Search results for: disaster relief networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3643

Search results for: disaster relief networks

3283 A Study on Characteristics of Runoff Analysis Methods at the Time of Rainfall in Rural Area, Okinawa Prefecture Part 2: A Case of Kohatu River in South Central Part of Okinawa Pref

Authors: Kazuki Kohama, Hiroko Ono

Abstract:

The rainfall in Japan is gradually increasing every year according to Japan Meteorological Agency and Intergovernmental Panel on Climate Change Fifth Assessment Report. It means that the rainfall difference between rainy season and non-rainfall is increasing. In addition, the increasing trend of strong rain for a short time clearly appears. In recent years, natural disasters have caused enormous human injuries in various parts of Japan. Regarding water disaster, local heavy rain and floods of large rivers occur frequently, and it was decided on a policy to promote hard and soft sides as emergency disaster prevention measures with water disaster prevention awareness social reconstruction vision. Okinawa prefecture in subtropical region has torrential rain and water disaster several times a year such as river flood, in which is caused in specific rivers from all 97 rivers. Also, the shortage of capacity and narrow width are characteristic of river in Okinawa and easily cause river flood in heavy rain. This study focuses on Kohatu River that is one of the specific rivers. In fact, the water level greatly rises over the river levee almost once a year but non-damage of buildings around. On the other hand in some case, the water level reaches to ground floor height of house and has happed nine times until today. The purpose of this research is to figure out relationship between precipitation, surface outflow and total treatment water quantity of Kohatu River. For the purpose, we perform hydrological analysis although is complicated and needs specific details or data so that, the method is mainly using Geographic Information System software and outflow analysis system. At first, we extract watershed and then divided to 23 catchment areas to understand how much surface outflow flows to runoff point in each 10 minutes. On second, we create Unit Hydrograph indicating the area of surface outflow with flow area and time. This index shows the maximum amount of surface outflow at 2400 to 3000 seconds. Lastly, we compare an estimated value from Unit Hydrograph to a measured value. However, we found that measure value is usually lower than measured value because of evaporation and transpiration. In this study, hydrograph analysis was performed using GIS software and outflow analysis system. Based on these, we could clarify the flood time and amount of surface outflow.

Keywords: disaster prevention, water disaster, river flood, GIS software

Procedia PDF Downloads 137
3282 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent

Authors: Zhifeng Kong

Abstract:

Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.

Keywords: over-parameterization, rectified linear units ReLU, convergence, gradient descent, neural networks

Procedia PDF Downloads 142
3281 Text Mining Analysis of the Reconstruction Plans after the Great East Japan Earthquake

Authors: Minami Ito, Akihiro Iijima

Abstract:

On March 11, 2011, the Great East Japan Earthquake occurred off the coast of Sanriku, Japan. It is important to build a sustainable society through the reconstruction process rather than simply restoring the infrastructure. To compare the goals of reconstruction plans of quake-stricken municipalities, Japanese language morphological analysis was performed by using text mining techniques. Frequently-used nouns were sorted into four main categories of “life”, “disaster prevention”, “economy”, and “harmony with environment”. Because Soma City is affected by nuclear accident, sentences tagged to “harmony with environment” tended to be frequent compared to the other municipalities. Results from cluster analysis and principle component analysis clearly indicated that the local government reinforces the efforts to reduce risks from radiation exposure as a top priority.

Keywords: eco-friendly reconstruction, harmony with environment, decontamination, nuclear disaster

Procedia PDF Downloads 220
3280 Application of Wireless Sensor Networks: A Survey in Thailand

Authors: Sathapath Kilaso

Abstract:

Nowadays, Today, wireless sensor networks are an important technology that works with Internet of Things. It is receiving various data from many sensor. Then sent to processing or storing. By wireless network or through the Internet. The devices around us are intelligent, can receiving/transmitting and processing data and communicating through the system. There are many applications of wireless sensor networks, such as smart city, smart farm, environmental management, weather. This article will explore the use of wireless sensor networks in Thailand and collect data from Thai Thesis database in 2012-2017. How to Implementing Wireless Sensor Network Technology. Advantage from this study To know the usage wireless technology in many fields. This will be beneficial for future research. In this study was found the most widely used wireless sensor network in agriculture field. Especially for smart farms. And the second is the adoption of the environment. Such as weather stations and water inspection.

