Search results for: recycled polypropylene
203 The Analysis of Defects Prediction in Injection Molding
Authors: Mehdi Moayyedian, Kazem Abhary, Romeo Marian
Abstract:
This paper presents an evaluation of a plastic defect in injection molding before it occurs in the process; it is known as the short shot defect. The evaluation of different parameters which affect the possibility of short shot defect is the aim of this paper. The analysis of short shot possibility is conducted via SolidWorks Plastics and Taguchi method to determine the most significant parameters. Finite Element Method (FEM) is employed to analyze two circular flat polypropylene plates of 1 mm thickness. Filling time, part cooling time, pressure holding time, melt temperature and gate type are chosen as process and geometric parameters, respectively. A methodology is presented herein to predict the possibility of the short-shot occurrence. The analysis determined melt temperature is the most influential parameter affecting the possibility of short shot defect with a contribution of 74.25%, and filling time with a contribution of 22%, followed by gate type with a contribution of 3.69%. It was also determined the optimum level of each parameter leading to a reduction in the possibility of short shot are gate type at level 1, filling time at level 3 and melt temperature at level 3. Finally, the most significant parameters affecting the possibility of short shot were determined to be melt temperature, filling time, and gate type.Keywords: injection molding, plastic defects, short shot, Taguchi method
Procedia PDF Downloads 218202 Study of Mechanical Properties of Leno Woven Bags in Lower Weight Capacities
Authors: Golda Honey Madhu, Priyanka Gupta, Anil Kumar Yadav
Abstract:
The study is aimed at analyzing and understanding the design and performance properties of leno woven sacks specifically meant for holding lower weight goods under the category of lower weight capacities. The sacks are a huge part of the agro-based packaging industries which helps in keeping the perishable produce, especially fruits, fresh during transit and storage. Nowadays, Leno bags are primarily made from polypropylene, mainly due its cost-effectiveness, reusability and high strength with low weight property making it an ideal packaging solution for transportation. The design parameters are noted, and major properties like tensile strength, abrasion resistance, bursting strength, impact resistance, stiffness and bagging behaviour has been analyzed for lower weight capacities. An examination of these particular weight categories will provide valuable information on how to scale performance. Currently there are standards available for only 25 kg and 50 kg Leno sacks, and this study will further enhance the already existing testing standards and also provide tested structure-property analysis for lower weight Leno sacks. Hence the results of this research can provide significant insights for researchers, manufacturers and industry-experts with the goal of improving the quality and longevity of Leno woven sacks, thereby developing the packaging technology.Keywords: leno bags, structure-property analysis, agro-based packaging, lower weight sacks
Procedia PDF Downloads 23201 Energy Conversion from Waste Paper Industry Using Fluidized Bed Combustion
Authors: M. Dyah Ayu Yuli, S. Faisal Dhio, P. Johandi, P. Muhammad Sofyan
Abstract:
Pulp and paper mills generate various quantities of energy-rich biomass as wastes, depending on technological level, pulp and paper grades and wood quality. These wastes are produced in all stages of the process: wood preparation, pulp and paper manufacture, chemical recovery, recycled paper processing, waste water treatment. Energy recovery from wastes of different origin has become a generally accepted alternative to their disposal. Pulp and paper industry expresses an interest in adapting and integrating advanced biomass energy conversion technologies into its mill operations using Fluidized Bed Combustion. Industrial adoption of these new technologies has the potential for higher efficiency, lower capital cost, and safer operation than conventional operations that burn fossil fuels for energy. Incineration with energy recovery has the advantage of hygienic disposal, volume reduction, and the recovery of thermal energy by means of steam or super heated water that can be used for heating and power generation.Keywords: biomass, fluidized bed combustion, pulp and paper mills, waste
Procedia PDF Downloads 473200 Disposable Coffee Cups Recycling
Authors: Sasan Mohammadi
Abstract:
Due to our passion for coffee, we use 16 billion throwaway coffee cups yearly. Coffee lovers throughout the globe have discovered the hard way that their paper cups are not recyclable, despite what coffee businesses have repeatedly assured them [1] A disposable, single-use coffee cup comprises a paper and polyethylene layer. Polyethylene is a typical material used to fill a coffee cup's inside to keep its structure and provide water and heat resistance. In addition, the polyethylene layer prevents recycling since it is difficult to separate the plastic liner from the paper layer [2]. In addition, owing to the plastic membrane lining many of these cups, they cannot be recycled and may take up to 30 years to biodegrade [3]. Most of researcher try to separate plastic part ,but it is not economical and easy.For this purposes,it is not yet happen. In our research we don't separate plastic, just we make a homogeneous pulp with cold water.then fix it in mold and dry it,after completely drying cycle we heated the product in 100 degree of centigrade this cause a sintering effect by plastic particle between paper fibers.This method increase 30 percent the strength of product.This product has a good sound proof and thermal isolation. This means we can use it as insulator.with low density we can control the the density by percentage of air solved in pulp.Keywords: recycling, disposable coffee cup, insolator, low density
