Search results for: probabilistic sampling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3227

Search results for: probabilistic sampling

2867 Estimating Leaf Area and Biomass of Wheat Using UAS Multispectral Remote Sensing

Authors: Jackson Parker Galvan, Wenxuan Guo

Abstract:

Unmanned aerial vehicle (UAV) technology is being increasingly adopted in high-throughput plant phenotyping for applications in plant breeding and precision agriculture. Winter wheat is an important cover crop for reducing soil erosion and protecting the environment in the Southern High Plains. Efficiently quantifying plant leaf area and biomass provides critical information for producers to practice site-specific management of crop inputs, such as water and fertilizers. The objective of this study was to estimate wheat biomass and leaf area index using UAV images. This study was conducted in an irrigated field in Garza County, Texas. High-resolution images were acquired on three dates (February 18, March 25, and May 15th ) using a multispectral sensor onboard a Matrice 600 UAV. On each data of image acquisition, 10 random plant samples were collected and measured for biomass and leaf area. Images were stitched using Pix4D, and ArcGIS was applied to overlay sampling locations and derive data for sampling locations.

Keywords: precision agriculture, UAV plant phenotyping, biomass, leaf area index, winter wheat, southern high plains

Procedia PDF Downloads 95
2866 Macroinvertebrate Variation of Endorheic Depression Wetlands within North West and Mpumalanga Provinces, South Africa

Authors: Lee-Ann Foster, Wynand Malherbe, Martin Ferriera, Johan Van Vuren

Abstract:

Aquatic macroinvertebrates are rarely used in wetland assessments due to their variability. However, in terms of biodiversity, these invertebrates form an important component of wetlands. The objective of this study was to compare the spatial and temporal variation of macroinvertebrate assemblages within endorheic depressions in Mpumalanga and North West Provinces of South Africa. Sampling was conducted over a period of two seasons during 2012 and 2013 at all sampling points to account for a wet and dry season. The identification of macroinvertebrate community samples resulted in 24 taxa for both provinces. Results showed similarities in the structure of communities in perennial endorheic depressions in both provinces with the exception of one or two species. Macroinvertebrates sampled in Mpumalanga depressions (locally called pans) were similar to those reported in previous studies completed in the area and most of the macroinvertebrates sampled in Mpumalanga and the North West are known to be commonly found in temporary habitats. The knowledge acquired can now be utilised to enhance the available literature on these systems. Long-term studies have to be implemented to better understand the ecological functioning of the pans in the North West Province.

Keywords: aquatic, macroinvertebrate assemblages, pans, spatial variation

Procedia PDF Downloads 285
2865 Perceptions and Experiences of Iranian Students of Human Dignity in Canada: A Phenomenological Comparative Study

Authors: Erfaneh Razavipour Naghani, Masoud Kianpour

Abstract:

Human dignity is a subjective concept indicating an inner feeling of worth which depends on one’s perceptions and life experiences. Yet the notion is also very much under the influence of societal and cultural factors. Scholars have identified human dignity as a context-based concept that lies at the intersection of culture, gender, religion, and individual characteristics. Migration may constitute an individual or collective strategy for people seeking to situations that bolster rather than undermine their human dignity. Through the use of a phenomenological method, this study will explore how Iranian students in Canada perceive human dignity through such values and characteristics as honor, respect, self-determination, self-worth, autonomy, freedom, love, and equality in Canada as compared to their perceptions of the same in Iran. In-depth interviewing will be used to collect data from Iranian students who have lived in Canada for at least two years. The aim is to discover which essential themes constitute participants’ understanding of human dignity and how this understanding compares to their pre-Canadian experience in Iran. We will use criterion sampling as our sampling method. This study will clarify how being exposed to a different culture can affect perceptions of human dignity among university students.

Keywords: Canada, human dignity, Iran, migration, university students

Procedia PDF Downloads 138
2864 Application of GeoGebra into Teaching and Learning of Linear and Quadratic Equations amongst Senior Secondary School Students in Fagge Local Government Area of Kano State, Nigeria

Authors: Musa Auwal Mamman, S. G. Isa

Abstract:

This study was carried out in order to investigate the effectiveness of GeoGebra software in teaching and learning of linear and quadratic equations amongst senior secondary school students in Fagge Local Government Area, Kano State–Nigeria. Five research items were raised in objectives, research questions and hypotheses respectively. A random sampling method was used in selecting 398 students from a population of 2098 of SS2 students. The experimental group was taught using the GeoGebra software while the control group was taught using the conventional teaching method. The instrument used for the study was the mathematics performance test (MPT) which was administered at the beginning and at the end of the study. The results of the study revealed that students taught with GeoGebra software (experimental group) performed better than students taught with traditional teaching method. The t- test was used to analyze the data obtained from the study.

