Search results for: input processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5661

Search results for: input processing

5301 Carrier Communication through Power Lines

Authors: Pavuluri Gopikrishna, B. Neelima

Abstract:

Power line carrier communication means audio power transmission via power line and reception of the amplified audio power at the receiver as in the form of speaker output signal using power line as the channel medium. The main objective of this suggested work is to transmit our message signal after frequency modulation by the help of FM modulator IC LM565 which gives output proportional to the input voltage of the input message signal. And this audio power is received from the power line by the help of isolation circuit and demodulated from IC LM565 which uses the concept of the PLL and produces FM demodulated signal to the listener. Message signal will be transmitted over the carrier signal that will be generated from the FM modulator IC LM565. Using this message signal will not damage because of no direct contact of message signal from the power line, but noise can disturb our information.

Keywords: amplification, fm demodulator ic 565, fm modulator ic 565, phase locked loop, power isolation

Procedia PDF Downloads 552
5300 Embedded Acoustic Signal Processing System Using OpenMP Architecture

Authors: Abdelkader Elhanaoui, Mhamed Hadji, Rachid Skouri, Said Agounad

Abstract:

In this paper, altera de1-SoC FPGA board technology is utilized as a distinguished tool for nondestructive characterization of an aluminum circular cylindrical shell of radius ratio b/a (a: outer radius; b: inner radius). The acoustic backscattered signal processing system has been developed using OpenMP architecture. The design is built in three blocks; it is implemented per functional block, in a heterogeneous Intel-Altera system running under Linux. The useful data to determine the performances of SoC FPGA is computed by the analytical method. The exploitation of SoC FPGA has lead to obtain the backscattering form function and resonance spectra. A0 and S0 modes of propagation in the tube are shown. The findings are then compared to those achieved from the Matlab simulation of analytical method. A good agreement has, therefore, been noted. Moreover, the detailed SoC FPGA-based system has shown that acoustic spectra are performed at up to 5 times faster than the Matlab implementation using almost the same data. This FPGA-based system implementation of processing algorithms is realized with a coefficient of correlation R and absolute error respectively about 0.962 and 5 10⁻⁵.

Keywords: OpenMP, signal processing system, acoustic backscattering, nondestructive characterization, thin tubes

Procedia PDF Downloads 92
5299 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study

Authors: Si Mon Kueh, Tom J. Kazmierski

Abstract:

There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.

Keywords: Artificial Neural Networks (ANN), bit-serial neural processor, FPGA, Neural Processing Element (NPE)

Procedia PDF Downloads 321
5298 The Impact of Artificial Intelligence on Food Industry

Authors: George Hanna Abdelmelek Henien

Abstract:

Quality and safety issues are common in Ethiopia's food processing industry, which can negatively impact consumers' health and livelihoods. The country is known for its various agricultural products that are important to the economy. However, food quality and safety policies and management practices in the food processing industry have led to many health problems, foodborne illnesses and economic losses. This article aims to show the causes and consequences of food safety and quality problems in the food processing industry in Ethiopia and discuss possible solutions to solve them. One of the main reasons for food quality and safety in Ethiopia's food processing industry is the lack of adequate regulation and enforcement mechanisms. Inadequate food safety and quality policies have led to inefficiencies in food production. Additionally, the failure to monitor and enforce existing regulations has created a good opportunity for unscrupulous companies to engage in harmful practices that endanger the lives of citizens. The impact on food quality and safety is significant due to loss of life, high medical costs, and loss of consumer confidence in the food processing industry. Foodborne diseases such as diarrhoea, typhoid and cholera are common in Ethiopia, and food quality and safety play an important role in . Additionally, food recalls due to contamination or contamination often cause significant economic losses in the food processing industry. To solve these problems, the Ethiopian government began taking measures to improve food quality and safety in the food processing industry. One of the most prominent initiatives is the Ethiopian Food and Drug Administration (EFDA), which was established in 2010 to monitor and control the quality and safety of food and beverage products in the country. EFDA has implemented many measures to improve food safety, such as carrying out routine inspections, monitoring the import of food products and implementing labeling requirements. Another solution that can improve food quality and safety in the food processing industry in Ethiopia is the implementation of food safety management system (FSMS). FSMS is a set of procedures and policies designed to identify, assess and control food safety risks during food processing. Implementing a FSMS can help companies in the food processing industry identify and address potential risks before they harm consumers. Additionally, implementing an FSMS can help companies comply with current safety and security regulations. Consequently, improving food safety policy and management system in Ethiopia's food processing industry is important to protect people's health and improve the country's economy. . Addressing the root causes of food quality and safety and implementing practical solutions that can help improve the overall food safety and quality in the country, such as establishing regulatory bodies and implementing food management systems.

