abdullah Al-Ghazali, Yilmaz Guney
Abstract:
This study analyses the relationship between managerial overconfidence, dividends, and firm value by developing theoretical models that examine the condition under which managerial overconfident, dividends, and firm value may be positive or negative. Furthermore, the models incorporate moral hazard, in terms of managerial effort shirking, and the potential for the manager to choose negative NPV projects, due to private benefits. Our models demonstrate that overconfidence can lead to higher dividends (when the manager is overconfident about his current ability) or lower dividends (when the manager is overconfident about his future ability). The models also demonstrate that higher overconfidence may result in an increase or a decrease in firm value. Numerical examples are illustrated for both models which interestingly support the models’ propositions.Keywords: behavioural corporate finance, dividend policy, overconfidence, moral hazard
Procedia PDF Downloads 3417811 Natural Gas Production Forecasts Using Diffusion Models
Authors: Md. Abud Darda
Abstract:
Different options for natural gas production in wide geographic areas may be described through diffusion of innovation models. This type of modeling approach provides an indirect estimate of an ultimately recoverable resource, URR, capture the quantitative effects of observed strategic interventions, and allow ex-ante assessments of future scenarios over time. In order to ensure a sustainable energy policy, it is important to forecast the availability of this natural resource. Considering a finite life cycle, in this paper we try to investigate the natural gas production of Myanmar and Algeria, two important natural gas provider in the world energy market. A number of homogeneous and heterogeneous diffusion models, with convenient extensions, have been used. Models validation has also been performed in terms of prediction capability.Keywords: diffusion models, energy forecast, natural gas, nonlinear production
Procedia PDF Downloads 2287810 Review of Models of Consumer Behaviour and Influence of Emotions in the Decision Making
Authors: Mikel Alonso López
Abstract:
In order to begin the process of studying the task of making consumer decisions, the main decision models must be analyzed. The objective of this task is to see if there is a presence of emotions in those models, and analyze how authors that have created them consider their impact in consumer choices. In this paper, the most important models of consumer behavior are analysed. This review is useful to consider an unproblematic background knowledge in the literature. The order that has been established for this study is chronological.Keywords: consumer behaviour, emotions, decision making, consumer psychology
Procedia PDF Downloads 4537809 The Impact of Window Opening Occupant Behavior Models on Building Energy Performance
Authors: Habtamu Tkubet Ebuy
Abstract:
Purpose Conventional dynamic energy simulation tools go beyond the static dimension of simplified methods by providing better and more accurate prediction of building performance. However, their ability to forecast actual performance is undermined by a low representation of human interactions. The purpose of this study is to examine the potential benefits of incorporating information on occupant diversity into occupant behavior models used to simulate building performance. The co-simulation of the stochastic behavior of the occupants substantially increases the accuracy of the simulation. Design/methodology/approach In this article, probabilistic models of the "opening and closing" behavior of the window of inhabitants have been developed in a separate multi-agent platform, SimOcc, and implemented in the building simulation, TRNSYS, in such a way that the behavior of the window with the interconnectivity can be reflected in the simulation analysis of the building. Findings The results of the study prove that the application of complex behaviors is important to research in predicting actual building performance. The results aid in the identification of the gap between reality and existing simulation methods. We hope this study and its results will serve as a guide for researchers interested in investigating occupant behavior in the future. Research limitations/implications Further case studies involving multi-user behavior for complex commercial buildings need to more understand the impact of the occupant behavior on building performance. Originality/value This study is considered as a good opportunity to achieve the national strategy by showing a suitable tool to help stakeholders in the design phase of new or retrofitted buildings to improve the performance of office buildings.Keywords: occupant behavior, co-simulation, energy consumption, thermal comfort
Procedia PDF Downloads 1057808 Challenging Hegemonic Masculinity in Nigerian Hip Hop: An Evaluation of Gender Representation in Falz the Bahd Guy’s Moral Instruction Album