Keywords: GeoGebra Software, mathematics performance, random sampling, mathematics teaching

Procedia PDF Downloads 247
2863 Churn Prediction for Savings Bank Customers: A Machine Learning Approach

Authors: Prashant Verma

Abstract:

Commercial banks are facing immense pressure, including financial disintermediation, interest rate volatility and digital ways of finance. Retaining an existing customer is 5 to 25 less expensive than acquiring a new one. This paper explores customer churn prediction, based on various statistical & machine learning models and uses under-sampling, to improve the predictive power of these models. The results show that out of the various machine learning models, Random Forest which predicts the churn with 78% accuracy, has been found to be the most powerful model for the scenario. Customer vintage, customer’s age, average balance, occupation code, population code, average withdrawal amount, and an average number of transactions were found to be the variables with high predictive power for the churn prediction model. The model can be deployed by the commercial banks in order to avoid the customer churn so that they may retain the funds, which are kept by savings bank (SB) customers. The article suggests a customized campaign to be initiated by commercial banks to avoid SB customer churn. Hence, by giving better customer satisfaction and experience, the commercial banks can limit the customer churn and maintain their deposits.

Keywords: savings bank, customer churn, customer retention, random forests, machine learning, under-sampling

Procedia PDF Downloads 143
2862 The Effect of MOOC-Based Distance Education in Academic Engagement and Its Components on Kerman University Students

Authors: Fariba Dortaj, Reza Asadinejad, Akram Dortaj, Atena Baziyar

Abstract:

The aim of this study was to determine the effect of distance education (based on MOOC) on the components of academic engagement of Kerman PNU. The research was quasi-experimental method that cluster sampling with an appropriate volume was used in this study (one class in experimental group and one class in controlling group). Sampling method is single-stage cluster sampling. The statistical society is students of Kerman Payam Noor University, which) were selected 40 of them as sample (20 students in the control group and 20 students in experimental group). To test the hypothesis, it was used the analysis of univariate and Co-covariance to offset the initial difference (difference of control) in the experimental group and the control group. The instrument used in this study is academic engagement questionnaire of Zerang (2012) that contains component of cognitive, behavioral and motivational engagement. The results showed that there is no significant difference between mean scores of academic components of academic engagement in experimental group and the control group on the post-test, after elimination of the pre-test. The adjusted mean scores of components of academic engagement in the experimental group were higher than the adjusted average of scores after the test in the control group. The use of technology-based education in distance education has been effective in increasing cognitive engagement, motivational engagement and behavioral engagement among students. Experimental variable with the effect size 0.26, predicted 26% of cognitive engagement component variance. Experimental variable with the effect size 0.47, predicted 47% of the motivational engagement component variance. Experimental variable with the effect size 0.40, predicted 40% of behavioral engagement component variance. So teaching with technology (MOOC) has a positive impact on increasing academic engagement and academic performance of students in educational technology. The results suggest that technology (MOOC) is used to enrich the teaching of other lessons of PNU.

Keywords: educational technology, distance education, components of academic engagement, mooc technology

Procedia PDF Downloads 149
2861 Job Satisfaction and Career Choices: A Study Using Schein´s Career Anchor Model

Authors: Rosana Silvina Codaro, Patricia Amelia Tomei

Abstract:

This study explores the relationship between job satisfaction and alignment between the individual´s current occupation and his talents, needs and values, namely his 'career anchors'. With this purpose in mind, a quantitative survey was performed for a non- graduate probabilistic sample of management business students of a private university in Rio de Janeiro. The results of the survey showed there is no significant association between satisfaction at work and alignment with the individual’s career anchor. The most frequent career anchor found for both genders was lifestyle, showing a trend towards finding a career that allows some balance between professional and personal life. The study also showed that self-employed individuals are more satisfied with their work than the individuals employed by a company are, and men are more satisfied at work than women are, Individuals aligned and not satisfied tend to be the ones who have fewer years of work experience and individuals not aligned and satisfied tend to be older.

Keywords: careers, career anchors, job satisfaction, Schein´s career anchor model

Procedia PDF Downloads 363
2860 Optimizing Stormwater Sampling Design for Estimation of Pollutant Loads

Authors: Raja Umer Sajjad, Chang Hee Lee

Abstract:

Stormwater runoff is the leading contributor to pollution of receiving waters. In response, an efficient stormwater monitoring program is required to quantify and eventually reduce stormwater pollution. The overall goals of stormwater monitoring programs primarily include the identification of high-risk dischargers and the development of total maximum daily loads (TMDLs). The challenge in developing better monitoring program is to reduce the variability in flux estimates due to sampling errors; however, the success of monitoring program mainly depends on the accuracy of the estimates. Apart from sampling errors, manpower and budgetary constraints also influence the quality of the estimates. This study attempted to develop optimum stormwater monitoring design considering both cost and the quality of the estimated pollutants flux. Three years stormwater monitoring data (2012 – 2014) from a mix land use located within Geumhak watershed South Korea was evaluated. The regional climate is humid and precipitation is usually well distributed through the year. The investigation of a large number of water quality parameters is time-consuming and resource intensive. In order to identify a suite of easy-to-measure parameters to act as a surrogate, Principal Component Analysis (PCA) was applied. Means, standard deviations, coefficient of variation (CV) and other simple statistics were performed using multivariate statistical analysis software SPSS 22.0. The implication of sampling time on monitoring results, number of samples required during the storm event and impact of seasonal first flush were also identified. Based on the observations derived from the PCA biplot and the correlation matrix, total suspended solids (TSS) was identified as a potential surrogate for turbidity, total phosphorus and for heavy metals like lead, chromium, and copper whereas, Chemical Oxygen Demand (COD) was identified as surrogate for organic matter. The CV among different monitored water quality parameters were found higher (ranged from 3.8 to 15.5). It suggests that use of grab sampling design to estimate the mass emission rates in the study area can lead to errors due to large variability. TSS discharge load calculation error was found only 2 % with two different sample size approaches; i.e. 17 samples per storm event and equally distributed 6 samples per storm event. Both seasonal first flush and event first flush phenomena for most water quality parameters were observed in the study area. Samples taken at the initial stage of storm event generally overestimate the mass emissions; however, it was found that collecting a grab sample after initial hour of storm event more closely approximates the mean concentration of the event. It was concluded that site and regional climate specific interventions can be made to optimize the stormwater monitoring program in order to make it more effective and economical.

Keywords: first flush, pollutant load, stormwater monitoring, surrogate parameters

Procedia PDF Downloads 240
2859 An Occupational Health Risk Assessment for Exposure to Benzene, Toluene, Ethylbenzene and Xylenes: A Case Study of Informal Traders in a Metro Centre (Taxi Rank) in South Africa

Authors: Makhosazana Dubazana

Abstract:

Many South Africans commuters use minibus taxis daily and are connected to the informal transport network through metro centres informally known as Taxi Ranks. Taxi ranks form part of an economic nexus for many informal traders, connecting them to commuters, their prime clientele. They work along designated areas along the periphery of the taxi rank and in between taxi lanes. Informal traders are therefore at risk of adverse health effects associated with the inhalation of exhaust fumes from minibus taxis. Of the exhaust emissions, benzene, toluene, ethylbenzene and xylenes (BTEX) have high toxicity. Purpose: The purpose of this study was to conduct a Human Health Risk Assessment for informal traders, looking at their exposure to BTEX compounds. Methods: The study was conducted in a subsection of a taxi rank which is representative of the entire taxi rank. This subsection has a daily average of 400 minibus taxi moving through it and an average of 60 informal traders working in it. In the health risk assessment, a questionnaire was conducted to understand the occupational behaviour of the informal traders. This was used to deduce the exposure scenarios and sampling locations. Three sampling campaigns were run for an average of 10 hours each covering the average working hours of traders. A gas chronographer was used for collecting continues ambient air samples at 15 min intervals. Results: Over the three sampling days, the average concentrations were, 8.46ppb, 0.63 ppb, 1.27ppb and 1.0ppb for benzene, toluene, ethylbenzene, and xylene respectively. The average cancer risk is 9.46E-03. In several cases, they were incidences of unacceptable risk for the cumulative exposure of all four BTEX compounds. Conclusion: This study adds to the body of knowledge on the Human Health Risk effects of urban BTEX pollution, furthermore focusing on the impact of urban BTEX on high risk personal such as informal traders, in Southern Africa.

Keywords: human health risk assessment, informal traders, occupational risk, urban BTEX

Procedia PDF Downloads 232
2858 Fairness in Recommendations Ranking: From Pairwise Approach to Listwise Approach

Authors: Patik Joslin Kenfack, Polyakov Vladimir Mikhailovich

Abstract:

Machine Learning (ML) systems are trained using human generated data that could be biased by implicitly containing racist, sexist, or discriminating data. ML models learn those biases or even amplify them. Recent research in work on has begun to consider issues of fairness. The concept of fairness is extended to recommendation. A recommender system will be considered fair if it doesn’t under rank items of protected group (gender, race, demographic...). Several metrics for evaluating fairness concerns in recommendation systems have been proposed, which take pairs of items as ‘instances’ in fairness evaluation. It doesn’t take in account the fact that the fairness should be evaluated across a list of items. The paper explores a probabilistic approach that generalize pairwise metric by using a list k (listwise) of items as ‘instances’ in fairness evaluation, parametrized by k. We also explore new regularization method based on this metric to improve fairness ranking during model training.

