Search results for: plant wearable sensors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4748

Search results for: plant wearable sensors

4388 RFID and Intelligence: A Smart Authentication Method for Blind People​

Authors: V. Vishu, R. Manimegalai

Abstract:

A combination of Intelligence and Radio frequency identification to bring an enhanced authentication method for the improvement of visually challenged people. The main goal is to provide an improved authentication by combining Advanced Encryption Standard algorithm and Intelligence. Here the encryption key will be generated as a combination of intelligent information from sensors and tag values. The main challenges are security, privacy and cost. Besides, the method was created to evaluate the amount of interaction between sensors and significant influence on the level of visually challenged people’s mental and physical states. The proposal is to apply various ideas on independent living or to assist them for a good life.

Keywords: AES, encryption, intelligence, smart key

Procedia PDF Downloads 223
4387 Comparing Remote Sensing and in Situ Analyses of Test Wheat Plants as Means for Optimizing Data Collection in Precision Agriculture

Authors: Endalkachew Abebe Kebede, Bojin Bojinov, Andon Vasilev Andonov, Orhan Dengiz

Abstract:

Remote sensing has a potential application in assessing and monitoring the plants' biophysical properties using the spectral responses of plants and soils within the electromagnetic spectrum. However, only a few reports compare the performance of different remote sensing sensors against in-situ field spectral measurement. The current study assessed the potential applications of open data source satellite images (Sentinel 2 and Landsat 9) in estimating the biophysical properties of the wheat crop on a study farm found in the village of OvchaMogila. A Landsat 9 (30 m resolution) and Sentinel-2 (10 m resolution) satellite images with less than 10% cloud cover have been extracted from the open data sources for the period of December 2021 to April 2022. An Unmanned Aerial Vehicle (UAV) has been used to capture the spectral response of plant leaves. In addition, SpectraVue 710s Leaf Spectrometer was used to measure the spectral response of the crop in April at five different locations within the same field. The ten most common vegetation indices have been selected and calculated based on the reflectance wavelength range of remote sensing tools used. The soil samples have been collected in eight different locations within the farm plot. The different physicochemical properties of the soil (pH, texture, N, P₂O₅, and K₂O) have been analyzed in the laboratory. The finer resolution images from the UAV and the Leaf Spectrometer have been used to validate the satellite images. The performance of different sensors has been compared based on the measured leaf spectral response and the extracted vegetation indices using the five sampling points. A scatter plot with the coefficient of determination (R2) and Root Mean Square Error (RMSE) and the correlation (r) matrix prepared using the corr and heatmap python libraries have been used for comparing the performance of Sentinel 2 and Landsat 9 VIs compared to the drone and SpectraVue 710s spectrophotometer. The soil analysis revealed the study farm plot is slightly alkaline (8.4 to 8.52). The soil texture of the study farm is dominantly Clay and Clay Loam.The vegetation indices (VIs) increased linearly with the growth of the plant. Both the scatter plot and the correlation matrix showed that Sentinel 2 vegetation indices have a relatively better correlation with the vegetation indices of the Buteo dronecompared to the Landsat 9. The Landsat 9 vegetation indices somewhat align better with the leaf spectrometer. Generally, the Sentinel 2 showed a better performance than the Landsat 9. Further study with enough field spectral sampling and repeated UAV imaging is required to improve the quality of the current study.

Keywords: landsat 9, leaf spectrometer, sentinel 2, UAV

Procedia PDF Downloads 79
4386 Design and Characterization of CMOS Readout Circuit for ISFET and ISE Based Sensors

Authors: Yuzman Yusoff, Siti Noor Harun, Noor Shelida Salleh, Tan Kong Yew

Abstract:

This paper presents the design and characterization of analog readout interface circuits for ion sensitive field effect transistor (ISFET) and ion selective electrode (ISE) based sensor. These interface circuits are implemented using MIMOS’s 0.35um CMOS technology and experimentally characterized under 24-leads QFN package. The characterization evaluates the circuit’s functionality, output sensitivity and output linearity. Commercial sensors for both ISFET and ISE are employed together with glass reference electrode during testing. The test result shows that the designed interface circuits manage to readout signals produced by both sensors with measured sensitivity of ISFET and ISE sensor are 54mV/pH and 62mV/decade, respectively. The characterized output linearity for both circuits achieves above 0.999 rsquare. The readout also has demonstrated reliable operation by passing all qualifications in reliability test plan.

Keywords: readout interface circuit (ROIC), analog interface circuit, ion sensitive field effect transistor (ISFET), ion selective electrode (ISE), ion sensor electronics

Procedia PDF Downloads 296
4385 Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with Evaluation on a Ground Truth

Authors: Hatem Hajri, Mohamed-Cherif Rahal

Abstract:

Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth.

Keywords: ground truth, Hungarian algorithm, lidar Radar data fusion, global nearest neighbor filter

Procedia PDF Downloads 142
4384 A Real Time Expert System for Decision Support in Nuclear Power Plants

Authors: Andressa dos Santos Nicolau, João P. da S.C Algusto, Claudio Márcio do N. A. Pereira, Roberto Schirru

Abstract:

In case of abnormal situations, the nuclear power plant (NPP) operators must follow written procedures to check the condition of the plant and to classify the type of emergency. In this paper, we proposed a Real Time Expert System in order to improve operator’s performance in case of transient or accident with reactor shutdown. The expert system’s knowledge is based on the sequence of events (SoE) of known accident and two emergency procedures of the Brazilian Pressurized Water Reactor (PWR) NPP and uses two kinds of knowledge representation: rule and logic trees. The results show that the system was able to classify the response of the automatic protection systems, as well as to evaluate the conditions of the plant, diagnosing the type of occurrence, recovery procedure to be followed, indicating the shutdown root cause, and classifying the emergency level.