Authors: Adelaja O. Oriade
Abstract:
The Nigerian hip-hop music genre, like the African American scene where it was adopted from, is riddled with musical lyrics that amplify and normalize hypermasculinity, homophobia, sexism, and objectification of women. Several factors are responsible for this anomaly; however, the greatest factor is the urge of hip-hop musicians to achieve the commercial success that is dependent on selling records and appealing to the established societal accepted norm for hip-hop music. Consequently, this paper presents a counter-narrative of this gender representation within the Nigerian hip-hop industry. This study analyzed the musical lyrics of the ‘Hypocrisy’ track on the 2019 album of famous Nigerian rapper, Falz the Bahd Guy; and argued that Falz in this album challenged the predominant ideas of hegemonic masculinity by singing in favor of LGBT people and women. Also, based on the success of this album, this paper argues that a hip-hop album can achieve commercial success without aligning with predominant hip-hop parameters of gender representation. The study recommends that future studies should evaluate the reactions of Nigerians to these gender presentations by Falz the Bahd guy.Keywords: hegemonic masculinity, hypermasculinity, LGBT, misogyny, sexism
Procedia PDF Downloads 1277807 A Correlative Study of Heating Values of Saw Dust and Rice Husks in the Thermal Generation of Electricity
Authors: Muhammad Danladi, Muhammad Bura Garba, Muhammad Yahaya, Dahiru Muhammad
Abstract:
Biomass is one of the primary sources of energy supply, which contributes to about 78% of Nigeria. In this work, a comparative analysis of the heating values of sawdust and rice husks in the thermal generation of electricity was carried out. In the study, different masses of biomass were used and the corresponding electromotive force in millivolts was obtained. A graph of e.m.f was plotted against the mass of each biomass and a gradient was obtained. Bar graphs were plotted to represent the values of e.m.f and masses of the biomass. Also, a graph of e.m.f against eating values of sawdust and rice husks was plotted, and in each case, as the e.m.f increases also, the heating values increases. The result shows that saw dust with 0.033Mv/g gradient and 3.5 points of intercept had the highest gradient, followed by rice husks with 0.026Mv/g gradient and 2.6 points of intercept. It is, therefore, concluded that sawdust is the most efficient of the two types of biomass in the thermal generation of electricity.Keywords: biomass, electricity, thermal, generation
Procedia PDF Downloads 987806 Predictive Analytics for Theory Building
Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim
Abstract:
Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building
Procedia PDF Downloads 2777805 Uni … Mihi ('to Me Only'): Patterns of Uniqueness in Statius' Thebaid and Silius' Punica
Authors: Arianna Sacerdoti
Abstract:
There is a rich and frequent representation of uniqueness in Statius’ poem called Thebaid. This topos interweave with a psychoanalytical study about groups and individual but is also a literary device. This paper will analyze all the passages in the 'Thebaid' referred to uniqueness and exceptionality. Antigone, Adrastus and other characters are, in fact, often characterized as the only ones to behave in a specific way or to do something. Also, the insomniac characters are often the only ones who do not sleep. The material of such a tòpos is very rich throughout the 'Thebaid'. The methodology will be text-oriented. Conclusions will enlighten Statius’ specific use of this tòpos, as related to his models, and will be interdisciplinary. In concluding, this is a study linking philology and psychoanalysis and focused on a topic which deserves a specific analysis.Keywords: statius, Silius Italicus, uniqueness, epic
Procedia PDF Downloads 1837804 A Formal Property Verification for Aspect-Oriented Programs in Software Development
Authors: Moustapha Bande, Hakima Ould-Slimane, Hanifa Boucheneb
Abstract:
Software development for complex systems requires efficient and automatic tools that can be used to verify the satisfiability of some critical properties such as security ones. With the emergence of Aspect-Oriented Programming (AOP), considerable work has been done in order to better modularize the separation of concerns in the software design and implementation. The goal is to prevent the cross-cutting concerns to be scattered across the multiple modules of the program and tangled with other modules. One of the key challenges in the aspect-oriented programs is to be sure that all the pieces put together at the weaving time ensure the satisfiability of the overall system requirements. Our paper focuses on this problem and proposes a formal property verification approach for a given property from the woven program. The approach is based on the control flow graph (CFG) of the woven program, and the use of a satisfiability modulo theories (SMT) solver to check whether each property (represented par one aspect) is satisfied or not once the weaving is done.Keywords: aspect-oriented programming, control flow graph, property verification, satisfiability modulo theories