Keywords: Fairness, Recommender System, Ranking, Listwise Approach

Procedia PDF Downloads 148
2857 Exploring Probabilistic Models for Transient Stability Analysis of Renewable-Dominant Power Grid

Authors: Phuong Nguyen

Abstract:

Along with the ongoing energy transition, the electrical power system is getting more vulnerable with the increasing penetration of renewable energy sources (RES). By replacing a large amount of fossil fuel-based power plants with RES, the rotating mass of the power grid is decreasing drastically, which has been reported by a number of system operators. This leads to a huge challenge for operators to secure the operation of their grids in all-time horizon ranges, from sub-seconds to minutes and even hours. There is a need to revise the grid capabilities in dealing with transient (angle) stability and voltage dynamics. While the traditional approaches relied on deterministic scenarios (worst-case scenarios), there is also a need to cover a whole range of probabilities regarding a wide range of uncertainties coming from massive RES units. To contribute to handle these issues, this paper aims to focus on developing a new analytical approach for transient stability.

Keywords: transient stability, uncertainties, renewable energy sources, analytical approach

Procedia PDF Downloads 72
2856 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression

Authors: Wanatchapong Kongkaew

Abstract:

This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.

Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness

Procedia PDF Downloads 309
2855 Adverse Impacts of Poor Wastewater Management Practices on Water Quality in Gebeng Industrial Area, Pahang, Malaysia

Authors: I. M. Sujaul, M. A. Sobahan, A. A. Edriyana, F. M. Yahaya, R. M. Yunus

Abstract:

This study was carried out to investigate the adverse effect of industrial waste water on surface water quality in Gebeng industrial estate, Pahang, Malaysia. Surface water was collected from 6 sampling stations. Physico-chemical parameters were characterized based on in-situ and ex-situ analysis according to standard methods by American Public Health Association (APHA). Selected heavy metals were determined by using Inductively Coupled Plasma Mass Spectrometry (ICP MS). The result reveled that the concentration of heavy metals such as Pb, Cu, Cd, Cr and Hg were high in samples. The result showed that the value of Pb and Hg were higher in the wet season in comparison to dry season. According to Malaysia National Water Quality Standard (NWQS) and Water Quality Index (WQI) all the sampling station were categorized as class IV (highly polluted). The present study reveled that the adverse effects of careless disposal of wastes and directly discharge of effluents affected on surface water quality. Therefore, the authorities should implement the laws to ensure the proper practices of waste water management for environmental sustainability around the study area.

Keywords: water, heavy metals, water quality index, Gebeng

Procedia PDF Downloads 377
2854 AI/ML Atmospheric Parameters Retrieval Using the “Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN)”

Authors: Thomas Monahan, Nicolas Gorius, Thanh Nguyen

Abstract:

Exoplanet atmospheric parameters retrieval is a complex, computationally intensive, inverse modeling problem in which an exoplanet’s atmospheric composition is extracted from an observed spectrum. Traditional Bayesian sampling methods require extensive time and computation, involving algorithms that compare large numbers of known atmospheric models to the input spectral data. Runtimes are directly proportional to the number of parameters under consideration. These increased power and runtime requirements are difficult to accommodate in space missions where model size, speed, and power consumption are of particular importance. The use of traditional Bayesian sampling methods, therefore, compromise model complexity or sampling accuracy. The Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN) is a deep convolutional generative adversarial network that improves on the previous model’s speed and accuracy. We demonstrate the efficacy of artificial intelligence to quickly and reliably predict atmospheric parameters and present it as a viable alternative to slow and computationally heavy Bayesian methods. In addition to its broad applicability across instruments and planetary types, ARcGAN has been designed to function on low power application-specific integrated circuits. The application of edge computing to atmospheric retrievals allows for real or near-real-time quantification of atmospheric constituents at the instrument level. Additionally, edge computing provides both high-performance and power-efficient computing for AI applications, both of which are critical for space missions. With the edge computing chip implementation, ArcGAN serves as a strong basis for the development of a similar machine-learning algorithm to reduce the downlinked data volume from the Compact Ultraviolet to Visible Imaging Spectrometer (CUVIS) onboard the DAVINCI mission to Venus.

Keywords: deep learning, generative adversarial network, edge computing, atmospheric parameters retrieval

Procedia PDF Downloads 170
2853 The Effect of Sumatra Fault Earthquakes on West Malaysia

Authors: Noushin Naraghi Araghi, M. Nawawi, Syed Mustafizur Rahman

Abstract:

This paper presents the effect of Sumatra fault earthquakes on west Malaysia by calculating the peak horizontal ground acceleration (PGA). PGA is calculated by a probabilistic seismic hazard assessment (PSHA). A uniform catalog of earthquakes for the interest region has been provided. We used empirical relations to convert all magnitudes to Moment Magnitude. After eliminating foreshocks and aftershocks in order to achieve more reliable results, the completeness of the catalog and uncertainty of magnitudes have been estimated and seismicity parameters were calculated. Our seismic source model considers the Sumatran strike slip fault that is known historically to generate large earthquakes. The calculations were done using the logic tree method and four attenuation relationships and slip rates for different part of this fault. Seismic hazard assessment carried out for 48 grid points. Eventually, two seismic hazard maps based PGA for 5% and 10% probability of exceedance in 50 year are presented.