Keywords: emergence procedure, expert system, operator support, PWR nuclear power plant

Procedia PDF Downloads 308
4383 Exploring Introducing a Plant-Based Diet into Patient Education in the Primary Care Setting, and the Positive Effects on Combatting Common Chronic Illnesses Such as Hypertension, Hyperlipidemia, and Diabetes Mellitus Type II

Authors: Arielle Ferdinand

Abstract:

A plant-based diet focuses on foods from plant sources, limiting or altogether omitting animal products. Some of the most common chronic illnesses seen in primary care are hypertension, hyperlipidemia, and diabetes type II. These common chronic illnesses can often be debilitating, costly, time-consuming, and, when left untreated, can lead to an early death. Treatment and maintenance of care are also labor intensive for the patient. They are often required to have at least four blood pressure checks yearly and a hemoglobin A1C checked quarterly. Though preventative interventions and prevention education should be included in patient visits in the primary care setting, education about dietary interventions, such as a plant-based diet, also yields positive outcomes for patients who already have hypertension, hyperlipidemia, and diabetes mellitus type 2. Evidence will show that incorporating a plant-based diet results in decreased blood pressure, as well as decreased levels of LDL-C, improved post-prandial glucose levels, and a reduction in HbA1C. It is cost-effective for the patient by generally lower grocery costs, and it can either reduce or prevent the need to pay for more office visits and pharmacotherapy. Incorporating this method of dietary changes is an easy intervention during a primary care office visit that would greatly benefit the patient in many ways.

Keywords: plant-based, nutrition, diabetes, hyperlipidemia

Procedia PDF Downloads 61
4382 Impact of Foliar Application of Zinc on Micro and Macro Elements Distribution in Phyllanthus amarus

Authors: Nguyen Cao Nguyen, Krasimir I. Ivanov, Penka S. Zapryanova

Abstract:

The present study was carried out to investigate the interaction of foliar applied zinc with other elements in Phyllanthus amarus plants. The plant samples for our experiment were collected from Lam Dong province, Vietnam. Seven suspension solutions of nanosized zinc hydroxide nitrate (Zn5(OH)8(NO3)2·2H2O) with different Zn concentration were used. Fertilization and irrigation were the same for all variants. The Zn content and the content of selected micro (Cu, Fe, Mn) and macro (Ca, Mg, P and K) nutrients in plant roots, and stems and leaves were determined. It was concluded that the zinc content of plant roots varies narrowly, with no significant impact of ZnHN fertilization. The same trend can be seen in the content of Cu, Mn, and macronutrients. The zinc content of plant stems and leaves varies within wide limits, with the significant impact of ZnHN fertilization. The trends in the content of Cu, Mn, and macronutrients are kept the same as in the root, whereas the iron trends to increase its content at increasing the zinc content.

Keywords: Phyllanthus amarus, Zinc, Micro and macro elements, foliar fertilizer

Procedia PDF Downloads 118
4381 Effects of Poultry Manure Rates on Some Growth and Yield Attributes of Cucumber in Owerri, South Eastern Nigeria

Authors: Chinwe Pearl Poly-Mbah, Evelyn Obioma, Juliet Amajuoyi

Abstract:

The investigation here reported examined growth and yield responses of Cucumber to manure rates in Owerri, Southeastern Nigeria. Fruit vegetables are widely cultivated and produced in Northern Nigeria but greatly consumed in Southern Nigeria where cucumbers command high demand and price but are minimally cultivated. Unfortunately, farmers in northern Nigeria incur lots of losses because cucumber is a perishable vegetable and is transported all the way from the northern Nigeria where cucumbers are produced to Southern Nigeria where cucumbers are consumed, hence the high cost of cucumber fruits in Southern Nigeria. There is a need, therefore, to evolve packages that will enhance cucumber production in Southern Nigeria. The main objective of this study was to examine the effects of poultry manure rates on the growth and yield of cucumber in Owerri, South Eastern Nigeria. Specifically, this study was designed to assess the effect of poultry manure rates on number of days to 50% seedling emergence, vine length/plant, leaf area per plant and the number of leaves produced per plant. The design used for the experiment was Randomized Complete Block Design (RCBD) with three blocks (replications). Treatment consisted of four rates of well-decomposed poultry manure at the rate of 0 tons/ha, 2 tons/ha, 4 tons/ha and 6 tons/ha. Data were collected on number of days to 50% seedling emergence, vine length per plant at two weeks interval, leaf number per plant at two weeks interval, leaf area per plant at two weeks interval, number of fruits produced per plant, and fresh weight of fruits per plant at harvest. Results from the analysis of variance (ANOVA) showed that there were highly significant effects (P=0.05) of poultry manure on growth and yield parameters studied which include number of days to 50% seedling emergence, vine length per plant, leaf number per plant, leaf area per plant, fruit number and fruit weight per plant such that increase in poultry manure rates lead to increase in growth and yield parameters studied. Therefore, the null hypothesis (Ho) was rejected, while the alternative hypothesis was accepted. Farmers should be made to know that growing cucumber with poultry manure in southeastern Nigeria agro ecology is a successful enterprise