Procedia PDF Downloads 1777803 Cubical Representation of Prime and Essential Prime Implicants of Boolean Functions
Authors: Saurabh Rawat, Anushree Sah
Abstract:
K Maps are generally and ideally, thought to be simplest form for obtaining solution of Boolean equations. Cubical Representation of Boolean equations is an alternate pick to incur a solution, otherwise to be meted out with Truth Tables, Boolean Laws, and different traits of Karnaugh Maps. Largest possible k- cubes that exist for a given function are equivalent to its prime implicants. A technique of minimization of Logic functions is tried to be achieved through cubical methods. The main purpose is to make aware and utilise the advantages of cubical techniques in minimization of Logic functions. All this is done with an aim to achieve minimal cost solution.rKeywords: K-maps, don’t care conditions, Boolean equations, cubes
Procedia PDF Downloads 3867802 Reliability Estimation of Bridge Structures with Updated Finite Element Models
Authors: Ekin Ozer
Abstract:
Assessment of structural reliability is essential for efficient use of civil infrastructure which is subjected hazardous events. Dynamic analysis of finite element models is a commonly used tool to simulate structural behavior and estimate its performance accordingly. However, theoretical models purely based on preliminary assumptions and design drawings may deviate from the actual behavior of the structure. This study proposes up-to-date reliability estimation procedures which engages actual bridge vibration data modifying finite element models for finite element model updating and performing reliability estimation, accordingly. The proposed method utilizes vibration response measurements of bridge structures to identify modal parameters, then uses these parameters to calibrate finite element models which are originally based on design drawings. The proposed method does not only show that reliability estimation based on updated models differs from the original models, but also infer that non-updated models may overestimate the structural capacity.Keywords: earthquake engineering, engineering vibrations, reliability estimation, structural health monitoring
Procedia PDF Downloads 2237801 Detection of Chaos in General Parametric Model of Infectious Disease
Authors: Javad Khaligh, Aghileh Heydari, Ali Akbar Heydari
Abstract:
Mathematical epidemiological models for the spread of disease through a population are used to predict the prevalence of a disease or to study the impacts of treatment or prevention measures. Initial conditions for these models are measured from statistical data collected from a population since these initial conditions can never be exact, the presence of chaos in mathematical models has serious implications for the accuracy of the models as well as how epidemiologists interpret their findings. This paper confirms the chaotic behavior of a model for dengue fever and SI by investigating sensitive dependence, bifurcation, and 0-1 test under a variety of initial conditions.Keywords: epidemiological models, SEIR disease model, bifurcation, chaotic behavior, 0-1 test
Procedia PDF Downloads 3267800 Availability and Representation of Plus-Size Female Fashion in Florianópolis: A Comparative Study of Physical and Online Stores
Authors: Gisele Ghanem Cardoso, Sandra Rech
Abstract:
Despite recent advancements, the plus-size market still faces significant gaps, as individuals with larger bodies struggle to find clothing that fits well and meets their needs. Addressing this issue, this research aims to investigate the availability of fashion products for plus-size women in both physical and online stores in Florianópolis, as well as the quantity of products available in each size. The study employs content analysis based on Bardin's framework, examining data on store locations, size ranges, and target audiences of various brands alongside observations of visual elements such as hanger sizes and the branding of specialized labels. The findings reveal a concentration of plus-size stores in peripheral areas and a limited selection of diverse, high-quality products, contrasting sharply with the access standard-sized bodies have to more prestigious fashion hubs. These results highlight how the current market structure perpetuates social exclusion, underscoring the urgent need for inclusive policies and an expanded plus-size market to promote greater equity and representation in fashion consumption.Keywords: plus size fashion, representation, consumption, Florianópolis, product availability, social exclusion