Keywords: food quality, food safety, policy, management system, food processing industry food traceability, industry 4.0, internet of things, block chain, best worst method, marcos

Procedia PDF Downloads 63
5297 Paleoproductivity during the Younger Dryas off Northeastern Luzon, Philippines

Authors: Jay Mar D. Quevedo, Fernando P. Siringan, Cesar L. Villanoy

Abstract:

The influence of the Younger Dryas (YD) event on primary production off the northeast shelf of Luzon, Philippines is examined using sediment cores from two deep sea sites north of the Bicol shelf and with varying relative influence from terrestrial sediment input and the Kuroshio Current. Core A is immediately west of the Kuroshio feeder current and is off the slope while Core B is from a bathymetric high located almost west of Core A. XRF-, CHN- and LOI- derived geochemical proxies are utilized for reconstruction. A decrease in sediment input from ~12.9 to ~11.6 kyr BP corresponding to the YD event is indicated by the proxies, Ti, Al, and Al/Ti, in both cores. This is consistent with the drier climate during this period. Primary productivity indicators in the cores show opposing trends during the YD; Core A shows an increasing trend while Core B shows a decreasing trend. The decreasing trend in Core B can be due to a decrease in terrestrial nutrient input due to a decrease in precipitation. On the other hand, the increasing trend in Core A can be due to a swifter Kuroshio Current caused by a swifter and more southerly NEC bifurcation which in turn is due to a southerly shift of the ITCZ during YD. A stronger Kuroshio feeder would have enhanced upwelling induced by steeper sea surface across the current and by more intense cyclonic gyres due to flow separation where the shelf width suddenly decreases north of the Bicol Shelf.

Keywords: paleoproductivity, younger dryas, Philippines, northeastern Luzon

Procedia PDF Downloads 309
5296 Multiscale Process Modeling Analysis for the Prediction of Composite Strength Allowables

Authors: Marianna Maiaru, Gregory M. Odegard

Abstract:

During the processing of high-performance thermoset polymer matrix composites, chemical reactions occur during elevated pressure and temperature cycles, causing the constituent monomers to crosslink and form a molecular network that gradually can sustain stress. As the crosslinking process progresses, the material naturally experiences a gradual shrinkage due to the increase in covalent bonds in the network. Once the cured composite completes the cure cycle and is brought to room temperature, the thermal expansion mismatch of the fibers and matrix cause additional residual stresses to form. These compounded residual stresses can compromise the reliability of the composite material and affect the composite strength. Composite process modeling is greatly complicated by the multiscale nature of the composite architecture. At the molecular level, the degree of cure controls the local shrinkage and thermal-mechanical properties of the thermoset. At the microscopic level, the local fiber architecture and packing affect the magnitudes and locations of residual stress concentrations. At the macroscopic level, the layup sequence controls the nature of crack initiation and propagation due to residual stresses. The goal of this research is use molecular dynamics (MD) and finite element analysis (FEA) to predict the residual stresses in composite laminates and the corresponding effect on composite failure. MD is used to predict the polymer shrinkage and thermomechanical properties as a function of degree of cure. This information is used as input into FEA to predict the residual stresses on the microscopic level resulting from the complete cure process. Virtual testing is subsequently conducted to predict strength allowables. Experimental characterization is used to validate the modeling.

Keywords: molecular dynamics, finite element analysis, processing modeling, multiscale modeling

Procedia PDF Downloads 92
5295 A Knee Modular Orthosis Design Based on Kinematic Considerations

Authors: C. Copilusi, C. Ploscaru

Abstract:

This paper addresses attention to a research regarding the design of a knee orthosis in a modular form used on children walking rehabilitation. This research is focused on the human lower limb kinematic analysis which will be used as input data on virtual simulations and prototype validation. From this analysis, important data will be obtained and used as input for virtual simulations of the knee modular orthosis. Thus, a knee orthosis concept was obtained and validated through virtual simulations by using MSC Adams software. Based on the obtained results, the modular orthosis prototype will be manufactured and presented in this article.

Keywords: human lower limb, children orthoses, kinematic analysis, knee orthosis

Procedia PDF Downloads 287
5294 Lyapunov and Input-to-State Stability of Stochastic Differential Equations

Authors: Arcady Ponosov, Ramazan Kadiev

Abstract:

Input-to-State Stability (ISS) is widely used in deterministic control theory but less known in the stochastic case. Roughly speaking, the theory explains when small perturbations of the right-hand sides of the system on the entire semiaxis cause only small changes in the solutions of the system, again on the entire semiaxis. This property is crucial in many applications. In the report, we explain how to define and study ISS for systems of linear stochastic differential equations with or without delays. The central result connects ISS with the property of Lyapunov stability. This relationship is well-known in the deterministic setting, but its stochastic version is new. As an application, a method of studying asymptotic Lyapunov stability for stochastic delay equations is described and justified. Several examples are provided that confirm the efficiency and simplicity of the framework.

