Linear Codes Afforded by the Permutation Representations of Finite Simple Groups and Their Support Designs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 87733
Linear Codes Afforded by the Permutation Representations of Finite Simple Groups and Their Support Designs

Authors: Amin Saeidi

Abstract:

Using a representation-theoretic approach and considering G to be a finite primitive permutation group of degree n, our aim is to determine linear codes of length n that admit G as a permutation automorphism group. We can show that in some cases, every binary linear code admitting G as a permutation automorphism group is a submodule of a permutation module defined by a primitive action of G. As an illustration of the method, we consider the sporadic simple group M₁₁ and the unitary group U(3,3). We also construct some point- and block-primitive 1-designs from the supports of some codewords of the codes in the discussion.

Keywords: linear code, permutation representation, support design, simple group

Procedia PDF Downloads 78