Procedia PDF Downloads 117799 African Women in Power: An Analysis of the Representation of Nigerian Business Women in Television
Authors: Ifeanyichukwu Valerie Oguafor
Abstract:
Women generally have been categorized and placed under the chain of business industry, sometimes highly regarded and other times merely. The social construction of womanhood does not in all sense support a woman going into business, let alone succeed in it because it is believed that it a man’s world. In a typical patriarchal setting, a woman is expected to know nothing more domestic roles. For some women, this is not the case as they have been able to break these barriers to excel in business amidst these social setting and stereotypes. This study examines media representation of Nigerians business women, using content analysis of TV interviews as media text, framing analysis as an approach in qualitative methodology, The study further aims to analyse media frames of two Nigerian business women: FolorunshoAlakija, a business woman in the petroleum industry with current net worth 1.1 billion U.S dollars, emerging as the richest black women in the world 2014. MosunmolaAbudu, a media magnate in Nigeria who launched the first Africa’s global black entertainment and lifestyle network in 2013. This study used six predefined frames: the business woman, the myth of business women, the non-traditional woman, women in leading roles, the family woman, the religious woman, and the philanthropist woman to analyse the representation of Nigerian business women in the media. The analysis of the aforementioned frames on TV interviews with these women reveals that the media perpetually reproduces existing gender stereotype and do not challenge patriarchy. Women face challenges in trying to succeed in business while trying to keep their homes stable. This study concludes that the media represent and reproduce gender stereotypes in spite of the expectation of empowering women. The media reduces these women’s success insignificant rather than a role model for women in society.Keywords: representation of business women in the media, business women in Nigeria, framing in the media, patriarchy, women's subordination
Procedia PDF Downloads 1627798 Innovative Methods of Improving Train Formation in Freight Transport
Authors: Jaroslav Masek, Juraj Camaj, Eva Nedeliakova
Abstract:
The paper is focused on the operational model for transport the single wagon consignments on railway network by using two different models of train formation. The paper gives an overview of possibilities of improving the quality of transport services. Paper deals with two models used in problematic of train formatting - time continuously and time discrete. By applying these models in practice, the transport company can guarantee a higher quality of service and expect increasing of transport performance. The models are also applicable into others transport networks. The models supplement a theoretical problem of train formation by new ways of looking to affecting the organization of wagon flows.Keywords: train formation, wagon flows, marshalling yard, railway technology
Procedia PDF Downloads 4417797 Unlocking the Future of Grocery Shopping: Graph Neural Network-Based Cold Start Item Recommendations with Reverse Next Item Period Recommendation (RNPR)
Authors: Tesfaye Fenta Boka, Niu Zhendong
Abstract:
Recommender systems play a crucial role in connecting individuals with the items they require, as is particularly evident in the rapid growth of online grocery shopping platforms. These systems predominantly rely on user-centered recommendations, where items are suggested based on individual preferences, garnering considerable attention and adoption. However, our focus lies on the item-centered recommendation task within the grocery shopping context. In the reverse next item period recommendation (RNPR) task, we are presented with a specific item and challenged to identify potential users who are likely to consume it in the upcoming period. Despite the ever-expanding inventory of products on online grocery platforms, the cold start item problem persists, posing a substantial hurdle in delivering personalized and accurate recommendations for new or niche grocery items. To address this challenge, we propose a Graph Neural Network (GNN)-based approach. By capitalizing on the inherent relationships among grocery items and leveraging users' historical interactions, our model aims to provide reliable and context-aware recommendations for cold-start items. This integration of GNN technology holds the promise of enhancing recommendation accuracy and catering to users' individual preferences. This research contributes to the advancement of personalized recommendations in the online grocery shopping domain. By harnessing the potential of GNNs and exploring item-centered recommendation strategies, we aim to improve the overall shopping experience and satisfaction of users on these platforms.Keywords: recommender systems, cold start item recommendations, online grocery shopping platforms, graph neural networks