Keywords: Sumatra fault, west Malaysia, PGA, seismic parameters

Procedia PDF Downloads 403
2852 Preliminary Seismic Hazard Mapping of Papua New Guinea

Authors: Hadi Ghasemi, Mark Leonard, Spiliopoulos Spiro, Phil Cummins, Mathew Moihoi, Felix Taranu, Eric Buri, Chris Mckee

Abstract:

In this study the level of seismic hazard in terms of Peak Ground Acceleration (PGA) was calculated for return period of 475 years, using modeled seismic sources and assigned ground-motion equations. The calculations were performed for bedrock site conditions (Vs30=760 m/s). From the results it is evident that the seismic hazard reaches its maximum level (i.e. PGA≈1g for 475 yr return period) at the Huon Peninsula and southern New Britain regions. Disaggregation analysis revealed that moderate to large earthquakes occurring along the New Britain Trench mainly control the level of hazard at these locations. The open-source computer program OpenQuake developed by Global Earthquake Model foundation was used for the seismic hazard computations. It should be emphasized that the presented results are still preliminary and should not be interpreted as our final assessment of seismic hazard in PNG.

Keywords: probabilistic seismic hazard assessment, Papua New Guinea, building code, OpenQuake

Procedia PDF Downloads 556
2851 Max-Entropy Feed-Forward Clustering Neural Network

Authors: Xiaohan Bookman, Xiaoyan Zhu

Abstract:

The outputs of non-linear feed-forward neural network are positive, which could be treated as probability when they are normalized to one. If we take Entropy-Based Principle into consideration, the outputs for each sample could be represented as the distribution of this sample for different clusters. Entropy-Based Principle is the principle with which we could estimate the unknown distribution under some limited conditions. As this paper defines two processes in Feed-Forward Neural Network, our limited condition is the abstracted features of samples which are worked out in the abstraction process. And the final outputs are the probability distribution for different clusters in the clustering process. As Entropy-Based Principle is considered into the feed-forward neural network, a clustering method is born. We have conducted some experiments on six open UCI data sets, comparing with a few baselines and applied purity as the measurement. The results illustrate that our method outperforms all the other baselines that are most popular clustering methods.

Keywords: feed-forward neural network, clustering, max-entropy principle, probabilistic models

Procedia PDF Downloads 435
2850 Seismic Fragility of Weir Structure Considering Aging Degradation of Concrete Material

Authors: HoYoung Son, DongHoon Shin, WooYoung Jung

Abstract:

This study presented the seismic fragility framework of concrete weir structure subjected to strong seismic ground motions and in particular, concrete aging condition of the weir structure was taken into account in this study. In order to understand the influence of concrete aging on the weir structure, by using probabilistic risk assessment, the analytical seismic fragility of the weir structure was derived for pre- and post-deterioration of concrete. The performance of concrete weir structure after five years was assumed for the concrete aging or deterioration, and according to after five years’ condition, the elastic modulus was simply reduced about one–tenth compared with initial condition of weir structures. A 2D nonlinear finite element analysis was performed considering the deterioration of concrete in weir structures using ABAQUS platform, a commercial structural analysis program. Simplified concrete degradation was resulted in the increase of almost 45% of the probability of failure at Limit State 3, in comparison to initial construction stage, by analyzing the seismic fragility.

Keywords: weir, FEM, concrete, fragility, aging

Procedia PDF Downloads 483
2849 The Tourist Satisfaction on Brand Identity Design of Creative Agriculture Community Enterprise, Bang Khonthi District, Samut Songkhram Province

Authors: Panupong Chanplin, Kathaleeya Chanda., Wilailuk Mepracha

Abstract:

The aims of this research were twofold: 1) to brand identity design of Creative Agriculture Community Enterprise, Bang Khonthi District, Samut Songkhram Province and 2) to study the level of tourist satisfaction towards brand identity design of Creative Agriculture Community Enterprise, Bang Khonthi District, Samut Songkhram Province. tourist satisfaction was measured using six criteria: clear brand positioning, likeable brand personality, memorable logo, attractive color palette, professional typography and on-brand supporting graphics. The researcher utilized a probability sampling method via simple random sampling. The sample consisted of 30 tourists in the Creative Agriculture Community Enterprise. Statistics utilized for data analysis were percentage, mean, and standard deviation. The results suggest that tourist had high levels of satisfaction towards all six criteria of the brand identity design that was designed to target them. This study proposes that specifically brand identity designed of Creative Agriculture Community Enterprise could also be implemented with other real media already available on the market.