Keywords: cucumber, effects, growth and yield, manure

Procedia PDF Downloads 205
4380 Improving Monitoring and Fault Detection of Solar Panels Using Arduino Mega in WSN

Authors: Ali Al-Dahoud, Mohamed Fezari, Thamer Al-Rawashdeh, Ismail Jannoud

Abstract:

Monitoring and detecting faults on a set of Solar panels, using a wireless sensor network (WNS) is our contribution in this paper, This work is part of the project we are working on at Al-Zaytoonah University. The research problem has been exposed by engineers and technicians or operators dealing with PV panels maintenance, in order to monitor and detect faults within solar panels which affect considerably the energy produced by the solar panels. The proposed solution is based on installing WSN nodes with appropriate sensors for more often occurred faults on the 45 solar panels installed on the roof of IT faculty. A simulation has been done on nodes distribution and a study for the design of a node with appropriate sensors taking into account the priorities of the processing faults. Finally, a graphic user interface is designed and adapted to telemonitoring panels using WSN. The primary tests of hardware implementation gave interesting results, the sensors calibration and interference transmission problem have been solved. A friendly GUI using high level language Visial Basic was developed to carry out the monitoring process and to save data on Exel File.

Keywords: Arduino Mega microcnotroller, solar panels, fault-detection, simulation, node design

Procedia PDF Downloads 447
4379 In Vitro Propagation in Barleria prionitis L. Via Callus Organogenesis

Authors: Rashmi Ranade, Neelu Joshi

Abstract:

Barleria prionitis L. is a well explored Indian medicinal plant valued for its stem and leaf which forms an important ingredient of many Ayurvedic formulations. It is used for the treatment of various disorders like toothache, bleeding gums, strengthening gums, whooping cough, inflammation, arthritis, enlargement of scrotum and sciatica etc. The plant is propagated vegetatively through stem cuttings. Frequent harvesting of this plant has led to the shortage of planting material, and it has acquired the status of vulnerable plant species. Plant tissue culture technology offers a very good alternative for propagation and conservation of such plant species. The present investigation was undertaken to develop in vitro regeneration protocol for B. prionitis L. via callus organogenesis pathway. Stem and leaf explants were used for this purpose. Different media and plant growth regulators were optimized to develop the protocol. The problem of phenol secretion and browning and in vitro cultures at the establishment phase was successfully curbed with the usage of antibrowning agents such as ascorbic acid and activated charcoal. Optimum shoot multiplication was achieved by the use of liquid media and incorporation of silver nitrate and TIBA (triiodobenzoic acid) into the media. High percent rooting (76%) was observed on WPM media supplemented with IBA (2.0 mg/l), IAA (0.5 mg/l), GA3(0.5) and activated charcoal(500 mg/l). The rooted plantlets were subjected to in vitro hardening on sterile potting mix (soil:farmyard manure:compost; 1:2:1) and acclimatized under greenhouse conditions. Around 85% survival of plantlets was recorded upon acclimatization. This lab scale protocol would be tested for in vitro scaling up production of B. prionitis L.

Keywords: explant browning, liquid culture, micropropagation, shoot multiplication, phenolic secretion

Procedia PDF Downloads 256
4378 Plant Genetic Diversity in Home Gardens and Its Contribution to Household Economy in Western Part of Ethiopia

Authors: Bedilu Tafesse

Abstract:

Home gardens are important social and cultural spaces where knowledge related to agricultural practice is transmitted and through which households may improve their income and livelihood. High levels of inter- and intra-specific plant genetic diversity are preserved in home gardens. Plant diversity is threatened by rapid and unplanned urbanization, which increases environmental problems such as heating, pollution, loss of habitats and ecosystem disruption. Tropical home gardens have played a significant role in conserving plant diversity while providing substantial benefits to households. This research aimed to understand the relationship between household characteristics and plant diversity in western Ethiopia home gardens and the contributions of plants to the household economy. Plant diversity and different uses of plants were studied in a random sample of 111 suburban home gardens in the Ilu Ababora, Jima and Wellega suburban area, western Ethiopia, based on complete garden inventories followed by household surveys on socio-economic status during 2012. A total of 261 species of plants were observed, of which 41% were ornamental plants, 36% food plants, and 22% medicinal plants. Of these 16% were sold commercially to produce income. Avocado, bananas, and other fruits produced in excess. Home gardens contributed the equivalent of 7% of total annual household income in terms of food and commercial sales. Multiple regression analysis showed that education, time spent in gardening, land for cultivation, household expenses, primary conservation practices, and uses of special techniques explained 56% of the total plant diversity. Food, medicinal and commercial plant species had significant positive relationships with time spent gardening and land area for gardening. Education and conservation practices significantly affected food and medicinal plant diversity. Special techniques used in gardening showed significant positive relations with ornamental and commercial plants. Reassessments in different suburban and urban home gardens and proper documentation using same methodology is essential to build a firm policy for enhancing plant diversity and related values to households and surroundings.