Procedia PDF Downloads 927796 Appraising the Evolution of Architecture as the Representation of Material Culture: The Nigerian Digest
Authors: Ikenna Emmanuel Idoko
Abstract:
Evolution and evolutionary processes are phenomena that have come to stay in the fabrics of the universal living, hence expressions such as universal evolution. These evolutions in the universe cut across all facets of human accomplishments, which architecture is a part of. There is a notion in political sciences that politics and the act of politicking are local, meaning that politics and political processes are unique and peculiar to a people, all dependent on their sociocultural makeup. The notion is also applicable in architecture because the architecture of a people is mostly dependent on several factors such as climatic conditions, material availability, socio-cultural beliefs and religious inclinations. Stemming from the cultural dimension, it is of course common knowledge that every society is driven by its own unique culture. The fusion of architecture and culture creates the actual uniqueness which underlines the “archi-cultural” representation of a people’s material culture. This paper is aimed at appraising architectural evolution as it affects the representation of the material culture of a people. For effective systemization of the aim, various spectacular kinds of literature were reviewed, coupled with the visitation and study of existing buildings in Nigeria to properly understand the live peculiarity in the architecture of the selected area. Since architecture needs a lot of pictorial pieces of evidence, pictures and graphical representations were extensively utilized, and channelled to aid a better understanding of the study. Amongst all, an important part of this paper is that it adds to the body of existing knowledge in the Arts and Humanities by speaking extensively to the tenets of cultural representation on buildings. Similarly, the field of architecture, specifically, traditional architecture, would be gaining some extra knowledge owing to the study of some important almost-neglected or forgotten architectural elements of various traditional buildings.Keywords: evolution, architecture, material, culture
Procedia PDF Downloads 587795 SOM Map vs Hopfield Neural Network: A Comparative Study in Microscopic Evacuation Application
Authors: Zouhour Neji Ben Salem
Abstract:
Microscopic evacuation focuses on the evacuee behavior and way of search of safety place in an egress situation. In recent years, several models handled microscopic evacuation problem. Among them, we have proposed Artificial Neural Network (ANN) as an alternative to mathematical models that can deal with such problem. In this paper, we present two ANN models: SOM map and Hopfield Network used to predict the evacuee behavior in a disaster situation. These models are tested in a real case, the second floor of Tunisian children hospital evacuation in case of fire. The two models are studied and compared in order to evaluate their performance.Keywords: artificial neural networks, self-organization map, hopfield network, microscopic evacuation, fire building evacuation
Procedia PDF Downloads 4067794 Possibility of Making Ceramic Models from Condemned Plaster of Paris (Pop) Moulds for Ceramics Production in Edo State Nigeria
Authors: Osariyekemwen, Daniel Nosakhare
Abstract:
Some ceramic wastes, such as discarded (condemn) Plaster of Paris (POP) in Auchi Polytechnic, Edo State, constitute environmental hazards. This study, therefore, bridges the forgoing gaps by undertaking the use of these discarded (POP) moulds to produced ceramic models for making casting moulds for mass production. This is in line with the possibility of using this medium to properly manage the discarded (condemn) Plaster of Paris (POP) that littered our immediate environment. Presently these are major wastes disposal in the department. Hence, the study has been made to fabricate sanitary miniature models and contract fuse models, respectively. Findings arising from this study show that discarded (condemn) Plaster of Paris (POP) can be carved when to set it neither shrink nor expand; hence warping is quite unusual. Above all, it also gives good finishing with little deterioration with time when compared to clay models.Keywords: plaster of Paris, condemn, moulds, models, production
Procedia PDF Downloads 1917793 Short Review on Models to Estimate the Risk in the Financial Area
Authors: Tiberiu Socaciu, Tudor Colomeischi, Eugenia Iancu
Abstract:
Business failure affects in various proportions shareholders, managers, lenders (banks), suppliers, customers, the financial community, government and society as a whole. In the era in which we have telecommunications networks, exists an interdependence of markets, the effect of a failure of a company is relatively instant. To effectively manage risk exposure is thus require sophisticated support systems, supported by analytical tools to measure, monitor, manage and control operational risks that may arise. As we know, bankruptcy is a phenomenon that managers do not want no matter what stage of life is the company they direct / lead. In the analysis made by us, by the nature of economic models that are reviewed (Altman, Conan-Holder etc.), estimating the risk of bankruptcy of a company corresponds to some extent with its own business cycle tracing of the company. Various models for predicting bankruptcy take into account direct / indirect aspects such as market position, company growth trend, competition structure, characteristics and customer retention, organization and distribution, location etc. From the perspective of our research we will now review the economic models known in theory and practice for estimating the risk of bankruptcy; such models are based on indicators drawn from major accounting firms.Keywords: Anglo-Saxon models, continental models, national models, statistical models
Procedia PDF Downloads 4067792 Improve Safety Performance of Un-Signalized Intersections in Oman
Authors: Siham G. Farag
Abstract:
The main objective of this paper is to provide a new methodology for road safety assessment in Oman through the development of suitable accident prediction models. GLM technique with Poisson or NBR using SAS package was carried out to develop these models. The paper utilized the accidents data of 31 un-signalized T-intersections during three years. Five goodness-of-fit measures were used to assess the overall quality of the developed models. Two types of models were developed separately; the flow-based models including only traffic exposure functions, and the full models containing both exposure functions and other significant geometry and traffic variables. The results show that, traffic exposure functions produced much better fit to the accident data. The most effective geometric variables were major-road mean speed, minor-road 85th percentile speed, major-road lane width, distance to the nearest junction, and right-turn curb radius. The developed models can be used for intersection treatment or upgrading and specify the appropriate design parameters of T- intersections. Finally, the models presented in this thesis reflect the intersection conditions in Oman and could represent the typical conditions in several countries in the middle east area, especially gulf countries.Keywords: accidents prediction models (APMs), generalized linear model (GLM), T-intersections, Oman
Procedia PDF Downloads 2737791 Resisting Adversarial Assaults: A Model-Agnostic Autoencoder Solution
Authors: Massimo Miccoli, Luca Marangoni, Alberto Aniello Scaringi, Alessandro Marceddu, Alessandro Amicone
Abstract:
The susceptibility of deep neural networks (DNNs) to adversarial manipulations is a recognized challenge within the computer vision domain. Adversarial examples, crafted by adding subtle yet malicious alterations to benign images, exploit this vulnerability. Various defense strategies have been proposed to safeguard DNNs against such attacks, stemming from diverse research hypotheses. Building upon prior work, our approach involves the utilization of autoencoder models. Autoencoders, a type of neural network, are trained to learn representations of training data and reconstruct inputs from these representations, typically minimizing reconstruction errors like mean squared error (MSE). Our autoencoder was trained on a dataset of benign examples; learning features specific to them. Consequently, when presented with significantly perturbed adversarial examples, the autoencoder exhibited high reconstruction errors. The architecture of the autoencoder was tailored to the dimensions of the images under evaluation. We considered various image sizes, constructing models differently for 256x256 and 512x512 images. Moreover, the choice of the computer vision model is crucial, as most adversarial attacks are designed with specific AI structures in mind. To mitigate this, we proposed a method to replace image-specific dimensions with a structure independent of both dimensions and neural network models, thereby enhancing robustness. Our multi-modal autoencoder reconstructs the spectral representation of images across the red-green-blue (RGB) color channels. To validate our approach, we conducted experiments using diverse datasets and subjected them to adversarial attacks using models such as ResNet50 and ViT_L_16 from the torch vision library. The autoencoder extracted features used in a classification model, resulting in an MSE (RGB) of 0.014, a classification accuracy of 97.33%, and a precision of 99%.Keywords: adversarial attacks, malicious images detector, binary classifier, multimodal transformer autoencoder
Procedia PDF Downloads 114