Keywords: satisfaction, brand identity, logo, creative agriculture community enterprise

Procedia PDF Downloads 242
2848 Reliability-Based Design of an Earth Slope Taking into Account Unsaturated Soil Properties

Authors: A. T. Siacara, A. T. Beck, M. M. Futai

Abstract:

This paper shows how accurately and efficiently reliability analyses of geotechnical installations can be performed by directly coupling geotechnical software with a reliability solver. An earth slope is used as the study object. The limit equilibrium method of Morgenstern-Price is used to calculate factors of safety and find the critical slip surface. The deterministic software package Seep/W and Slope/W is coupled with the StRAnD reliability software. Reliability indexes of critical probabilistic surfaces are evaluated by the first-order reliability methods (FORM). By means of sensitivity analysis, the effective cohesion (c') is found to be the most relevant uncertain geotechnical parameter for slope equilibrium. The slope was tested using different geometries, taking into account unsaturated soil properties. Finally, a critical slip surface, identified in terms of minimum factor of safety, is shown here not to be the critical surface in terms of reliability index.

Keywords: slope, unsaturated, reliability, safety, seepage

Procedia PDF Downloads 146
2847 Practices of Entomophagy and Entomotherapy in Baranggay Alambijud, Argao and Baranggay Lusaran, Cebu City, Philippines

Authors: Jake Joshua C. Garces, Zandra O. Jarito, Leslie Ann T. Barriga, Froilen C. Domicelo, Nimfa R. Pansit

Abstract:

The study was conducted in order to discover the medicinal and edible potentialities of different insect species in Baranggay Alambijud, Argao and Baranggay Lusaran, Cebu City, Cebu. In order to identify these entomological practices, a survey was carried out by the researchers in these key sites. Fourteen key informants were obtained and these were identified with the aide of two sampling methods- snowball technique and purposive sampling. Open-ended questionnaires were employed in order to obtain authentic and significant information from the key informants. Results portrayed that in the practice of entomotherapy, two insects were used as medicine namely: migratory locust (Locusta migratoria manillensis) and honey bee (Apis dorsata); and two insect by-products were utilized namely: feces of cockroach (Periplaneta Americana) and honey. White grub (Cotinis nitida) and bee eggs were also documented to manifest edible capability and were thus utilized in the entomophagic practices. After applying thematic analysis, it was determined that the causative factors of their entomological practices include their limited educational attainment, their inability to access urban societies and the influence brought about by their family and community.

Keywords: entomophagy, entomotherapy, entomology, key informants

Procedia PDF Downloads 335
2846 Effectiveness of Adrenal Venous Sampling in the Management of Primary Aldosteronism: Single Centered Cohort Study at a Tertiary Care Hospital in Sri Lanka

Authors: Balasooriya B. M. C. M., Sujeeva N., Thowfeek Z., Siddiqa Omo, Liyanagunawardana J. E., Jayawardana Saiu, Manathunga S. S., Katulanda G. W.

Abstract:

Introduction and objectives: Adrenal venous sampling (AVS) is the gold standard to discriminate unilateral primary aldosteronism (UPA) from bilateral disease (BPA). AVS is technically demanding and only performed in a limited number of centers worldwide. To the best of our knowledge, Except for one study conducted in India, no other research studies on this area have been conducted in South Asia. This study aimed to evaluate the effectiveness of AVS in the management of primary aldosteronism. Methods: A total of 32 patients who underwent AVS at the National Hospital of Sri Lanka from April 2021 to April 2023 were enrolled. Demographic, clinical and laboratory data were obtained retrospectively. A procedure was considered successful when adequate cannulation of both adrenal veins was demonstrated. Cortisol gradient across the adrenal vein (AV) and the peripheral vein was used to establish the success of venous cannulation. Lateralization was determined by the aldosterone gradient between the two sides. Continuous and categorical variables were summarized with mean, SD, and proportions, respectively. The mean and standard deviation of the contralateral suppression index (CSI) were estimated with an intercept-only Bayesian inference model. Results: Of the 32 patients, the average age was 52.47 +26.14 and 19 (59.4%) were males. Both AVs were successfully cannulated in 12 (37.5%). Among them, lateralization was demonstrated in 11(91.7%), and one was diagnosed as a bilateral disease. There were no total failures. Right AV cannulation was unsuccessful in 18 (56.25%), of which lateralization was demonstrated in 9 (50%), and others were inconclusive. Left AV cannulation was unsuccessful only in 2 (6.25%); one was lateralized, and the other remained inconclusive. The estimated mean of the CSI was 0.33 (89% credible interval 0.11-0.86). Seven patients underwent unilateral adrenalectomy and demonstrated significant improvement in blood pressure during follow-up. Two patients await surgery. Others were treated medically. Conclusions: Despite failure due to procedural difficulties, AVS remained useful in the management of patients with PA. Moreover, the success of the procedure needs experienced hands and advanced equipment to achieve optimal outcomes in PA.