Keywords: asymptotic stability, delay equations, operator methods, stochastic perturbations

Procedia PDF Downloads 176
5293 Number of Parametrization of Discrete-Time Systems without Unit-Delay Element: Single-Input Single-Output Case

Authors: Kazuyoshi Mori

Abstract:

In this paper, we consider the parametrization of the discrete-time systems without the unit-delay element within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters. We consider single-input single-output systems in this paper. By the investigation, we find, on the discrete-time systems without the unit-delay element, three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three.

Keywords: factorization approach, discrete-time system, parameterization of stabilizing controllers, system without unit-delay

Procedia PDF Downloads 240
5292 Structural Invertibility and Optimal Sensor Node Placement for Error and Input Reconstruction in Dynamic Systems

Authors: Maik Kschischo, Dominik Kahl, Philipp Wendland, Andreas Weber

Abstract:

Understanding and modelling of real-world complex dynamic systems in biology, engineering and other fields is often made difficult by incomplete knowledge about the interactions between systems states and by unknown disturbances to the system. In fact, most real-world dynamic networks are open systems receiving unknown inputs from their environment. To understand a system and to estimate the state dynamics, these inputs need to be reconstructed from output measurements. Reconstructing the input of a dynamic system from its measured outputs is an ill-posed problem if only a limited number of states is directly measurable. A first requirement for solving this problem is the invertibility of the input-output map. In our work, we exploit the fact that invertibility of a dynamic system is a structural property, which depends only on the network topology. Therefore, it is possible to check for invertibility using a structural invertibility algorithm which counts the number of node disjoint paths linking inputs and outputs. The algorithm is efficient enough, even for large networks up to a million nodes. To understand structural features influencing the invertibility of a complex dynamic network, we analyze synthetic and real networks using the structural invertibility algorithm. We find that invertibility largely depends on the degree distribution and that dense random networks are easier to invert than sparse inhomogeneous networks. We show that real networks are often very difficult to invert unless the sensor nodes are carefully chosen. To overcome this problem, we present a sensor node placement algorithm to achieve invertibility with a minimum set of measured states. This greedy algorithm is very fast and also guaranteed to find an optimal sensor node-set if it exists. Our results provide a practical approach to experimental design for open, dynamic systems. Since invertibility is a necessary condition for unknown input observers and data assimilation filters to work, it can be used as a preprocessing step to check, whether these input reconstruction algorithms can be successful. If not, we can suggest additional measurements providing sufficient information for input reconstruction. Invertibility is also important for systems design and model building. Dynamic models are always incomplete, and synthetic systems act in an environment, where they receive inputs or even attack signals from their exterior. Being able to monitor these inputs is an important design requirement, which can be achieved by our algorithms for invertibility analysis and sensor node placement.

Keywords: data-driven dynamic systems, inversion of dynamic systems, observability, experimental design, sensor node placement

Procedia PDF Downloads 150
5291 In-Context Meta Learning for Automatic Designing Pretext Tasks for Self-Supervised Image Analysis

Authors: Toktam Khatibi

Abstract:

Self-supervised learning (SSL) includes machine learning models that are trained on one aspect and/or one part of the input to learn other aspects and/or part of it. SSL models are divided into two different categories, including pre-text task-based models and contrastive learning ones. Pre-text tasks are some auxiliary tasks learning pseudo-labels, and the trained models are further fine-tuned for downstream tasks. However, one important disadvantage of SSL using pre-text task solving is defining an appropriate pre-text task for each image dataset with a variety of image modalities. Therefore, it is required to design an appropriate pretext task automatically for each dataset and each downstream task. To the best of our knowledge, the automatic designing of pretext tasks for image analysis has not been considered yet. In this paper, we present a framework based on In-context learning that describes each task based on its input and output data using a pre-trained image transformer. Our proposed method combines the input image and its learned description for optimizing the pre-text task design and its hyper-parameters using Meta-learning models. The representations learned from the pre-text tasks are fine-tuned for solving the downstream tasks. We demonstrate that our proposed framework outperforms the compared ones on unseen tasks and image modalities in addition to its superior performance for previously known tasks and datasets.

Keywords: in-context learning (ICL), meta learning, self-supervised learning (SSL), vision-language domain, transformers

Procedia PDF Downloads 80
5290 Calibration of the Discrete Element Method Using a Large Shear Box

Authors: C. J. Coetzee, E. Horn

Abstract:

One of the main challenges in using the Discrete Element Method (DEM) is to specify the correct input parameter values. In general, the models are sensitive to the input parameter values and accurate results can only be achieved if the correct values are specified. For the linear contact model, micro-parameters such as the particle density, stiffness, coefficient of friction, as well as the particle size and shape distributions are required. There is a need for a procedure to accurately calibrate these parameters before any attempt can be made to accurately model a complete bulk materials handling system. Since DEM is often used to model applications in the mining and quarrying industries, a calibration procedure was developed for materials that consist of relatively large (up to 40 mm in size) particles. A coarse crushed aggregate was used as the test material. Using a specially designed large shear box with a diameter of 590 mm, the confined Young’s modulus (bulk stiffness) and internal friction angle of the material were measured by means of the confined compression test and the direct shear test respectively. DEM models of the experimental setup were developed and the input parameter values were varied iteratively until a close correlation between the experimental and numerical results was achieved. The calibration process was validated by modelling the pull-out of an anchor from a bed of material. The model results compared well with experimental measurement.