Procedia PDF Downloads 77199 Testing Plastic-Sand Construction Blocks Made from Recycled Polyethylene Terephthalate (rPET)
Authors: Cassi Henderson, Lucia Corsini, Shiv Kapila, Egle Augustaityte, Tsemaye Uwejamomere Zinzan Gurney, Aleyna Yildirim
Abstract:
Plastic pollution is a major threat to human and planetary health. In Low- and Middle-Income Countries, plastic waste poses a major problem for marginalized populations who lack access to formal waste management systems. This study explores the potential for converting waste plastic into construction blocks. It is the first study to analyze the use of polyethylene terephthalate (PET) as a binder in plastic-sand bricks. Unlike previous studies of plastic sand-bricks, this research tests the properties of bricks that were made using a low-cost kiln technology that was co-designed with a rural, coastal community in Kenya. The mechanical strength, resistance to fire and water absorption properties of the bricks are tested in this study. The findings show that the bricks meet structural standards for mechanical performance, fire resistance and water absorption. It was found that 30:70 PET to sand demonstrated the best overall performance.Keywords: recycling, PET, plastic, sustainable construction, sustainable development
Procedia PDF Downloads 126198 Use of Waste Road-Asphalt as Aggregate in Pavement Block Production
Authors: Babagana Mohammed, Abdulmuminu Mustapha Ali, Solomon Ibrahim, Buba Ahmad Umdagas
Abstract:
This research investigated the possibility of replacing coarse and fine aggregates with waste road-asphalt (RWA), when sieved appropriately, in concrete production. Interlock pavement block is used widely in many parts of the world as modern day solution to outdoor flooring applications. The weight-percentage replacements of both coarse and fine aggregates with RWA at 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% respectively using a concrete mix ratio of 1:2:4 and water-to-cement ratio of 0.45 were carried out. The interlock block samples produced were then cured for 28days. Unconfined compressive strength (UCS) and the water absorption properties of the samples were then tested. Comparison of the results of the RWA-containing samples to those of the respective control samples shows significant benefits of using RWA in interlock block production. UCS results of RWA-containing samples compared well with those of the control samples and the RWA content also influenced the lowering of the water absorption of the samples. Overall, the research shows that it is possible to replace both coarse and fine aggregates with RWA materials when sieved appropriately, hence indicating that RWA could be recycled beneficially.Keywords: aggregate, block-production, pavement, road-asphalt, use, waste
Procedia PDF Downloads 196197 Recovery of Local Materials in Pavements in Areas with an Arid Climate
Authors: Hocini Yousra, Medjnoun Amal, Khiatine Mohamed, Bahar Ramdane
Abstract:
The development of the regions of southern Algeria require the construction of numerous road, rail, and airport infrastructures. However, this development is very expensive given the very severe climatic conditions, the difficulty of reusing local materials, and the unavailability of water on the project sites; these regions are characterized by an arid or semi-arid climate, which means that water sources are very limited. The climatic conditions and the scarcity of water make soil compaction work very difficult and excessively expensive. These constraints related to the supply of water for irrigation of these construction sites make it necessary to examine the solution of compaction with low water content. This work studies the possibility of improving the compaction with a low water content of the soils of southern Algeria and this by using natural or recycled ecological materials. Local soils are first subjected to a series of laboratory characterization tests, then mixed with varying amounts of natural additives. The new materials are, in turn, subjected to road tests.Keywords: compaction, low water content, sand, natural materials
Procedia PDF Downloads 121196 Impact of Life Cycle Assessment for Municipal Plastic Waste Treatment in South Africa
Authors: O. A. Olagunju, S. L. Kiambi
Abstract:
Municipal Plastic Wastes (MPW) can have several negative effects on the environment, and this is causing a growing concern which requires urgent intervention. Addressing these environmental challenges by proffering alternative end-of-life (EOL) techniques for MPW treatment is thus critical for designing and implementing effective long-term remedies. In this study, the environmental implications of several MPW treatment technologies were assessed using life cycle assessment (LCA). Our focus was on four potential waste treatment scenarios for MPW: waste disposal via landfill, waste incineration, waste regeneration, and reusability of recycled waste. The findings show that recycling has a greater benefit over landfilling and incineration methods. The most important environmental benefit comes from the recycling of plastics, which may serve as reliable source materials for environmentally friendly products. Following a holistic evaluation, five major factors that influence the overall impact on the environment were outlined: the mass fraction in waste, the recycling rate, the conversion efficiency, the waste-to-energy conversion rate, and the type of energy which can be utilized from incineration generated energyKeywords: end-of-life, incineration, landfill, life cycle assessment, municipal plastic waste, recycling, waste-to-energy
Procedia PDF Downloads 83195 Polymer Recycling by Biomaterial and Its Application in Grease Formulation
Authors: Amitkumar Barot, Vijaykumar Sinha
Abstract:
There is growing interest in the development of new materials based on recycled polymers from plastic waste, and also in the field of lubricants much effort has been spent on substitution of petro-based raw materials by natural-based renewable ones. This is due to the facts of depleting fossil fuels and due to strict environmental laws. In relevance to this, new technique for the formulation of grease that combines the chemical recycling of poly (ethylene terephthalate) PET with the use of castor oil (CO) has been developed. Comparison to diols used in chemical recycling of PET, castor oil is renewable, easily available, environmentally friendly, economically cheaper and hence sustainability indeed. The process parameters like CO concentration and temperature were altered, and further, the influences of the process parameters have been studied in order to establish technically and commercially viable process. Further thereby formed depolymerized product find an application as base oil in the formulation of grease. A depolymerized product has been characterized by various chemical and instrumental methods, while formulated greases have been evaluated for its tribological properties. The grease formulated using this new environmentally friendly approach presents applicative properties similar, and in some cases superior, compared to those of a commercial grease obtained from non-renewable resources.Keywords: castor oil, grease formulation, recycling, sustainability
Procedia PDF Downloads 220194 Effects of Storage Methods on Proximate Compositions of African Yam Bean (Sphenostylis stenocarpa) Seeds
Authors: Iyabode A. Kehinde, Temitope A. Oyedele, Clement G. Afolabi
Abstract:
One of the limitations of African yam bean (AYB) (Sphenostylis sternocarpa) is poor storage ability due to the adverse effect of seed-borne fungi. This study was conducted to examine the effects of storage methods on the nutritive composition of AYB seeds stored in three types of storage materials viz; Jute bags, Polypropylene bags, and Plastic Bowls. Freshly harvested seeds of AYB seeds were stored in all the storage materials for 6 months using 2 × 3 factorial (2 AYB cultivars and 3 storage methods) in 3 replicates. The proximate analysis of the stored AYB seeds was carried out at 3 and 6 months after storage using standard methods. The temperature and relative humidity of the storeroom was recorded monthly with Kestrel pocket weather tracker 4000. Seeds stored in jute bags gave the best values for crude protein (24.87%), ash (5.69%) and fat content (6.64%) but recorded least values for crude fibre (2.55%), carbohydrate (50.86%) and moisture content (12.68%) at the 6th month of storage. The temperature of the storeroom decreased from 32.9ºC - 28.3ºC, while the relative humidity increased from 78% - 86%. Decreased incidence of field fungi namely: Rhizopus oryzae, Aspergillus flavus, Geotricum candidum, Aspergillus fumigatus and Mucor meihei was accompanied by the increase in storage fungi viz: Apergillus niger, Mucor hiemalis, Penicillium espansum and Penicillium atrovenetum with prolonged storage. The study showed that of the three storage materials jute bag was more effective at preserving AYB seeds.Keywords: storage methods, proximate composition, African Yam Bean, fungi
Procedia PDF Downloads 135193 Smart Trash Can Interface between Origin and Destination Waste Management
Authors: Fatemeh Ghorbani
Abstract:
The increase in population in the cities has also led to the increase and accumulation of urban waste. Managing and organizing waste is an action that must be taken to prevent environmental pollution. Separation of waste from the source is the first step that must be taken to determine whether the waste should be buried, burned, recycled, or used in the industry according to its type. Separation of trash is a cultural work that the general public must learn the necessity of doing; then, it is necessary to provide suitable conditions for collecting this waste. It is necessary to put segregated garbage cans in the city so that people can put the garbage in the right place. In this research, a smart trash can has been designed, which is connected to the central system of the municipality and has information on the units of each neighborhood separately. By entering the postal code on the page connected to each bin and entering the type of waste, the section related to the waste in the existing bin is opened and the person places the waste in the desired section. In addition, all the bins are connected to the municipal system, and the sensors in it warn each relevant body about the fullness and emptiness of the bins. Also, people can know how full and empty the bins around their building are through the designed application connected to the system. In this way, each organization collects its desired waste, wet and dry waste are separated from the beginning, and city pollution and unpleasant odors are also prevented.Keywords: connector, smart trash can, waste management
Procedia PDF Downloads 66192 Regenerated Cotton/Feather Keratin Composite Materials Prepared Using Ionic Liquids
Authors: Rasike De Silva, Xungai Wang, Nolene Byrne
Abstract:
We report on the blending of cotton and duck feather towards developing a new textile fibre. The cotton and duck feather were blended together by dissolving both components in an ionic liquid. Ionic liquids are designer solvents consisting entirely of ions with a melting point below 100˚C. Ionic liquids can be designed to have numerous and varied properties which include the ability to dissolve bio polymers. The dissolution of bio polymers such as cotton or wool generally requires very harsh acid or alkaline conditions and high temperatures. The ionic liquids which can dissolve bio polymers can be considered environmentally benign since they have negligible vapor pressure and can be recycled and reused. We have selected the cellulose dissolving and recyclable ionic liquid 1-allyl-3-methylimidazolium chloride (AMIMCl) as the dissolving and blending solvent for the cotton and duck feather materials. We have casted films and wet spun fibres at varying cotton and duck feather compositions and characterized the material properties of these. We find that the addition of duck feather enhances the elasticity of regenerated cotton. The strain% at breakage of the regenerated film was increased from 4.2% to 11.63% with a 10% duck feather loading, while the corresponding stress at breakage reduced from 54.89 MPa to 47.16 MPa.Keywords: textile materials, bio polymers, ionic liquids, duck feather