Keywords: plant genetic diversity, urbanization, suburban home gardens, Ethiopia

Procedia PDF Downloads 284
4377 Regulation of Water Balance of the Plant from the Different Geo-Environmental Locations

Authors: Astghik R. Sukiasyan

Abstract:

Under the drought stress condition, the plants would grow slower. Temperature is one of the most important abiotic factors which suppress the germination processes. However, the processes of transpiration are regulated directly by the cell water, which followed to an increase in volume of vacuoles. During stretching under the influence of water pressure, the cell goes into the state of turgor. In our experiments, lines of the semi-dental sweet maize of Armenian population from various zones of growth under mild and severe drought stress were tested. According to results, the value of the water balance of the plant cells may reflect the ability of plants to adapt to drought stress. It can be assumed that the turgor allows evaluating the number of received dissolved substance in cell.

Keywords: turgor, drought stress, plant growth, Armenian Zea Maize Semidentata

Procedia PDF Downloads 234
4376 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle

Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin

Abstract:

A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.

Keywords: balance control, synchronization control, two-wheel inverted pendulum, TWIP

Procedia PDF Downloads 369
4375 Effects of Plant Growth Promoting Microbes and Mycorrhizal Fungi on Wheat Growth in the Saline Soil

Authors: Ahmed Elgharably, Nivien Nafady

Abstract:

Arbuscular mycorrhizal fungi (AMF) and plant growth promoting microbes (PGPM) can promote plant growth under saline conditions. This study investigated how AMF and PGPM affected the growth and grain yield of wheat at different soil salinity levels (0, 75 and 150 mM NaCl). AMF colonization percentage, grain yield and dry weights and lengths of shoot and root, N, P K, Na, malondialdehyde, chlorophyll and proline contents and shoot relative permeability were determined. Salinity reduced NPK uptake and malondialdehyde and chlorophyll contents, and increased shoot Na concentration, relative permeability, and proline content, and thus declined plant growth. PGPM inoculation enhanced AMF colonization, P uptake, and K/Na ratio, but alone had no significant effect on plant growth and grain yield. AMF inoculation significantly enhanced NPK uptake, increased chlorophyll content and decreased shoot relative permeability, proline and Na contents, and thus promoted the plant growth. The inoculation of PGPM significantly enhanced the positive effects of AMF in controlling Na uptake and in increasing chlorophyll and NPK contents. Compared to AMF inoculation alone, dual inoculation with AMF and PGPM resulted in approximately 10, 25 and 25% higher grain yield at 0, 75 and 150 mM NaCl, respectively. The results provide that PGPM inoculation can maximize the effects of AMF inoculation in alleviating the deleterious effects of NaCl salts on wheat growth.

Keywords: mycorrhizal fungi, salinity, sodium, wheat

Procedia PDF Downloads 154
4374 The Concentration Analysis of CO2 Using ALOHA Code for Kuosheng Nuclear Power Plant

Authors: W. S. Hsu, Y. Chiang, H. C. Chen, J. R. Wang, S. W. Chen, J. H. Yang, C. Shih

Abstract:

Not only radiation materials, but also the normal chemical material stored in the power plant can cause a risk to the residents. In this research, the ALOHA code was used to perform the concentration analysis under the CO2 storage burst or leakage conditions for Kuosheng nuclear power plant (NPP). The Final Safety Analysis Report (FSAR) and data were used in this study. Additionally, the analysis results of ALOHA code were compared with the R.G. 1.78 failure criteria in order to confirm the control room habitability. The comparison results show that the ALOHA result for burst case was 0.923 g/m3 which was below the criteria. However, the ALOHA results for leakage case was 11.3 g/m3.

Keywords: BWR, ALOHA, habitability, Kuosheng

Procedia PDF Downloads 330
4373 Density Based Traffic System Using Pic Microcontroller

Authors: Tatipamula Samiksha Goud, .A.Naveena, M.sresta

Abstract:

Traffic congestion is a major issue in many cities throughout the world, particularly in urban areas, and it is past time to switch from a fixed timer mode to an automated system. The current traffic signalling system is a fixed-time system that is inefficient if one lane is more functional than the others. A structure for an intelligent traffic control system is being designed to address this issue. When traffic density is higher on one side of a junction, the signal's green time is extended in comparison to the regular time. This study suggests a technique in which the signal's time duration is assigned based on the amount of traffic present at the time. Infrared sensors can be used to do this.

Keywords: infrared sensors, micro-controllers, LEDs, oscillators

Procedia PDF Downloads 112
4372 Normalized Difference Vegetation Index and Normalize Difference Chlorophyll Changes with Different Irrigation Levels on Sillage Corn

Authors: Cenk Aksit, Suleyman Kodal, Yusuf Ersoy Yildirim

Abstract:

Normalized Difference Vegetation Index (NDVI) is a widely used index in the world that provides reference information, such as the health status of the plant, and the density of the vegetation in a certain area, by making use of the electromagnetic radiation reflected from the plant surface. On the other hand, the chlorophyll index provides reference information about the chlorophyll density in the plant by making use of electromagnetic reflections at certain wavelengths. Chlorophyll concentration is higher in healthy plants and decreases as plant health decreases. This study, it was aimed to determine the changes in Normalize Difference Vegetation Index (NDVI) and Normalize Difference Chlorophyll (NDCI) of silage corn irrigated with subsurface drip irrigation systems under different irrigation levels. In 5 days irrigation interval, the daily potential plant water consumption values were collected, and the calculated amount was applied to the full irrigation and 3 irrigation water levels as irrigation water. The changes in NDVI and NDCI of silage corn irrigated with subsurface drip irrigation systems under different irrigation levels were determined. NDVI values have changed according to the amount of irrigation water applied, and the highest NDVI value has been reached in the subject where the most water is applied. Likewise, it was observed that the chlorophyll value decreased in direct proportion to the amount of irrigation water as the plant approached the harvest.