Keywords: Discrete Element Method (DEM), calibration, shear box, anchor pull-out

Procedia PDF Downloads 291
5289 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains

Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda

Abstract:

In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).

Keywords: features extraction, handwritten numeric chains, image processing, neural networks

Procedia PDF Downloads 265
5288 Analyzing Electricity Demand Multipliers in the Malaysian Economy

Authors: Hussain Ali Bekhet, Tuan Ab Rashid Bin Tuan Abdullah, Tahira Yasmin

Abstract:

It is very important for electric utility to determine dominant sectors which have more impacts on electricity consumption in national economy system. The aim of this paper is to examine the electricity demand multipliers in Malaysia for (2005-2014) period. Malaysian Input-output tables, 2005 and 2010 are used. Besides, a new concept, electricity demand multiplier (EDM), is presented to identify key sectors imposing great impacts on electricity demand quantitatively. In order to testify the effectiveness of the Malaysian energy policies, it notes that there is fluctuation of the ranking sectors between 2005 and 2010. This could be reflected that there is efficiency with pace of development in Malaysia. This can be good indication for decision makers for designing future energy policies.

Keywords: input-output model, demand multipliers, electricity, key sectors, Malaysia

Procedia PDF Downloads 371
5287 Cognitive Dysfunctioning and the Fronto-Limbic Network in Bipolar Disorder Patients: A Fmri Meta-Analysis

Authors: Rahele Mesbah, Nic Van Der Wee, Manja Koenders, Erik Giltay, Albert Van Hemert, Max De Leeuw

Abstract:

Introduction: Patients with bipolar disorder (BD), characterized by depressive and manic episodes, often suffer from cognitive dysfunction. An up-to-date meta-analysis of functional Magnetic Resonance Imaging (fMRI) studies examining cognitive function in BD is lacking. Objective: The aim of the current fMRI meta-analysis is to investigate brain functioning of bipolar patients compared with healthy subjects within three domains of emotion processing, reward processing, and working memory. Method: Differences in brain regions activation were tested within whole-brain analysis using the activation likelihood estimation (ALE) method. Separate analyses were performed for each cognitive domain. Results: A total of 50 fMRI studies were included: 20 studies used an emotion processing (316 BD and 369 HC) task, 9 studies a reward processing task (215 BD and 213 HC), and 21 studies used a working memory task (503 BD and 445 HC). During emotion processing, BD patients hyperactivated parts of the left amygdala and hippocampus as compared to HC’s, but showed hypoactivation in the inferior frontal gyrus (IFG). Regarding reward processing, BD patients showed hyperactivation in part of the orbitofrontal cortex (OFC). During working memory, BD patients showed increased activity in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC). Conclusions: This meta-analysis revealed evidence for activity disturbances in several brain areas involved in the cognitive functioning of BD patients. Furthermore, most of the found regions are part of the so-called fronto-limbic network which is hypothesized to be affected as a result of BD candidate genes' expression.

Keywords: cognitive functioning, fMRI analysis, bipolar disorder, fronto-limbic network

Procedia PDF Downloads 462
5286 Application of Multidimensional Model of Evaluating Organisational Performance in Moroccan Sport Clubs

Authors: Zineb Jibraili, Said Ouhadi, Jorge Arana

Abstract:

Introduction: Organizational performance is recognized by some theorists as one-dimensional concept, and by others as multidimensional. This concept, which is already difficult to apply in traditional companies, is even harder to identify, to measure and to manage when voluntary organizations are concerned, essentially because of the complexity of that form of organizations such as sport clubs who are characterized by the multiple goals and multiple constituencies. Indeed, the new culture of professionalization and modernization around organizational performance emerges new pressures from the state, sponsors, members and other stakeholders which have required these sport organizations to become more performance oriented, or to build their capacity in order to better manage their organizational performance. The evaluation of performance can be made by evaluating the input (e.g. available resources), throughput (e.g. processing of the input) and output (e.g. goals achieved) of the organization. In non-profit organizations (NPOs), questions of performance have become increasingly important in the world of practice. To our knowledge, most of studies used the same methods to evaluate the performance in NPSOs, but no recent study has proposed a club-specific model. Based on a review of the studies that specifically addressed the organizational performance (and effectiveness) of NPSOs at operational level, the present paper aims to provide a multidimensional framework in order to understand, analyse and measure organizational performance of sport clubs. This paper combines all dimensions founded in literature and chooses the most suited of them to our model that we will develop in Moroccan sport clubs case. Method: We propose to implicate our unified model of evaluating organizational performance that takes into account all the limitations found in the literature. On a sample of Moroccan sport clubs ‘Football, Basketball, Handball and Volleyball’, for this purpose we use a qualitative study. The sample of our study comprises data from sport clubs (football, basketball, handball, volleyball) participating on the first division of the professional football league over the period from 2011 to 2016. Each football club had to meet some specific criteria in order to be included in the sample: 1. Each club must have full financial data published in their annual financial statements, audited by an independent chartered accountant. 2. Each club must have sufficient data. Regarding their sport and financial performance. 3. Each club must have participated at least once in the 1st division of the professional football league. Result: The study showed that the dimensions that constitute the model exist in the field with some small modifications. The correlations between the different dimensions are positive. Discussion: The aim of this study is to test the unified model emerged from earlier and narrower approaches for Moroccan case. Using the input-throughput-output model for the sketch of efficiency, it was possible to identify and define five dimensions of organizational effectiveness applied to this field of study.