Keywords: adrenal venous sampling, lateralization, contralateral suppression index, primary aldosteronism

Procedia PDF Downloads 64
2845 Conjunctive Management of Surface and Groundwater Resources under Uncertainty: A Retrospective Optimization Approach

Authors: Julius M. Ndambuki, Gislar E. Kifanyi, Samuel N. Odai, Charles Gyamfi

Abstract:

Conjunctive management of surface and groundwater resources is a challenging task due to the spatial and temporal variability nature of hydrology as well as hydrogeology of the water storage systems. Surface water-groundwater hydrogeology is highly uncertain; thus it is imperative that this uncertainty is explicitly accounted for, when managing water resources. Various methodologies have been developed and applied by researchers in an attempt to account for the uncertainty. For example, simulation-optimization models are often used for conjunctive water resources management. However, direct application of such an approach in which all realizations are considered at each iteration of the optimization process leads to a very expensive optimization in terms of computational time, particularly when the number of realizations is large. The aim of this paper, therefore, is to introduce and apply an efficient approach referred to as Retrospective Optimization Approximation (ROA) that can be used for optimizing conjunctive use of surface water and groundwater over a multiple hydrogeological model simulations. This work is based on stochastic simulation-optimization framework using a recently emerged technique of sample average approximation (SAA) which is a sampling based method implemented within the Retrospective Optimization Approximation (ROA) approach. The ROA approach solves and evaluates a sequence of generated optimization sub-problems in an increasing number of realizations (sample size). Response matrix technique was used for linking simulation model with optimization procedure. The k-means clustering sampling technique was used to map the realizations. The methodology is demonstrated through the application to a hypothetical example. In the example, the optimization sub-problems generated were solved and analysed using “Active-Set” core optimizer implemented under MATLAB 2014a environment. Through k-means clustering sampling technique, the ROA – Active Set procedure was able to arrive at a (nearly) converged maximum expected total optimal conjunctive water use withdrawal rate within a relatively few number of iterations (6 to 7 iterations). Results indicate that the ROA approach is a promising technique for optimizing conjunctive water use of surface water and groundwater withdrawal rates under hydrogeological uncertainty.

Keywords: conjunctive water management, retrospective optimization approximation approach, sample average approximation, uncertainty

Procedia PDF Downloads 231
2844 Truancy and Academic Performance of Colleges of Education Students in South Western Nigeria: Implication for Evaluation

Authors: Oloyede Akinniyi Ojo

Abstract:

This study investigated the relationship between truancy and academic performance of Colleges of Education students in southwestern, Nigeria. It also examined the relationship between College Physical environment and truancy behavior among students. Furthermore, it examined the relationship between male and female students involvement in truancy behavior. Purposive sampling was used to select four colleges of education in south-western Nigeria and 120 students per college were selected from year 3 while stratified sampling was used to select schools and courses. A total of 480 students participated in the study. Three research instruments were used for this study namely: Lecturers Attendance Record, Students Statement of Result and ‘College Environment Questionnaires’ (CEQ). Four research questions guided the study. Data was analyzed using descriptive, Chi-square and T-Test. CEQ was validated by a team of experts in the field of educational evaluation. Test reliability was established at an r=0-74. The study concluded that truancy exist in colleges of education and that there was a significant relationship between truancy and academic performance of male and female truants, the study also revealed that physical environment has so much effect on the truancy behavior of the students, hence the study recommended that effort should be made to provide attractive college environment for effective learning.

Keywords: academic performance, colleges of education, students, truancy

Procedia PDF Downloads 191
2843 The Effect of the Contributory Pension Scheme on Employees’ Performance

Authors: Oladipo Jimoh Ayanda, Fashagba Mathew Olasehinde

Abstract:

Pension is a post retirement benefit paid to employees after retirement to cushion the effects of severance from monthly emoluments. It serves the dual purpose of providing financial succour to retired employees as well as motivating employees currently in service to greater performance on duty. However, the scheme, as operated in Nigeria, is prone to some pitfalls such as delayed and irregular payments, inadequate budgetary provisions, employee sufferings and deaths arising from the rigors of verification exercises, among others. This necessitated the replacement of the old scheme with the contributory pension scheme through an enabling law in 2004. The implementation of the new scheme has its own challenges especially in connection with administration. These challenges pose a fundamental problem of establishing a nexus between pension benefits and work performance which represent the focus of the study. The study objectives were to: determine the effect of contributory pension scheme on employees’ performance. The study population consisted of National Universities Commission recognized public and private universities in the South West Nigeria. Multi-stage sampling method involving stratified sampling and systematic sampling was used in selecting 359 respondents while data were collected through questionnaire administration. The procedure for analyzing the data included descriptive statistic, normal distribution test and cross-tabulation (gamma coefficient). The findings of the study showed that the existence of the scheme positively enhances employees’ performance as indicated by normal distribution test with Z-score (10.169) which is greater than the table value (1.96) at 0.05 level. The study concluded that the scope for enhancing employee current job performance can be quite elastic if future retirement benefits are guaranteed through proper and efficient administration and management of the contributory pension scheme. The study recommended that certain factors such as employers’ commitment which account for different levels of confidence between public and private universities should be looked into in order to improve confidence across board while the provisions of the scheme as they affect the PFAs should be properly monitored to ensure compliance.