Keywords: NDVI, NDCI, sub-surface drip irrigation, silage corn, deficit irrigation

Procedia PDF Downloads 68
4371 Soil-Less Misting System: A Technology for Hybrid Seed Production in Tomato (Lycopersicon esculentum Mill.).

Authors: K. D. Rajatha, S. Rajendra Prasad, N. Nethra

Abstract:

Aeroponics is one of the advanced techniques to cultivate plants without soil with minimal water and nutrient consumption. This is the technology which could bring the vertical growth in agriculture. It is an eco-friendly approach widely used for commercial cultivation of vegetables to obtain the supreme quality and yield. In this context, to harvest potentiality of the technology, an experiment was designed to evaluate the suitability of the aeroponics method over the conventional method for hybrid seed production of tomato. The experiment was carried out under Completely Randomized Design with Factorial (FCRD) concept with three replications during the year 2017-18 at UAS, GKVK Bengaluru. Nutrients and pH were standardized; among the six different nutrient solutions, the crop performance was better in Hoagland’s solution with pH between 5.5-7. The results of the present study revealed that between TAG1F and TAG2F parental lines, TAG1F performed better in both the methods of seed production. Among the methods, aeroponics showed better performance for the quality parameters except for plant spread, due to better availability of nutrients and aeration, huge root biomass in aeroponics. Aeroponics method showed significantly higher plant length (124.9 cm), plant growth rate (0.669), seedling survival rate (100%), early flowering (27.5 days), highest fruit weight (121.5 g), 100 seed weight (0.373 g) and total seed yield plant⁻¹ (11.68 g) compared to the conventional method. By providing the best environment for plant growth, the genetically best possible plant could be grown, thus complete potentiality of the plant could be harvested. Hence, aeroponics could be a promising tool for quality and healthy hybrid seed production throughout the year within protected cultivation.

Keywords: aeroponics, Hoagland’s solution, hybrid seed production, Lycopersicon esculentum

Procedia PDF Downloads 80
4370 Effects of Silver Nanoparticles on in vitro Adventitious Shoot Regeneration of Water Hyssop (Bacopa monnieri L. Wettst.)

Authors: Muhammad Aasim, Mehmet Karataş, Fatih Erci, Şeyma Bakırcı, Ecenur Korkmaz, Burak Kahveci

Abstract:

Water hyssop (Bacopa monnieri L. Wettst.) is an important medicinal aquatic/semi aquatic plant native to India where it is used in traditional medicinal system. The plant contains bioactive compounds mainly Bacosides which are the main ingridient of commercial drug available as memory enhancer tonic. The local name of water hyssop is Brahmi and brahmi based drugs are available against for curing chronic diseases and disorders Alzheimer’s disease, anxiety, asthma, cancer, mental illness, respiratory ailments, and stomach ulcers. The plant is not a cultivated plant and collection of plant from nature make palnt threatened to endangered. On the other hand, low seed viability and availability make it difficult to propagate plant through traditional techniques. In recent years, plant tissue culture techniques have been employed to propagate plant for its conservation and production for continuous availability of secondary metabolites. On the other hand, application of nanoparticles has been reported for increasing biomass, in vitro regeneration and secondary metabolites production. In this study, silver nanoparticles (AgNPs) were applied at the rate of 2, 4, 6, 8 and 10 ppm to Murashihe and Skoog (MS) medium supplemented with 1.0 mg/l Benzylaminopurine (BAP), 3.0% sucrose and 0.7% agar. Leaf explants of water hyssop were cultured on AgNPs containing medium. Shoot induction from leaf explants were relatively slow compared to medium without AgNPs. Multiple shoot induction was recorded after 3-4 weeks of culture comapred to control that occured within 10 days. Regenerated shoots were rooted successfully on MS medium supplemented with 1.0 mg/l IBA and acclimatized in the aquariums for further studies.

Keywords: Water hyssop, Silver nanoparticles, In vitro, Regeneration, Secondary metabolites

Procedia PDF Downloads 159
4369 Functionalized Ultra-Soft Rubber for Soft Robotics Application

Authors: Shib Shankar Banerjeea, Andreas Ferya, Gert Heinricha, Amit Das

Abstract:

Recently, the growing need for the development of soft robots consisting of highly deformable and compliance materials emerge from the serious limitations of conventional service robots. However, one of the main challenges of soft robotics is to develop such compliance materials, which facilitates the design of soft robotic structures and, simultaneously, controls the soft-body systems, like soft artificial muscles. Generally, silicone or acrylic-based elastomer composites are used for soft robotics. However, mechanical performance and long-term reliabilities of the functional parts (sensors, actuators, main body) of the robot made from these composite materials are inferior. This work will present the development and characterization of robust super-soft programmable elastomeric materials from crosslinked natural rubber that can serve as touch and strain sensors for soft robotic arms with very high elastic properties and strain, while the modulus is altered in the kilopascal range. Our results suggest that such soft natural programmable elastomers can be promising materials and can replace conventional silicone-based elastomer for soft robotics applications.