Procedia PDF Downloads 480191 Effect of Injection Moulding Process Parameter on Tensile Strength of Using Taguchi Method
Authors: Gurjeet Singh, M. K. Pradhan, Ajay Verma
Abstract:
The plastic industry plays very important role in the economy of any country. It is generally among the leading share of the economy of the country. Since metals and their alloys are very rarely available on the earth. So to produce plastic products and components, which finds application in many industrial as well as household consumer products is beneficial. Since 50% plastic products are manufactured by injection moulding process. For production of better quality product, we have to control quality characteristics and performance of the product. The process parameters plays a significant role in production of plastic, hence the control of process parameter is essential. In this paper the effect of the parameters selection on injection moulding process has been described. It is to define suitable parameters in producing plastic product. Selecting the process parameter by trial and error is neither desirable nor acceptable, as it is often tends to increase the cost and time. Hence optimization of processing parameter of injection moulding process is essential. The experiments were designed with Taguchi’s orthogonal array to achieve the result with least number of experiments. Here Plastic material polypropylene is studied. Tensile strength test of material is done on universal testing machine, which is produced by injection moulding machine. By using Taguchi technique with the help of MiniTab-14 software the best value of injection pressure, melt temperature, packing pressure and packing time is obtained. We found that process parameter packing pressure contribute more in production of good tensile plastic product.Keywords: injection moulding, tensile strength, poly-propylene, Taguchi
Procedia PDF Downloads 288190 Reactive Oxygen Species-Mediated Photoaging Pathways of Ultrafine Plastic Particles under UV Irradiation
Authors: Jiajun Duan, Yang Li, Jianan Gao, Runzi Cao, Enxiang Shang, Wen Zhang
Abstract:
Reactive oxygen species (ROS) generation is considered as an important photoaging mechanism of microplastics (MPs) and nanoplastics (NPs). To elucidate the ROS-induced MP/NP aging processes in water under UV365 irradiation, we examined the effects of surface coatings, polymer types, and grain sizes on ROS generation and photoaging intermediates. Bare polystyrene (PS) NPs generated hydroxyl radicals (•OH) and singlet oxygen (¹O₂), while coated PS NPs (carboxyl-modified PS (PS-COOH), amino-modified PS (PS-NH₂)) and PS MPs generated fewer ROS due to coating scavenging or size effects. Polypropylene, polyethylene, polyvinyl chloride, polyethylene terephthalate, and polycarbonate MPs only generated •OH. For aromatic polymers, •OH addition preferentially occurred at benzene rings to form monohydroxy polymers. Excess •OH resulted in H abstraction, C-C scission, and phenyl ring opening to generate aliphatic ketones, esters, aldehydes, and aromatic ketones. For coated PS NPs, •OH preferentially attacked the surface coatings to result in decarboxylation and deamination reactions. For aliphatic polymers, •OH attack resulted in the formation of carbonyl groups from peracid, aldehyde, or ketone via H abstraction and C-C scission. Moreover, ¹O₂ might participate in phenyl ring opening for PS NPs and coating degradation for coated PS NPs. This study facilitates understanding the ROS-induced weathering process of NPs/MPs in water under UV irradiation.Keywords: microplastics, nanoplastics, photoaging, reactive oxygen species, surface coating
Procedia PDF Downloads 157189 Case Study: Geomat Installation against Slope Erosion
Authors: Serap Kaymakci, Dogan Gundogdu, M. Bugra Yagcioglu
Abstract:
Erosion (soil erosion) is a phenomenon in which the soil on the slope surface is exposed to natural influences such as wind, rainfall, etc. in open areas. The most natural solution to prevent erosion is to plant surfaces exposed to erosion. However, proper ground and natural conditions must be provided in order for planting to occur. Erosion is prevented in a fast and natural way and the loss of soil is reduced mostly. Lead to allowing plants to hold onto the soil with its three-dimensional and hollow structure are as follows: The types of geomat called MacMat that is used in a case study in Turkey in order to prevent water carry over due to rainfall. The geosynthetic combined with double twisted steel wire mesh. That consists of 95% Zn–5% Al alloy coated double twisted steel wire based that is a reinforced MacMat (geosynthetic three-dimensional erosion control mat) obtained by a polypropylene consisted (mesh type 8x10-Wire diam. 2.70 mm–95% Zn–5% Al alloy coated). That is developed by the progress of the technology. When using reinforced MacMat on top clay liners, fixing pins should not be used as they will rupture the mats. Mats are simply anchored (J Type) in the top trench and, if necessary, in intermediate berm trenches. If the slope angle greater than 20°, it is necessary to use additional rebar depending soil properties also. These applications may have specific technical and installation requirements. In that project, the main purpose is erosion control after that is greening. There is a slope area around the factory which is located in Gebze, İstanbul.Keywords: erosion, GeoMat, geosynthetic, slope
Procedia PDF Downloads 177188 Eco-Friendly Approach in the Management of Stored Sorghum Insect Pests in Small-Scale Farmers’ Storage Structures of Northern Nigeria
Authors: Mohammed Suleiman, Ibrahim Sani, Samaila Abubakar, Kabir Abdullahi Bindawa
Abstract:
Farmers’ storage structures in Pauwa village of Katsina State, Northern Nigeria, were simulated and incorporated with the application of leaf powders of Euphorbia balsamifera Aiton, Lawsonia inermis L., Mitracarpus hirtus (L.) DC. and Senna obtusifolia L. to search for more eco-friendly methods of managing insect pests of stored sorghum. The four most commonly grown sorghum varieties in the study area, namely “Farar Kaura” (FK), “Jar Kaura” (JK), “Yar Gidan Daudu” (YGD), and ICSV400 in threshed forms were used for the study. The four varieties (2.50 kg each) were packed in small polypropylene bags, mixed with the leaf powders at the concentration of 5% (w/w) of the plants, and kept in small stores of the aforementioned village for 12 weeks. Insect pests recovered after 12 weeks were Sitophilus zeamais, Rhyzopertha dominica, Tribolium castaneum, Cryptolestes ferrugineus, and Oryzaephilus surinamensis. There were significantly fewer insect pests in treated sorghum than in untreated types (p < 0.05). More weight losses were recorded in untreated grains than in those treated with the botanical powders. In terms of varieties, grain weight losses were in the order FK > JK > YGD > ICSV400. The botanicals also showed significant (p < 0.05) protectant ability against the weevils with their performance as E. balsamifera > L. inermis > M. hirtus > S. obtusifolia.Keywords: botanical powders, infestations, insect pests, management, sorghum varieties, storage structures, weight losses
Procedia PDF Downloads 101187 Spatial Assessment of Soil Contamination from Informal E-Waste Recycling Site in Agbogbloshie, Ghana
Authors: Kyere Vincent Nartey, Klaus Greve, Atiemo Sampson
Abstract:
E-waste is discarded electrical electronic equipment inclusive of all components, sub-assemblies and consumables which are part of the product at the time of discarding and known to contain both hazardous and valuable fractions. E-waste is recycled within the proposed ecological restoration of the Agbogbloshie enclave using crude and rudimental recycling procedures such as open burning and manual dismantling which result in pollution and contamination of soil, water and air. Using GIS, this study was conducted to examine the spatial distribution and extent of soil contamination by heavy metals from the e-waste recycling site in Agbogbloshie. From the month of August to November 2013, 146 soil samples were collected in addition to their coordinates using GPS. Elemental analysis performed on the collected soil samples using X-Ray fluorescence revealed over 30 elements including, Ni, Cr, Zn, Cu, Pb and Mn. Using geostatistical techniques in ArcGIS 10.1 spatial assessment and distribution maps were generated. Mathematical models or equations were used to estimate the degree of contamination and pollution index. Results from soil analysis from the Agbogbloshie enclave showed that levels of measured or observed elements were significantly higher than the Canadian EPA and Dutch environmental standards.Keywords: e-waste, geostatistics, soil contamination, spatial distribution
Procedia PDF Downloads 515186 Development of Nondestructive Imaging Analysis Method Using Muonic X-Ray with a Double-Sided Silicon Strip Detector
Authors: I-Huan Chiu, Kazuhiko Ninomiya, Shin’ichiro Takeda, Meito Kajino, Miho Katsuragawa, Shunsaku Nagasawa, Atsushi Shinohara, Tadayuki Takahashi, Ryota Tomaru, Shin Watanabe, Goro Yabu
Abstract:
In recent years, a nondestructive elemental analysis method based on muonic X-ray measurements has been developed and applied for various samples. Muonic X-rays are emitted after the formation of a muonic atom, which occurs when a negatively charged muon is captured in a muon atomic orbit around the nucleus. Because muonic X-rays have higher energy than electronic X-rays due to the muon mass, they can be measured without being absorbed by a material. Thus, estimating the two-dimensional (2D) elemental distribution of a sample became possible using an X-ray imaging detector. In this work, we report a non-destructive imaging experiment using muonic X-rays at Japan Proton Accelerator Research Complex. The irradiated target consisted of polypropylene material, and a double-sided silicon strip detector, which was developed as an imaging detector for astronomical observation, was employed. A peak corresponding to muonic X-rays from the carbon atoms in the target was clearly observed in the energy spectrum at an energy of 14 keV, and 2D visualizations were successfully reconstructed to reveal the projection image from the target. This result demonstrates the potential of the non-destructive elemental imaging method that is based on muonic X-ray measurement. To obtain a higher position resolution for imaging a smaller target, a new detector system will be developed to improve the statistical analysis in further research.Keywords: DSSD, muon, muonic X-ray, imaging, non-destructive analysis
Procedia PDF Downloads 206185 Analysis of Behaviors of Single and Group Helical Piles in Sands from Experiment Results
Authors: Jongho Park, Junwon Lee, Byeonghyun Choi, Kicheol Lee, Dongwook Kim
Abstract:
The typically-used oil sand plant foundations are driven pile or drilled shaft. With more strict environmental regulations world widely, it became more important to completely remove the foundation during the stage of plant demolition. However, it is difficult to remove driven piles or drilled shafts that are installed at a deeper and stronger depth to gain more bearing pile capacity. The helical pile can be easily removed after its use and recycled; therefore it is suitable for oil sand plant foundation. This study analyzes the behavior of helical piles in sands. Axial pile load tests were carried out the varying spacing of helix plates (helices), rotation speed and weight of axial loading during pile installation. From the experiments, optimal helix plate spacing, rotation speed, axial loading during installation were determined. In addition, the behavior of helical pile groups was examined varying pile spacing. Finally, the behavior of single helical piles and that of group helical piles were compared.Keywords: oil sand plant, pile load test, helical pile, group helical pile, behavior