Keywords: organisational performance, model multidimensional, evaluation organizational performance, sport clubs

Procedia PDF Downloads 323
5285 Artificial Neural Network-Based Bridge Weigh-In-Motion Technique Considering Environmental Conditions

Authors: Changgil Lee, Junkyeong Kim, Jihwan Park, Seunghee Park

Abstract:

In this study, bridge weigh-in-motion (BWIM) system was simulated under various environmental conditions such as temperature, humidity, wind and so on to improve the performance of the BWIM system. The environmental conditions can make difficult to analyze measured data and hence those factors should be compensated. Various conditions were considered as input parameters for ANN (Artificial Neural Network). The number of hidden layers for ANN was decided so that nonlinearity could be sufficiently reflected in the BWIM results. The weight of vehicles and axle weight were more accurately estimated by applying ANN approach. Additionally, the type of bridge which was a target structure was considered as an input parameter for the ANN.

Keywords: bridge weigh-in-motion (BWIM) system, environmental conditions, artificial neural network, type of bridges

Procedia PDF Downloads 442
5284 Solid Waste Management through Mushroom Cultivation: An Eco Friendly Approach

Authors: Mary Josephine

Abstract:

Waste of certain process can be the input source of other sectors in order to reduce environmental pollution. Today there are more and more solid wastes are generated, but only very small amount of those are recycled. So, the threatening of environmental pressure to public health is very serious. The methods considered for the treatment of solid waste are biogas tanks or processing to make animal feed and fertilizer, however, they did not perform well. An alternative approach is growing mushrooms on waste residues. This is regarded as an environmental friendly solution with potential economic benefit. The substrate producers do their best to produce quality substrate at low cost. Apart from other methods, this can be achieved by employing biologically degradable wastes used as the resource material component of the substrate. Mushroom growing is a significant tool for the restoration, replenishment and remediation of Earth’s overburdened ecosphere. One of the rational methods of waste utilization involves locally available wastes. The present study aims to find out the yield of mushroom grown on locally available waste for free and to conserve our environment by recycling wastes.

Keywords: biodegradable, environment, mushroom, remediation

Procedia PDF Downloads 397
5283 Disparity of Learning Styles and Cognitive Abilities in Vocational Education

Authors: Mimi Mohaffyza Mohamad, Yee Mei Heong, Nurfirdawati Muhammad Hanafi, Tee Tze Kiong

Abstract:

This study is conducted to investigate the disparity of between learning styles and cognitive abilities specifically in Vocational Education. Felder and Silverman Learning Styles Model (FSLSM) was applied to measure the students’ learning styles while the content in Building Construction Subject consists; knowledge, skills and problem solving were taken into account in constructing the elements of cognitive abilities. There are four dimension of learning styles proposed by Felder and Silverman intended to capture student learning preferences with regards to processing either active or reflective, perception based on sensing or intuitive, input of information used visual or verbal and understanding information represent with sequential or global learner. The study discovered that students are tending to be visual learners and each type of learner having significant difference whereas cognitive abilities. The finding may help teachers to facilitate students more effectively and to boost the student’s cognitive abilities.