Keywords: wireless sensor network, smart city, survey, Adhoc Network

Procedia PDF Downloads 207
3279 Comparative Morphometric Analysis of Ambardi and Mangari Watersheds of Kadvi and Kasari River Sub-Basins in Kolhapur District, Maharashtra, India: Using Geographical Information System (GIS)

Authors: Chandrakant Gurav, Md. Babar

Abstract:

In the present study, an attempt is made to delineate the comparative morphometric analysis of Ambardi and Mangari watersheds of Kadvi and Kasari rivers sub-basins, Kolhapur District, Maharashtra India, using Geographical Information System (GIS) techniques. GIS is a computer assisted information method to store, analyze and display spatial data. Both the watersheds originate from Masai plateau of Jotiba- Panhala Hill range in Panhala Taluka of Kolhapur district. Ambardi watersheds cover 42.31 Sq. km. area and occur in northern hill slope, whereas Mangari watershed covers 54.63 Sq. km. area and occur on southern hill slope. Geologically, the entire study area is covered by Deccan Basaltic Province (DBP) of late Cretaceous to early Eocene age. Laterites belonging to late Pleistocene age also occur in the top of the hills. The objective of the present study is to carry out the morphometric parameters of watersheds, which occurs in differing slopes of the hill. Morphometric analysis of Ambardi watershed indicates it is of 4th order stream and Mangari watershed is of 5th order stream. Average bifurcation ratio of both watersheds is 5.4 and 4.0 showing that in both the watersheds streams flow from homogeneous nature of lithology and there is no structural controlled in development of the watersheds. Drainage density of Ambardi and Mangari watersheds is 3.45 km/km2 and 3.81 km/km2 respectively, and Stream Frequency is 4.51 streams/ km2 and 5.97 streams/ km2, it indicates that high drainage density and high stream frequency is governed by steep slope and low infiltration rate of the area for groundwater recharge. Textural ratio of both the watersheds is 6.6 km-1 and 9.6 km-1, which indicates that the drainage texture is fine to very fine. Form factor, circularity ratio and elongation ratios of the Ambardi and Mangari watersheds shows that both the watersheds are elongated in shape. The basin relief of Ambardi watershed is 447 m, while Mangari is 456 m. Relief ratio of Ambardi is 0.0428 and Mangari is 0.040. The ruggedness number of Ambardi is 1.542 and Mangari watershed is 1.737. The ruggedness number of both the watersheds is high which indicates the relief and drainage density is high.

Keywords: Ambardi, Deccan basalt, GIS, morphometry, Mangari, watershed

Procedia PDF Downloads 301
3278 Universality and Synchronization in Complex Quadratic Networks

Authors: Anca Radulescu, Danae Evans

Abstract:

The relationship between a network’s hardwiring and its emergent dynamics are central to neuroscience. We study the principles of this correspondence in a canonical setup (in which network nodes exhibit well-studied complex quadratic dynamics), then test their universality in biological networks. By extending methods from discrete dynamics, we study the effects of network connectivity on temporal patterns, encapsulating long-term behavior into the rich topology of network Mandelbrot sets. Then elements of fractal geometry can be used to predict and classify network behavior.