Procedia PDF Downloads 167184 Analysis of the Impacts and Challenges of Conventional Solid Waste Management in Urban Centers of Developing Countries
Authors: Haruna Abdu Usman, J. Mohammed Umar, U. M. Bashir
Abstract:
Solid waste management continued to be the biggest threat to the sustainability of urban centers of developing countries. Most streets corners of these urban centers are characterized by heaps of uncollected wastes at drains, public spaces and road sides destroying the aesthetic qualities and environmental ecosystems of these cities. Also, harboring disease vectors and rodents putting the health of the populace at risk, thus posing a serious challenge to the municipalities who are in most cases responsible for the solid waste management in these cities. The typical or commonest method adapted by these agencies in dealing with the solid waste management is the conventional approach; focusing mainly on waste collection ,treatment(composting and incineration)and disposal giving little consideration to the 3RS, of waste reduce, re-used and recycled. The resultant consequence being huge budget spending in solid waste management as high as 80% but little collection rate as low as 50%. This paper attempt to analyze the impacts and effects of the conventional solid waste management practices on the stakeholders in solid waste management; the municipal authorities, the communities, formal and informal waste managers, the NGOs and CBOs and suggests appropriate measures that would lessen the effects.Keywords: conventional waste management, solid waste, waste stakeholders, developing countries
Procedia PDF Downloads 456183 A Study on Leaching of Toxic Elements of High Strength Concrete Containing Waste Cathode Ray Tube Glass as Coarse Aggregate
Authors: Nurul Noraziemah Mohd Pauzi, Muhammad Fauzi Mohd Zain
Abstract:
The rapid advance in the electronic industry has led to the increase amount of the waste cathode ray tube (CRT) devices. The management of CRT waste upon disposal haves become a major issue of environmental concern as it contains toxic elements (i.e. lead, barium, zinc, etc.) which has a risk of leaching if it is not managed appropriately. Past studies have reported regarding the possible use of CRT glass as a part of aggregate in concrete production. However, incorporating waste CRT glass may present an environmental risk via leachability of toxic elements. Accordingly, the preventive measures for reducing the risk was proposed. The current work presented the experimental results regarding potential leaching of toxic elements from four types of concrete mixed, each compromising waste CRT glass as coarse aggregate with different shape and properties. Concentrations of detected elements are measure in the leachates by using atomic absorption spectrometry (AAS). Results indicate that the concentration of detected elements were found to be below applicable risk, despite the higher content of toxic elements in CRT glass. Therefore, the used of waste CRT glass as coarse aggregate in hardened concrete does not pose any risk of leachate of heavy metals to the environment.Keywords: recycled CRT glass, coarse aggregate, physical properties, leaching, toxic elements
Procedia PDF Downloads 358182 Method Validation for Determining Platinum and Palladium in Catalysts Using Inductively Coupled Plasma Optical Emission Spectrometry
Authors: Marin Senila, Oana Cadar, Thorsten Janisch, Patrick Lacroix-Desmazes
Abstract:
The study presents the analytical capability and validation of a method based on microwave-assisted acid digestion for quantitative determination of platinum and palladium in catalysts using inductively coupled plasma optical emission spectrometry (ICP-OES). In order to validate the method, the main figures of merit such as limit of detection and limit of quantification, precision and accuracy were considered and the measurement uncertainty was estimated based on the bottom-up approach according to the international guidelines of ISO/IEC 17025. Limit of detections, estimated from blank signal using 3 s criterion, were 3.0 mg/kg for Pt and respectively 3.6 mg/kg for Pd, while limits of quantification were 9.0 mg/kg for Pt and respectively 10.8 mg/kg for Pd. Precisions, evaluated as standard deviations of repeatability (n=5 parallel samples), were less than 10% for both precious metals. Accuracies of the method, verified by recovery estimation certified reference material NIST SRM 2557 - pulverized recycled monolith, were 99.4 % for Pt and 101% for Pd. The obtained limit of quantifications and accuracy were satisfactory for the intended purpose. The paper offers all the steps necessary to validate the determination method for Pt and Pd in catalysts using inductively coupled plasma optical emission spectrometry.Keywords: catalyst analysis, ICP-OES, method validation, platinum, palladium
Procedia PDF Downloads 168181 Experimental Study on Modified Double Slope Solar Still and Modified Basin Type Double Slope Multiwick Solar Still
Authors: Piyush Pal, Rahul Dev
Abstract:
Water is essential for life and fresh water is a finite resource that is becoming scarce day by day even though it is recycled by hydrological cycle. The fresh water reserves are being polluted due to expanding irrigation, industries, urban population and its development. Contaminated water leads to several health problems. With the increasing demand of fresh water, solar distillation is an alternate solution which uses solar energy to evaporate water and then to condense it, thereby collecting distilled water within or outside the same system to use it as potable water. The structure that houses the process is known as a 'solar still'. In this paper, ‘Modified double slope solar still (MDSSS)’ & 'Modified double slope basin type multiwick solar still (MDSBMSS)' have been designed to convert saline, brackish water into drinking water. In this work two different modified solar stills are fabricated to study the performance of these solar stills. For modification of solar stills, Fibre Reinforced Plastic (FRP) and Acrylic sheets are used. The experiments in MDSBMSS and MDSSS was carried on 10 September 2015 & 5 November 2015 respectively. Performances of the stills were investigated. The amount of distillate has been found 3624 Ml/day in MDSBMSS on 10 September 2015 and 2400 Ml/day in MDSSS on 5 November 2015.Keywords: contaminated water, conventional solar still, modified solar still, wick