Keywords: learning styles, cognitive abilities, dimension of learning styles, learning preferences

Procedia PDF Downloads 402
5282 Advancements in Mathematical Modeling and Optimization for Control, Signal Processing, and Energy Systems

Authors: Zahid Ullah, Atlas Khan

Abstract:

This abstract focuses on the advancements in mathematical modeling and optimization techniques that play a crucial role in enhancing the efficiency, reliability, and performance of these systems. In this era of rapidly evolving technology, mathematical modeling and optimization offer powerful tools to tackle the complex challenges faced by control, signal processing, and energy systems. This abstract presents the latest research and developments in mathematical methodologies, encompassing areas such as control theory, system identification, signal processing algorithms, and energy optimization. The abstract highlights the interdisciplinary nature of mathematical modeling and optimization, showcasing their applications in a wide range of domains, including power systems, communication networks, industrial automation, and renewable energy. It explores key mathematical techniques, such as linear and nonlinear programming, convex optimization, stochastic modeling, and numerical algorithms, that enable the design, analysis, and optimization of complex control and signal processing systems. Furthermore, the abstract emphasizes the importance of addressing real-world challenges in control, signal processing, and energy systems through innovative mathematical approaches. It discusses the integration of mathematical models with data-driven approaches, machine learning, and artificial intelligence to enhance system performance, adaptability, and decision-making capabilities. The abstract also underscores the significance of bridging the gap between theoretical advancements and practical applications. It recognizes the need for practical implementation of mathematical models and optimization algorithms in real-world systems, considering factors such as scalability, computational efficiency, and robustness. In summary, this abstract showcases the advancements in mathematical modeling and optimization techniques for control, signal processing, and energy systems. It highlights the interdisciplinary nature of these techniques, their applications across various domains, and their potential to address real-world challenges. The abstract emphasizes the importance of practical implementation and integration with emerging technologies to drive innovation and improve the performance of control, signal processing, and energy.

Keywords: mathematical modeling, optimization, control systems, signal processing, energy systems, interdisciplinary applications, system identification, numerical algorithms

Procedia PDF Downloads 112
5281 An Improved Two-dimensional Ordered Statistical Constant False Alarm Detection

Authors: Weihao Wang, Zhulin Zong

Abstract:

Two-dimensional ordered statistical constant false alarm detection is a widely used method for detecting weak target signals in radar signal processing applications. The method is based on analyzing the statistical characteristics of the noise and clutter present in the radar signal and then using this information to set an appropriate detection threshold. In this approach, the reference cell of the unit to be detected is divided into several reference subunits. These subunits are used to estimate the noise level and adjust the detection threshold, with the aim of minimizing the false alarm rate. By using an ordered statistical approach, the method is able to effectively suppress the influence of clutter and noise, resulting in a low false alarm rate. The detection process involves a number of steps, including filtering the input radar signal to remove any noise or clutter, estimating the noise level based on the statistical characteristics of the reference subunits, and finally, setting the detection threshold based on the estimated noise level. One of the main advantages of two-dimensional ordered statistical constant false alarm detection is its ability to detect weak target signals in the presence of strong clutter and noise. This is achieved by carefully analyzing the statistical properties of the signal and using an ordered statistical approach to estimate the noise level and adjust the detection threshold. In conclusion, two-dimensional ordered statistical constant false alarm detection is a powerful technique for detecting weak target signals in radar signal processing applications. By dividing the reference cell into several subunits and using an ordered statistical approach to estimate the noise level and adjust the detection threshold, this method is able to effectively suppress the influence of clutter and noise and maintain a low false alarm rate.

Keywords: two-dimensional, ordered statistical, constant false alarm, detection, weak target signals

Procedia PDF Downloads 78
5280 Optimisation of Wastewater Treatment for Yeast Processing Effluent Using Response Surface Methodology

Authors: Shepherd Manhokwe, Sheron Shoko, Cuthbert Zvidzai

Abstract:

In the present study, the interactive effects of temperature and cultured bacteria on the performance of a biological treatment system of yeast processing wastewater were investigated. The main objective of this study was to investigate and optimize the operating parameters that reduce organic load and colour. Experiments were conducted based on a Central Composite Design (CCD) and analysed using Response Surface Methodology (RSM). Three dependent parameters were either directly measured or calculated as response. These parameters were total Chemical Oxygen Demand (COD) removal, colour reduction and total solids. COD removal efficiency of 26 % and decolourization efficiency of 44 % were recorded for the wastewater treatment. The optimized conditions for the biological treatment were found to be at 20 g/l cultured bacteria and 25 °C for COD reduction. For colour reduction optimum conditions were temperature of 30.35°C and bacterial formulation of 20g/l. Biological treatment of baker’s yeast processing effluent is a suitable process for the removal of organic load and colour from wastewater, especially when the operating parameters are optimized.