Keywords: elastomers, soft materials, natural rubber, sensors

Procedia PDF Downloads 128
4368 Technical Evaluation of Upgrading a Simple Gas Turbine Fired by Diesel to a Combined Cycle Power Plant in Kingdom of Suadi Arabistan Using WinSim Design II Software

Authors: Salman Obaidoon, Mohamed Hassan, Omer Bakather

Abstract:

As environmental regulations increase, the need for a clean and inexpensive energy is becoming necessary these days using an available raw material with high efficiency and low emissions of toxic gases. This paper presents a study on modifying a gas turbine power plant fired by diesel, which is located in Saudi Arabia in order to increase the efficiency and capacity of the station as well as decrease the rate of emissions. The studied power plant consists of 30 units with different capacities and total net power is 1470 MW. The study was conducted on unit number 25 (GT-25) which produces 72.3 MW with 29.5% efficiency. In the beginning, the unit was modeled and simulated by using WinSim Design II software. In this step, actual unit data were used in order to test the validity of the model. The net power and efficiency obtained from software were 76.4 MW and 32.2% respectively. A difference of about 6% was found in the simulated power plant compared to the actual station which means that the model is valid. After the validation of the model, the simple gas turbine power plant was converted to a combined cycle power plant (CCPP). In this case, the exhausted gas released from the gas turbine was introduced to a heat recovery steam generator (HRSG), which consists of three heat exchangers: an economizer, an evaporator and a superheater. In this proposed model, many scenarios were conducted in order to get the optimal operating conditions. The net power of CCPP was increased to 116.4 MW while the overall efficiency of the unit was reached to 49.02%, consuming the same amount of fuel for the gas turbine power plant. For the purpose of comparing the rate of emissions of carbon dioxide on each model. It was found that the rate of CO₂ emissions was decreased from 15.94 kg/s to 9.22 kg/s by using the combined cycle power model as a result of reducing of the amount of diesel from 5.08 kg/s to 2.94 kg/s needed to produce 76.5 MW. The results indicate that the rate of emissions of carbon dioxide was decreased by 42.133% in CCPP compared to the simple gas turbine power plant.

Keywords: combined cycle power plant, efficiency, heat recovery steam generator, simulation, validation, WinSim design II software

Procedia PDF Downloads 253
4367 Study on Butterfly Visitation Patterns of Stachytarpheta jamaicensis as a Beneficial Plant for Butterfly Conservation

Authors: P. U. S. Peiris

Abstract:

The butterflies are ecologically very important insects. The adults generally feed on nectar and are important as pollinators of flowering plants. However, these pollinators are under threat with their habitat loss. One reason for habitat loss is spread of invasive plants. However, there are even beneficial exotic plants which can directly support for Butterfly Conservation Action Plan of Sri Lanka by attracting butterflies for nectar. Stachytarpheta jamaicensis (L.) is an important nectar plant which attracts a diverse set of butterflies in higher number. It comprises a violet color inflorescence which last for about 37 hours where it attracted a peak of butterflies around 9.00am having around average of 15 butterflies. There were no butterflies in early and late hours where the number goes to very low values as 2 at 1.00pm. it was found that a diverse group of butterflies were attracted from around 15 species including 01 endemic species, 02 endemic subspecies and 02 vulnerable species. Therefore, this is a beneficial exotic plant that could be used in butterfly attraction and conservation however with adequate monitoring of the plant population.

Keywords: butterflies, exotic plants, pollinators, Stachytarpheta jamaicensis (L.)

Procedia PDF Downloads 222
4366 Implementation of Sensor Fusion Structure of 9-Axis Sensors on the Multipoint Control Unit

Authors: Jun Gil Ahn, Jong Tae Kim

Abstract:

In this paper, we study the sensor fusion structure on the multipoint control unit (MCU). Sensor fusion using Kalman filter for 9-axis sensors is considered. The 9-axis inertial sensor is the combination of 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer. We implement the sensor fusion structure among the sensor hubs in MCU and measure the execution time, power consumptions, and total energy. Experiments with real data from 9-axis sensor in 20Mhz show that the average power consumptions are 44mW and 48mW on Cortx-M0 and Cortex-M3 MCU, respectively. Execution times are 613.03 us and 305.6 us respectively.