Keywords: canonical model, complex dynamics, dynamic networks, fractals, Mandelbrot set, network connectivity

Procedia PDF Downloads 308
3277 Performance Comparison of Outlier Detection Techniques Based Classification in Wireless Sensor Networks

Authors: Ayadi Aya, Ghorbel Oussama, M. Obeid Abdulfattah, Abid Mohamed

Abstract:

Nowadays, many wireless sensor networks have been distributed in the real world to collect valuable raw sensed data. The challenge is to extract high-level knowledge from this huge amount of data. However, the identification of outliers can lead to the discovery of useful and meaningful knowledge. In the field of wireless sensor networks, an outlier is defined as a measurement that deviates from the normal behavior of sensed data. Many detection techniques of outliers in WSNs have been extensively studied in the past decade and have focused on classic based algorithms. These techniques identify outlier in the real transaction dataset. This survey aims at providing a structured and comprehensive overview of the existing researches on classification based outlier detection techniques as applicable to WSNs. Thus, we have identified key hypotheses, which are used by these approaches to differentiate between normal and outlier behavior. In addition, this paper tries to provide an easier and a succinct understanding of the classification based techniques. Furthermore, we identified the advantages and disadvantages of different classification based techniques and we presented a comparative guide with useful paradigms for promoting outliers detection research in various WSN applications and suggested further opportunities for future research.

Keywords: bayesian networks, classification-based approaches, KPCA, neural networks, one-class SVM, outlier detection, wireless sensor networks

Procedia PDF Downloads 496
3276 Suggestion of Methodology to Detect Building Damage Level Collectively with Flood Depth Utilizing Geographic Information System at Flood Disaster in Japan

Authors: Munenari Inoguchi, Keiko Tamura

Abstract:

In Japan, we were suffered by earthquake, typhoon, and flood disaster in 2019. Especially, 38 of 47 prefectures were affected by typhoon #1919 occurred in October 2019. By this disaster, 99 people were dead, three people were missing, and 484 people were injured as human damage. Furthermore, 3,081 buildings were totally collapsed, 24,998 buildings were half-collapsed. Once disaster occurs, local responders have to inspect damage level of each building by themselves in order to certificate building damage for survivors for starting their life reconstruction process. At that disaster, the total number to be inspected was so high. Based on this situation, Cabinet Office of Japan approved the way to detect building damage level efficiently, that is collectively detection. However, they proposed a just guideline, and local responders had to establish the concrete and infallible method by themselves. Against this issue, we decided to establish the effective and efficient methodology to detect building damage level collectively with flood depth. Besides, we thought that the flood depth was relied on the land height, and we decided to utilize GIS (Geographic Information System) for analyzing the elevation spatially. We focused on the analyzing tool of spatial interpolation, which is utilized to survey the ground water level usually. In establishing the methodology, we considered 4 key-points: 1) how to satisfy the condition defined in the guideline approved by Cabinet Office for detecting building damage level, 2) how to satisfy survivors for the result of building damage level, 3) how to keep equitability and fairness because the detection of building damage level was executed by public institution, 4) how to reduce cost of time and human-resource because they do not have enough time and human-resource for disaster response. Then, we proposed a methodology for detecting building damage level collectively with flood depth utilizing GIS with five steps. First is to obtain the boundary of flooded area. Second is to collect the actual flood depth as sampling over flooded area. Third is to execute spatial analysis of interpolation with sampled flood depth to detect two-dimensional flood depth extent. Fourth is to divide to blocks by four categories of flood depth (non-flooded, over the floor to 100 cm, 100 cm to 180 cm and over 180 cm) following lines of roads for getting satisfaction from survivors. Fifth is to put flood depth level to each building. In Koriyama city of Fukushima prefecture, we proposed the methodology of collectively detection for building damage level as described above, and local responders decided to adopt our methodology at typhoon #1919 in 2019. Then, we and local responders detect building damage level collectively to over 1,000 buildings. We have received good feedback that the methodology was so simple, and it reduced cost of time and human-resources.