Keywords: COD reduction, optimisation, response surface methodology, yeast processing wastewater

Procedia PDF Downloads 344
5279 A Study on the Effect of Design Factors of Slim Keyboard’s Tactile Feedback

Authors: Kai-Chieh Lin, Chih-Fu Wu, Hsiang Ling Hsu, Yung-Hsiang Tu, Chia-Chen Wu

Abstract:

With the rapid development of computer technology, the design of computers and keyboards moves towards a trend of slimness. The change of mobile input devices directly influences users’ behavior. Although multi-touch applications allow entering texts through a virtual keyboard, the performance, feedback, and comfortableness of the technology is inferior to traditional keyboard, and while manufacturers launch mobile touch keyboards and projection keyboards, the performance has not been satisfying. Therefore, this study discussed the design factors of slim pressure-sensitive keyboards. The factors were evaluated with an objective (accuracy and speed) and a subjective evaluation (operability, recognition, feedback, and difficulty) depending on the shape (circle, rectangle, and L-shaped), thickness (flat, 3mm, and 6mm), and force (35±10g, 60±10g, and 85±10g) of the keyboard. Moreover, MANOVA and Taguchi methods (regarding signal-to-noise ratios) were conducted to find the optimal level of each design factor. The research participants, by their typing speed (30 words/ minute), were divided in two groups. Considering the multitude of variables and levels, the experiments were implemented using the fractional factorial design. A representative model of the research samples were established for input task testing. The findings of this study showed that participants with low typing speed primarily relied on vision to recognize the keys, and those with high typing speed relied on tactile feedback that was affected by the thickness and force of the keys. In the objective and subjective evaluation, a combination of keyboard design factors that might result in higher performance and satisfaction was identified (L-shaped, 3mm, and 60±10g) as the optimal combination. The learning curve was analyzed to make a comparison with a traditional standard keyboard to investigate the influence of user experience on keyboard operation. The research results indicated the optimal combination provided input performance to inferior to a standard keyboard. The results could serve as a reference for the development of related products in industry and for applying comprehensively to touch devices and input interfaces which are interacted with people.

Keywords: input performance, mobile device, slim keyboard, tactile feedback

Procedia PDF Downloads 299
5278 EEG Signal Processing Methods to Differentiate Mental States

Authors: Sun H. Hwang, Young E. Lee, Yunhan Ga, Gilwon Yoon

Abstract:

EEG is a very complex signal with noises and other bio-potential interferences. EOG is the most distinct interfering signal when EEG signals are measured and analyzed. It is very important how to process raw EEG signals in order to obtain useful information. In this study, the EEG signal processing techniques such as EOG filtering and outlier removal were examined to minimize unwanted EOG signals and other noises. The two different mental states of resting and focusing were examined through EEG analysis. A focused state was induced by letting subjects to watch a red dot on the white screen. EEG data for 32 healthy subjects were measured. EEG data after 60-Hz notch filtering were processed by a commercially available EOG filtering and our presented algorithm based on the removal of outliers. The ratio of beta wave to theta wave was used as a parameter for determining the degree of focusing. The results show that our algorithm was more appropriate than the existing EOG filtering.

Keywords: EEG, focus, mental state, outlier, signal processing

Procedia PDF Downloads 284
5277 Analysis and Design of Simultaneous Dual Band Harvesting System with Enhanced Efficiency

Authors: Zina Saheb, Ezz El-Masry, Jean-François Bousquet

Abstract:

This paper presents an enhanced efficiency simultaneous dual band energy harvesting system for wireless body area network. A bulk biasing is used to enhance the efficiency of the adapted rectifier design to reduce Vth of MOSFET. The presented circuit harvests the radio frequency (RF) energy from two frequency bands: 1 GHz and 2.4 GHz. It is designed with TSMC 65-nm CMOS technology and high quality factor dual matching network to boost the input voltage. Full circuit analysis and modeling is demonstrated. The simulation results demonstrate a harvester with an efficiency of 23% at 1 GHz and 46% at 2.4 GHz at an input power as low as -30 dBm.

Keywords: energy harvester, simultaneous, dual band, CMOS, differential rectifier, voltage boosting, TSMC 65nm

Procedia PDF Downloads 404
5276 Prediction of Vapor Liquid Equilibrium for Dilute Solutions of Components in Ionic Liquid by Neural Networks

Authors: S. Mousavian, A. Abedianpour, A. Khanmohammadi, S. Hematian, Gh. Eidi Veisi

Abstract:

Ionic liquids are finding a wide range of applications from reaction media to separations and materials processing. In these applications, Vapor–Liquid equilibrium (VLE) is the most important one. VLE for six systems at 353 K and activity coefficients at infinite dilution 〖(γ〗_i^∞) for various solutes (alkanes, alkenes, cycloalkanes, cycloalkenes, aromatics, alcohols, ketones, esters, ethers, and water) in the ionic liquids (1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [EMIM][BTI], 1-hexyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide [HMIM][BTI], 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [OMIM][BTI], and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide [BMPYR][BTI]) have been used to train neural networks in the temperature range from (303 to 333) K. Densities of the ionic liquids, Hildebrant constant of substances, and temperature were selected as input of neural networks. The networks with different hidden layers were examined. Networks with seven neurons in one hidden layer have minimum error and good agreement with experimental data.