Keywords: 9-axis sensor, Kalman filter, MCU, sensor fusion

Procedia PDF Downloads 477
4365 Effect of Cadmium and Zinc on Initial Insect Food Chain in Wheat Agroecosystem

Authors: Muhammad Xaaceph Khan, Abida Butt, Farah Kausar

Abstract:

Due to geogenic and anthropogenic factors, heavy metals concentrations increased throughout the world and deposit into soil. Thus available to different plants and travel in different food chains. The present study was designed to achieve bioaccumulation of Cd and Zn in the wheat-aphid-beetle food chain. For this purpose, wheat plants were grown in three different treatments: Cd, Zn, Cd+Zn. Data showed that Cd content in soil and wheat plant increases with increase in Cd concentration while plant weighs, panicle weight, seed number per panicle and seed weight per panicle decreases with increase in Cd content in the soil. Zn content in soil and wheat plant increases with increase in Cd concentration while plant weighs, panicle weight, seed number per panicle, and seed weight per panicle increase with an increase in Zn content in the soil. With the addition of Zn in Cd-treated soil, the uptake of Cd decreases in all parts of wheat plants. Bioaccumulation from wheat plant to aphids and then its predators were also studied. Cd concentration increases from low to high concentration in all arthropods. Same was observed in Zn concentrations, while in Cd+Zn, Cd accumulation decreases but Zn accumulates increases. Health risk index (HRI) also showed that in the presence of Zn, the HRI improves and can help to reduce health risks associated with Cd.

Keywords: aphid, beetle, bioaccumulation, cadmium, wheat, zinc

Procedia PDF Downloads 131
4364 Secondary Metabolite Profiling and Antimicrobial Activity of Leaf Extract of Tecomella undulata (Sm.) Seem

Authors: Richa Bhardwaj

Abstract:

Tecomella undulata (Sm.) Seem is a monotypic genus belonging to family Bignoniaceae. The plant holds tremendous potential of medicinal value and has been traditionally used in various ailments like syphilis, leukoderma, blood disorders to name a few. The plant has gained prominence due to the presence of some prominent secondary metabolites. The present study focuses on the GC-MS analysis of leaf extracts of T. undulata which revealed the presence of certain bioactive compounds like stigmasterol, sitosterol, thiazoline, phytol, pthalic acid, methyl alpha ketopalmitate and so forth. A total of about 20 bioactive compounds were identified from the leaf extract spectra. Antimicrobial activity of the leaf extract was assayed against pathogenic bacteria and fungi. The alkaloids from leaf extracts showed antimicrobial activity against E.coli and B.subtilis. The flavonoids from leaves showed positive activity against Penicillium species and Candida albicans. The study thus infers that the presence of bioactive components may be the principle behind the antimicrobial property of different plant parts and therefore Tecomella forms a potential plant for herbal drug formulation.

Keywords: Tecomella undulata, bioactive compounds, GC-MS, antimicrobial activity

Procedia PDF Downloads 123
4363 Effect Of Tephrosia purpurea (Family: Fabaceae) Formulations On Oviposition By The Pulse Beetle Callosobruchus chinensis Linn.

Authors: Priyanka Jain, Meera Srivastava

Abstract:

Among important insect pests of stored grains, the pulse beetle Callosobruchus chinensis Linn. (Coleoptera: Bruchidae) is one such pest causing considerable damage to stored pulses. An effort was made to screen plant Tephrosia purpurea (Family: Fabaceae) for its efficacy against the said pest. The pulse beetle C. chinensis was raised on green gram Vigna radiata in incubators maintained at 28 ± 2°C and 70% RH. Different formulations using plant parts (root, stem, leaf and fruit) were employed in the form of aqueous suspension, aqueous extract and ether extract and the treatments were made using different dose concentrations, namely 1%, 2.5%, 5% and 10%, besides normal and control. Specific number of adult insects were released in muslin cloth covered beakers containing weighed green gram grains and treated with different dose concentrations (w/v). Observations for the number of eggs laid by the pest insect C. chinensis was recorded after three days of treatment and it was observed that in general all the treatments of the plant resulted in significant decrease in the eggs laid (no/pair) by the insect, suggesting that the selected plant has a potential to be used against C. chinensis.

Keywords: Callosobruchus chinensis, egg laying, Tephrosia purpurea, Fabaceae, plant formulations

Procedia PDF Downloads 322
4362 Plant as an Alternative for Anti Depressant Drugs St John's Wort

Authors: Mahdi Akhbardeh

Abstract:

St John's wort plant can help to treat depression disease through decreasing this disease symptom, due to having some similar features of Prozac (Fluoxetine Hcl) pill. People suffering from slight depression who have fear of using antidepressants side effects can use St John's wort drops under doctor observation. This method of treatment is proposed specially to those women who are spending menopause or depression resulted from this period. St John's wort plant have proposed traditional and plant medicine as newest researches in treating mood disorders compared to Prozac (Fluoxetine Hcl) drug in treating depression disease which is being administrated in clinic research center of Washington. Objective: the aim of this study is to find an alternative treatment method in people suffering from depression which are treated with Prozac (Fluoxetine Hcl). Almost 70 percent of treatment failures with Prozac (Fluoxetine Hcl) drug in patients suffering from slight to normal depression is due to intensive side effects including: decrease in blood pressure, reduce in sexual desire and 30 percent of it is due to this drug affectless in treatment procedure which leads to leaving treatment. Results of Hypercuim plant function are exactly similar to antidepressants. Increase in serotonin amount in brain synopsis terminal end causes increase in existence time of this material in this part. In fact these two drugs have similar function. Though side effects of Hypercuim plant(St John's wort) including headache and slight nausea tolerable. Results: St John's wort plant can be used lonely in slight to normal depressions in which patients are avoiding Prozac (Fluoxetine Hcl) drug due to it's side effects. In intensive depressions through which general patients don’t indicate positive response to drug, it is probably expected relative or even complete treatment through combining antidepressants drugs with this plant. This treatment method has been investigated and confirmed in clinical tests and researches.