Keywords: pension, retirement, performance, employees, benefit

Procedia PDF Downloads 330
2842 Transformational Justice for Employees' Job Satisfaction

Authors: Hassan Barau Singhry

Abstract:

Purpose: Leadership or the absence of it is an important behaviour affecting employees’ job satisfaction. Although, there are many models of leadership, one that stands out in a period of change is the transformational behaviour. The aim of this study is to investigate the role of an organizational justice on the relationship between transformational leadership and employee job satisfaction. The study is based on the assumption that change begins with leaders and leaders should be fair and just. Methodology: A cross-sectional survey through structured questionnaire was employed to collect the data of this study. The population is selected the three tiers of government such as the local, state, and federal governments in Nigeria. The sampling method used in this research is stratified random sampling. 418 middle managers of public organizations respondents to the questionnaire. Multiple regression aided by structural equation modeling was employed to test 4 hypothesized relationships. Finding: The regression results support for the mediating role of organizational justice such as distributive, procedural, interpersonal and informational justice in the link between transformational leadership and job satisfaction. Originality/value: This study adds to the literature of human resource management by empirically validating and integrating transformational leadership behaviour with the four dimensions of organizational justice theory. The study is expected to be beneficial to the top and middle-level administrators as well as theory building and testing.

Keywords: distributive justice, job satisfaction, organizational justice, procedural justice, transformational leadership

Procedia PDF Downloads 173
2841 Analysis of the Relationship between the Old Days Hospitalized with Economic Lost Top Ten Age Productive Disease in Hospital Inpatient Inche Abdul Moeis Samarinda, Indonesia

Authors: Tri Murti Tugiman, Awalyya Fasha

Abstract:

This research aims to analyze the magnitude of the economic losses incurred as a result of a person suffering from a particular disease of the ten highest in the productive age diseases in Hospitals Inche Abdul Moeis Samarinda. This research was a descriptive survey research and a secondary data analysis. For the analysis of economic losses populations used are all in patients who suffer from the 10 highest diseases in the productive age in hospitals IA Moeis Samarinda in 2011. Sampling was performed by using a stratified random sampling with samples of 77 people. Research results indicate that the direct cost community incurred to obtain medical services in hospitals IA Moeis is IDR 74437520. The amount of indirect costs incurred during service in a community hospital is IDR 10562000. The amount lost due to sickness fee is IDR 5377800. The amount of economic lost people to obtain medical services in hospitals IA Moeis is IDR 90377320. The number of days of hospitalization was as much as 171 respondents throughout the day. This study suggests the economic loss could be prevented by changes in the lifestyle of the people who clean and healthy along with the following insurance.

Keywords: hospitalized, economic lost, productive age diseases, secondary data analysis

Procedia PDF Downloads 479
2840 On-Line Data-Driven Multivariate Statistical Prediction Approach to Production Monitoring

Authors: Hyun-Woo Cho

Abstract:

Detection of incipient abnormal events in production processes is important to improve safety and reliability of manufacturing operations and reduce losses caused by failures. The construction of calibration models for predicting faulty conditions is quite essential in making decisions on when to perform preventive maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of process measurement data. The calibration model is used to predict faulty conditions from historical reference data. This approach utilizes variable selection techniques, and the predictive performance of several prediction methods are evaluated using real data. The results shows that the calibration model based on supervised probabilistic model yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.

Keywords: calibration model, monitoring, quality improvement, feature selection

Procedia PDF Downloads 355
2839 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems

Authors: Belkacem Laimouche

Abstract:

With the field of artificial intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.

Keywords: artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, interlaboratory comparison, data analysis, data reliability, measurement of bias impact on predictions, improvement of model accuracy and reliability

Procedia PDF Downloads 105
2838 Text Mining of Twitter Data Using a Latent Dirichlet Allocation Topic Model and Sentiment Analysis

Authors: Sidi Yang, Haiyi Zhang

Abstract:

Twitter is a microblogging platform, where millions of users daily share their attitudes, views, and opinions. Using a probabilistic Latent Dirichlet Allocation (LDA) topic model to discern the most popular topics in the Twitter data is an effective way to analyze a large set of tweets to find a set of topics in a computationally efficient manner. Sentiment analysis provides an effective method to show the emotions and sentiments found in each tweet and an efficient way to summarize the results in a manner that is clearly understood. The primary goal of this paper is to explore text mining, extract and analyze useful information from unstructured text using two approaches: LDA topic modelling and sentiment analysis by examining Twitter plain text data in English. These two methods allow people to dig data more effectively and efficiently. LDA topic model and sentiment analysis can also be applied to provide insight views in business and scientific fields.

Keywords: text mining, Twitter, topic model, sentiment analysis

Procedia PDF Downloads 179