Keywords: ionic liquid, neural networks, VLE, dilute solution

Procedia PDF Downloads 300
5275 Real-Time Lane Marking Detection Using Weighted Filter

Authors: Ayhan Kucukmanisa, Orhan Akbulut, Oguzhan Urhan

Abstract:

Nowadays, advanced driver assistance systems (ADAS) have become popular, since they enable safe driving. Lane detection is a vital step for ADAS. The performance of the lane detection process is critical to obtain a high accuracy lane departure warning system (LDWS). Challenging factors such as road cracks, erosion of lane markings, weather conditions might affect the performance of a lane detection system. In this paper, 1-D weighted filter based on row filtering to detect lane marking is proposed. 2-D input image is filtered by 1-D weighted filter considering four-pixel values located symmetrically around the center of candidate pixel. Performance evaluation is carried out by two metrics which are true positive rate (TPR) and false positive rate (FPR). Experimental results demonstrate that the proposed approach provides better lane marking detection accuracy compared to the previous methods while providing real-time processing performance.

Keywords: lane marking filter, lane detection, ADAS, LDWS

Procedia PDF Downloads 194
5274 A Comparative Study of the Proposed Models for the Components of the National Health Information System

Authors: M. Ahmadi, Sh. Damanabi, F. Sadoughi

Abstract:

National Health Information System plays an important role in ensuring timely and reliable access to Health information which is essential for strategic and operational decisions that improve health, quality and effectiveness of health care. In other words, by using the National Health information system you can improve the quality of health data, information and knowledge used to support decision making at all levels and areas of the health sector. Since full identification of the components of this system for better planning and management influential factors of performance seems necessary, therefore, in this study, different attitudes towards components of this system are explored comparatively. Methods: This is a descriptive and comparative kind of study. The society includes printed and electronic documents containing components of the national health information system in three parts: input, process, and output. In this context, search for information using library resources and internet search were conducted and data analysis was expressed using comparative tables and qualitative data. Results: The findings showed that there are three different perspectives presenting the components of national health information system, Lippeveld, Sauerborn, and Bodart Model in 2000, Health Metrics Network (HMN) model from World Health Organization in 2008 and Gattini’s 2009 model. All three models outlined above in the input (resources and structure) require components of management and leadership, planning and design programs, supply of staff, software and hardware facilities, and equipment. In addition, in the ‘process’ section from three models, we pointed up the actions ensuring the quality of health information system and in output section, except Lippeveld Model, two other models consider information products, usage and distribution of information as components of the national health information system. Conclusion: The results showed that all the three models have had a brief discussion about the components of health information in input section. However, Lippeveld model has overlooked the components of national health information in process and output sections. Therefore, it seems that the health measurement model of network has a comprehensive presentation for the components of health system in all three sections-input, process, and output.

Keywords: National Health Information System, components of the NHIS, Lippeveld Model

Procedia PDF Downloads 421
5273 A Super-Efficiency Model for Evaluating Efficiency in the Presence of Time Lag Effect

Authors: Yanshuang Zhang, Byungho Jeong

Abstract:

In many cases, there is a time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in evaluating the performance of organizations. Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. Multi-periods input(MpI) and Multi-periods output(MpO) models are integrated models to calculate simple efficiency considering time lag effect. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. That is, efficient DMUs can’t be discriminated because their efficiency scores are same. Thus, this paper suggests a super-efficiency model for efficiency evaluation under the consideration of time lag effect based on the MpO model. A case example using a long-term research project is given to compare the suggested model with the MpO model.

Keywords: DEA, super-efficiency, time lag, multi-periods input

Procedia PDF Downloads 474
5272 Production Increase of C-Central Wells Baher Essalm-Libya

Authors: Emed Krekshi, Walid Ben Husein

Abstract:

The Bahr Essalam gas-condensate field is located off the Libyan coast and is currently being produced by Mellitah Oil and Gas (MOG). Gas and condensate are produced from the Bahr Essalam reservoir through a mixture of platform and subsea wells, with the subsea wells being gathered at the western manifolds and delivered to the Sabratha platform via a 22-inch pipeline. Gas is gathered and dehydrated on the Sabratha platform and then delivered to the Mellitah gas plant via an existing 36-inch gas export pipeline. The condensate separated on the Sabratha platform will be delivered to the Mellitah gas plant via an existing 10-inch export pipeline. The Bahr Essalam Phase II project includes 2 production wells (CC16 & CC17) at C-Central A connected to the Sabratha platform via a new 10.9 km long 10”/14” production pipeline. Production rates from CC16 and CC17 have exceeded the maximum planned rate of 40 MMSCFD per well. A hydrothermal analysis was conducted to review and Verify input data, focusing on the variation of flowing well head as a function of flowrate.as well as Review available input data against the previous design input data to determine the extent of change. The steady-state and transient simulations performed with Olga yielded coherent results and confirmed the possibility of achieving flow rates of up to 60MMSCFD per well without exceeding the design temperatures, pressures, and velocities.

Keywords: Bahr Essalam, Mellitah Oil and Gas, production flow rates, steady and transient

Procedia PDF Downloads 58