Keywords: depression, St John's wort, Prozac, antidepressant

Procedia PDF Downloads 461
4361 Quantum Conductance Based Mechanical Sensors Fabricated with Closely Spaced Metallic Nanoparticle Arrays

Authors: Min Han, Di Wu, Lin Yuan, Fei Liu

Abstract:

Mechanical sensors have undergone a continuous evolution and have become an important part of many industries, ranging from manufacturing to process, chemicals, machinery, health-care, environmental monitoring, automotive, avionics, and household appliances. Concurrently, the microelectronics and microfabrication technology have provided us with the means of producing mechanical microsensors characterized by high sensitivity, small size, integrated electronics, on board calibration, and low cost. Here we report a new kind of mechanical sensors based on the quantum transport process of electrons in the closely spaced nanoparticle films covering a flexible polymer sheet. The nanoparticle films were fabricated by gas phase depositing of preformed metal nanoparticles with a controlled coverage on the electrodes. To amplify the conductance of the nanoparticle array, we fabricated silver interdigital electrodes on polyethylene terephthalate(PET) by mask evaporation deposition. The gaps of the electrodes ranged from 3 to 30μm. Metal nanoparticles were generated from a magnetron plasma gas aggregation cluster source and deposited on the interdigital electrodes. Closely spaced nanoparticle arrays with different coverage could be gained through real-time monitoring the conductance. In the film coulomb blockade and quantum, tunneling/hopping dominate the electronic conduction mechanism. The basic principle of the mechanical sensors relies on the mechanical deformation of the fabricated devices which are translated into electrical signals. Several kinds of sensing devices have been explored. As a strain sensor, the device showed a high sensitivity as well as a very wide dynamic range. A gauge factor as large as 100 or more was demonstrated, which can be at least one order of magnitude higher than that of the conventional metal foil gauges or even better than that of the semiconductor-based gauges with a workable maximum applied strain beyond 3%. And the strain sensors have a workable maximum applied strain larger than 3%. They provide the potential to be a new generation of strain sensors with performance superior to that of the currently existing strain sensors including metallic strain gauges and semiconductor strain gauges. When integrated into a pressure gauge, the devices demonstrated the ability to measure tiny pressure change as small as 20Pa near the atmospheric pressure. Quantitative vibration measurements were realized on a free-standing cantilever structure fabricated with closely-spaced nanoparticle array sensing element. What is more, the mechanical sensor elements can be easily scaled down, which is feasible for MEMS and NEMS applications.

Keywords: gas phase deposition, mechanical sensors, metallic nanoparticle arrays, quantum conductance

Procedia PDF Downloads 256
4360 Phytochemical and Proximate Composition Analysis of Aspillia kotschyi

Authors: A. U. Adamu, E. D Paul, C. E. Gimba, I. G. Ndukwe

Abstract:

The phytochemical and proximate composition of Aspillia kotschyi belonging to Compositae family which is commonly used as medicinal plant in Nigeria was determined on both the Methanolic and Petroleum sprit extract of the plant. The Methanolic extract of the plant revealed the presence of carbohydrates, cardiac glyscosides, flavonoids, triterpene, and alkaloids. The Petroleum sprit extract showed the presence of only carbohydrates and alkaloid. Proximate composition analysis shows moisture content of 5.7%, total ash of 4.03%, crude protein 10.94%, fibre 9.06%, fat value 0.83%, and nitrogen free extract of 70.19%. The results of this study suggest some merit in the popular use of Aspillia kotschi in herbal medicine.

Keywords: Aspillia kotschyi, herbal medicine, phytochemical, proximate composition

Procedia PDF Downloads 340
4359 The Performance Improvement of Solar Aided Power Generation System by Introducing the Second Solar Field

Authors: Junjie Wu, Hongjuan Hou, Eric Hu, Yongping Yang

Abstract:

Solar aided power generation (SAPG) technology has been proven as an efficient way to make use of solar energy for power generation purpose. In an SAPG plant, a solar field consisting of parabolic solar collectors is normally used to supply the solar heat in order to displace the high pressure/temperature extraction steam. To understand the performance of such a SAPG plant, a new simulation model was developed by the authors recently, in which the boiler was treated, as a series of heat exchangers unlike other previous models. Through the simulations using the new model, it was found the outlet properties of reheated steam, e.g. temperature, would decrease due to the introduction of the solar heat. The changes make the (lower stage) turbines work under off-design condition. As a result, the whole plant’s performance may not be optimal. In this paper, the second solar filed was proposed to increase the inlet temperature of steam to be reheated, in order to bring the outlet temperature of reheated steam back to the designed condition. A 600MW SAPG plant was simulated as a case study using the new model to understand the impact of the second solar field on the plant performance. It was found in the study, the 2nd solar field would improve the plant’s performance in terms of cycle efficiency and solar-to-electricity efficiency by 1.91% and 6.01%. The solar-generated electricity produced by per aperture area under the design condition was 187.96W/m2, which was 26.14% higher than the previous design.

Keywords: solar-aided power generation system, off-design performance, coal-saving performance, boiler modelling, integration schemes

Procedia PDF Downloads 269