Procedia PDF Downloads 432180 Analyzing the Performance Properties of Stress Absorbing Membrane Interlayer Modified with Recycled Crumb Rubber
Authors: Seyed Mohammad Asgharzadeh, Moein Biglari
Abstract:
Asphalt overlay is the most commonly used technique of pavement rehabilitation. However, the reflective cracks which occur on the overlay surface after a short period of time are the most important distresses threatening the durability of new overlays. Stress Absorbing Membrane Interlayers (SAMIs) are used to postpone the reflective cracking in the overlays. Sand asphalt mixtures, in unmodified or crumb rubber modified (CRM) conditions, can be used as an SAMI material. In this research, the performance properties of different SAMI applications were evaluated in the laboratory using an Indirect Tensile (IDT) fracture energy. The IDT fracture energy of sand asphalt samples was also evaluated and then compared to that of the regular dense graded asphalt used as an overlay. Texas boiling water and modified Lottman tests were also conducted to evaluate the moisture susceptibility of sand asphalt mixtures. The test results showed that sand asphalt mixtures can stand higher levels of energy before cracking, and this is even more pronounced for the CRM sand mix. Sand asphalt mixture using CRM binder was also shown to be more resistance to moisture induced distresses.Keywords: SAMI, sand asphalt, crumb rubber, indirect tensile test
Procedia PDF Downloads 228179 Understanding the Thermal Transformation of Random Access Memory Cards: A Pathway to Their Efficient Recycling
Authors: Khushalini N. Ulman, Samane Maroufi, Veena H. Sahajwalla
Abstract:
Globally, electronic waste (e-waste) continues to grow at an alarming rate. Several technologies have been developed to recover valuable materials from e-waste, however, their efficiency can be increased with a better knowledge of the e-waste components. Random access memory cards (RAMs) are considered as high value scrap for the e-waste recyclers. Despite their high precious metal content, RAMs are still recycled in a conventional manner resulting in huge loss of resources. Our research work highlights the precious metal rich components of a RAM. Inductively coupled plasma (ICP) analysis of RAMs of six different generations have been carried out and the trends in their metal content have been investigated. Over the past decade, the copper content of RAMs has halved and their tin content has increased by 70 %. The stricter environmental laws have facilitated ~96 % drop in the lead content of RAMs. To comprehend the fundamentals of thermal transformation of RAMs, our research provides their detailed kinetic study. This can assist the e-waste recyclers in optimising their metal recovery processes. Thus, understanding the chemical and thermal behaviour of RAMs can open new avenues for efficient e-waste recycling.Keywords: electronic waste, kinetic study, recycling, thermal transformation
Procedia PDF Downloads 145178 Effects of the Tomato Pomace Oil Extract on Physical and Antioxidant Properties of Gelatin Films
Authors: N. Jirukkakul, J. Sodtipinta
Abstract:
Tomatoes are widely consumed as fresh and processed products through the manufacturing industry. Therefore, tomato pomace is generated as a by-product accounting for about 5-13% of the whole tomato. Antioxidants still remain in tomato pomace and extraction of tomato oil may useful in edible film production. The edible film solution was prepared by mixing gelatin (2, 4 and 6%) with the distilled water and heating at 40oC for 30 min. Effect of tomato pomace oil was evaluated at 0, 0.5 and 1%. Film solution was poured in plate and dried overnight at 40oC before determining the physical properties, which are tensile strength, moisture content, color, solubility, and swelling power. The results showed that an increase gelatin concentration caused increasing of tensile strength, moisture content, solubility and swelling power. The edible film with tomato pomace oil extract appeared as the rough film with oil droplet dispersion. The addition of tomato pomace oil extract caused an increase in lightness, redness and yellowness, while tensile strength, moisture content, and solubility were decreased. Film with tomato pomace oil extract at 0.5 and 1% exhibited antioxidant properties but those properties were not significantly different (p<0.05) between film incorporated with tomato pomace oil extract 0.5 and 1%. The suitable condition for film production in this study, 4% of gelatin and 0.5% of tomato pomace oil extract, was selected for protecting oxidation of palm oil. At 15 days of the storage period, the palm oil which covered by gelatin film with tomato pomace oil extract had 22.45 milliequivalents/kg of peroxide value (PV), while, the palm oil which covered by polypropylene film and control had 24.79 and 26.67 milliequivalents/kg, respectively. Therefore, incorporation of tomato pomace oil extract in gelatin film was able to protect the oxidation of food products with high fat content.Keywords: antioxidant, gelatin films, physical properties, tomato oil extract
Procedia PDF Downloads 280177 A Metallography Study of Secondary A226 Aluminium Alloy Used in Automotive Industries
Authors: Lenka Hurtalová, Eva Tillová, Mária Chalupová, Juraj Belan, Milan Uhríčik
Abstract:
The secondary alloy A226 is used for many automotive casting produced by mould casting and high pressure die-casting. This alloy has excellent castability, good mechanical properties and cost-effectiveness. Production of primary aluminium alloys belong to heavy source fouling of life environs. The European Union calls for the emission reduction and reduction in energy consumption, therefore, increase production of recycled (secondary) aluminium cast alloys. The contribution is deal with influence of recycling on the quality of the casting made from A226 in automotive industry. The properties of the casting made from secondary aluminium alloys were compared with the required properties of primary aluminium alloys. The effect of recycling on microstructure was observed using combination different analytical techniques (light microscopy upon black-white etching, scanning electron microscopy-SEM upon deep etching and energy dispersive X-ray analysis-EDX). These techniques were used for the identification of the various structure parameters, which was used to compare secondary alloy microstructure with primary alloy microstructure.Keywords: A226 secondary aluminium alloy, deep etching, mechanical properties, recycling foundry aluminium alloy
Procedia PDF Downloads 542176 Impacts of Low-Density Polyethylene (Plastic Shopping Bags) on Structural Strength and Permeability of Hot-Mix-Asphalt Pavements
Authors: Chayanon Boonyuid
Abstract:
This paper experiments the effects of low-density polyethylene (LDPE) on the structural strength and permeability of hot-mix-asphalt (HMA) pavements. Different proportions of bitumen (4%, 4.5%, 5%, 5.5% and 6% of total aggregates) and plastic (5%, 10% and 15% of bitumen) contents in HMA mixtures were investigated to estimate the optimum mixture of bitumen and plastic in HMA pavement with long-term performance. Marshall Tests and Falling Head Tests were performed to experiment the structure strength and permeability of HMA mixtures with different percentages of plastic materials and bitumen. The laboratory results show that the optimum binder content was 5.5% by weight of aggregates with higher contents of plastic materials, increase structural stability, reduce permanent deformation, increase ductility, and improve fatigue life of HMA pavements. The use of recycled plastic shopping bags can reduce the use of bitumen content by 0.5% - 1% in HMA mixtures resulting in cheaper material costs with better long-term performance. The plastic materials increase the impermeability of HMA pavements. This study has two-fold contributions: optimum contents of both bitumen and plastic materials in HMA mixtures and the impacts of plastic materials on the permeability of HMA pavements.Keywords: plastic bags, bitumen, structural strength, permeability
Procedia PDF Downloads 151175 Developing a Mathematical Model for Trade-Off Analysis of New Green Products
Authors: M. R. Gholizadeh, N. Bhuiyan, M. Salari
Abstract:
In the near future, companies will be increasingly forced to shift their activities along a new road in order to decrease the harmful effects of their design, production and after-life on our environment. Products must meet environmental standards to not only prevent penalties but to consider the sustainability for future generations. However, the most important factor that companies will face is selecting a reasonable strategy to maximize their profit. Thus, companies need to have precise forecast from their profit after design stage through Trade-off analysis. This paper is an attempt to introduce a mathematical model that considers effective factors that impact the total profit when products are designed for resource and energy efficiency or recyclability. The modification is according to different strategies based on a Cost-Volume-Profit model. Here, the cost structure consists of Recycling cost, Development cost, Ramp-up cost, Production cost, and Pollution cost. Also, the model shows the effect of implementation of design for recyclable on revenue structure through revenue of used parts and revenue of recycled materials. A numerical example is used to evaluate the proposed model. Results show that fulfillment of Green Product Development not only can reduce the environmental impact of products but also it will increase profit of company in long term.Keywords: green product, design for environment, C-V-P model, trade-off analysis
Procedia PDF Downloads 316174 Eco-Mini Bag: Mini trash Bag for Children Environment Awareness
Authors: Asep Adianto, Rinda Ulfah L., Wellya Wichi M., Lasmaria Manik
Abstract:
Garbage is the waste result of daily human activity which is in some to countries can leads to a crucial problem. It is realized that garbage can brings to disastrous consequences for the environment and humans. Piles of garbage will cause to overflow disaster and health problems for human being. Basically, garbage can be processed into recycled products or other utilization. However, in some cases, awareness of environment cleanliness by throwing the garbage to the dustbin is still lacking, in both adults and children. Children tend to do things based on their visual observations without thinking about the impact of their actions. Associated with awareness of cleanliness, children often littering due to the reluctance on throwing garbage to the dustbin because in some place, it’s not that easy to find where the dustbin is. The obstacle should be accommodated by making some kind of compatible dustbin. In addition, the influence of the social environment and lack of education to environmental concerns makes it even worse. Therefore, we need a method to educate people, especially children, to always care about the environment and neighborhood they live in. Because of the intended target is children, the required method should be fun, easy to do, and it doesn’t contain any compulsion act. Therefore, Eco-Mini Bag is one of considerable method to educate children in society to become more aware about environment cleanliness. Eco-Mini bag is a kind of compatible dustbin and it’s going to prevent the children not to throwing garbage in reckless way. In brief, Eco-Mini bag can increase the environment awareness on children and the whole society through exciting and convenience way.Keywords: children, eco-mini bag, environment, garbage
Procedia PDF Downloads 319