Keywords: building damage inspection, flood, geographic information system, spatial interpolation

Procedia PDF Downloads 124
3275 Exploring Coexisting Opportunity of Earthquake Risk and Urban Growth

Authors: Chang Hsueh-Sheng, Chen Tzu-Ling

Abstract:

Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience, and further increase vulnerability. Due to earthquakes do not kill people, buildings do. When buildings located nearby earthquake-prone areas and constructed upon poorer soil areas might result in earthquake-induced ground damage. In addition, many existing buildings built before any improved seismic provisions began to be required in building codes and inappropriate land usage with highly dense population might result in much serious earthquake disaster. Indeed, not only do earthquake disaster impact seriously on urban environment, but urban growth might increase the vulnerability. Since 1980s, ‘Cutting down risks and vulnerability’ has been brought up in both urban planning and architecture and such concept has way beyond retrofitting of seismic damages, seismic resistance, and better anti-seismic structures, and become the key action on disaster mitigation. Land use planning and zoning are two critical non-structural measures on controlling physical development while it is difficult for zoning boards and governing bodies restrict development of questionable lands to uses compatible with the hazard without credible earthquake loss projection. Therefore, identifying potential earthquake exposure, vulnerability people and places, and urban development areas might become strongly supported information for decision makers. Taiwan locates on the Pacific Ring of Fire where a seismically active zone is. Some of the active faults have been found close by densely populated and highly developed built environment in the cities. Therefore, this study attempts to base on the perspective of carrying capacity and draft out micro-zonation according to both vulnerability index and urban growth index while considering spatial variances of multi factors via geographical weighted principle components (GWPCA). The purpose in this study is to construct supported information for decision makers on revising existing zoning in high-risk areas for a more compatible use and the public on managing risks.

Keywords: earthquake disaster, vulnerability, urban growth, carrying capacity, /geographical weighted principle components (GWPCA), bivariate spatial association statistic

Procedia PDF Downloads 256
3274 A System to Detect Inappropriate Messages in Online Social Networks

Authors: Shivani Singh, Shantanu Nakhare, Kalyani Nair, Rohan Shetty

Abstract:

As social networking is growing at a rapid pace today it is vital that we work on improving its management. Research has shown that the content present in online social networks may have significant influence on impressionable minds. If such platforms are misused, it will lead to negative consequences. Detecting insults or inappropriate messages continues to be one of the most challenging aspects of Online Social Networks (OSNs) today. We address this problem through a Machine Learning Based Soft Text Classifier approach using Support Vector Machine algorithm. The proposed system acts as a screening mechanism the alerts the user about such messages. The messages are classified according to their subject matter and each comment is labeled for the presence of profanity and insults.

Keywords: machine learning, online social networks, soft text classifier, support vector machine

Procedia PDF Downloads 508
3273 Further Analysis of Global Robust Stability of Neural Networks with Multiple Time Delays

Authors: Sabri Arik

Abstract:

In this paper, we study the global asymptotic robust stability of delayed neural networks with norm-bounded uncertainties. By employing the Lyapunov stability theory and Homeomorphic mapping theorem, we derive some new types of sufficient conditions ensuring the existence, uniqueness and global asymptotic stability of the equilibrium point for the class of neural networks with discrete time delays under parameter uncertainties and with respect to continuous and slopebounded activation functions. An important aspect of our results is their low computational complexity as the reported results can be verified by checking some properties symmetric matrices associated with the uncertainty sets of network parameters. The obtained results are shown to be generalization of some of the previously published corresponding results. Some comparative numerical examples are also constructed to compare our results with some closely related existing literature results.

Keywords: neural networks, delayed systems, lyapunov functionals, stability analysis

Procedia PDF Downloads 528
3272 Efficacy and Safety of Eucalyptus for Relief Cough Symptom: A Systematic Review and Meta-Analysis

Authors: Ladda Her, Juntip Kanjanasilp, Ratree Sawangjit, Nathorn Chaiyakunapruk

Abstract:

Cough is the common symptom of the respiratory tract infections or non-infections; the duration of cough indicates a classification and severity of disease. Herbal medicines can be used as the alternative to drugs for relief of cough symptoms from acute and chronic disease. Eucalyptus was used for reducing cough with evidences suggesting it has an active role in reduction of airway inflammation. The present study aims to evaluate efficacy and safety of eucalyptus for relief of cough symptom in respiratory disease. Method: The Cochrane Library, MEDLINE (PubMed), Scopus, CINAHL, Springer, Science direct, ProQuest, and THAILIS databases. From its inception until 01/02/2019 for randomized control trials. We follow for the efficacy and safety of eucalyptus for reducing cough. Methodological quality was evaluated by using the Cochrane risk of bias tool; two reviewers in our team screened eligibility and extracted data. Result: Six studies were included for the review and five studies were included in the meta-analysis, there were 1.911 persons including children (n: 1) and adult (n: 5) studies; for study in children and adult were between 1 and 80 years old, respectively. Eucalyptus was used as mono herb (n: 2) and in combination with other herbs form (n: 4). All of the studies with eucalyptus were compared for efficacy and safety with placebo or standard treatment, Eucalyptus dosage form in studies included capsules, spray, and syrup. Heterogeneity was 32.44 used random effect model (I² = 1.2%, χ² = 1.01; P-value = 0.314). The efficacy of eucalyptus was showed a reduced cough symptom statistically significant (n = 402, RR: 1.40, 95%CI [1.19, 1.65], P-value < 0.0001) when compared with placebo. Adverse events (AEs) were reported mild to moderate intensity with mostly gastrointestinal symptom. The methodological quality of the included trials was overall poor. Conclusion: Eucalyptus appears to be beneficial and safe for relieving in respiratory diseases focus on cough frequency. The evidence was inconclusive due to limited quality trial. Well-designed trials for evaluating the effectiveness in humans, the effectiveness for reducing cough symptom in human is needed. Eucalyptus had safety as monotherapy or in combination with other herbs.

Keywords: cough, eucalyptus, cineole, herbal medicine, systematic review, meta-analysis

Procedia PDF Downloads 152
3271 Multi-Objective Electric Vehicle Charge Coordination for Economic Network Management under Uncertainty

Authors: Ridoy Das, Myriam Neaimeh, Yue Wang, Ghanim Putrus

Abstract:

Electric vehicles are a popular transportation medium renowned for potential environmental benefits. However, large and uncontrolled charging volumes can impact distribution networks negatively. Smart charging is widely recognized as an efficient solution to achieve both improved renewable energy integration and grid relief. Nevertheless, different decision-makers may pursue diverse and conflicting objectives. In this context, this paper proposes a multi-objective optimization framework to control electric vehicle charging to achieve both energy cost reduction and peak shaving. A weighted-sum method is developed due to its intuitiveness and efficiency. Monte Carlo simulations are implemented to investigate the impact of uncertain electric vehicle driving patterns and provide decision-makers with a robust outcome in terms of prospective cost and network loading. The results demonstrate that there is a conflict between energy cost efficiency and peak shaving, with the decision-makers needing to make a collaborative decision.

Keywords: electric vehicles, multi-objective optimization, uncertainty, mixed integer linear programming

Procedia PDF Downloads 179
3270 An Efficient Algorithm for Global Alignment of Protein-Protein Interaction Networks

Authors: Duc Dong Do, Ngoc Ha Tran, Thanh Hai Dang, Cao Cuong Dang, Xuan Huan Hoang

Abstract:

Global aligning two protein-protein interaction networks is an essentially important task in bioinformatics/computational biology field of study. It is a challenging and widely studied research topic in recent years. Accurately aligned networks allow us to identify functional modules of proteins and/ororthologous proteins from which unknown functions of a protein can be inferred. We here introduce a novel efficient heuristic global network alignment algorithm called FASTAn, including two phases: the first to construct an initial alignment and the second to improve such alignment by exerting a local optimization repeated procedure. The experimental results demonstrated that FASTAn outperformed the state-of-the-art global network alignment algorithm namely SPINAL in terms of both commonly used objective scores and the run-time.

Keywords: FASTAn, Heuristic algorithm, biological network alignment, protein-protein interaction networks

Procedia PDF Downloads 604
3269 Social Networks in a Communication Strategy of a Large Company

Authors: Kherbache Mehdi

Abstract:

Within the framework of the validation of the Master in business administration marketing and sales in INSIM institute international in management Blida, we get the opportunity to do a professional internship in Sonelgaz Enterprise and a thesis. The thesis deals with the integration of social networking in the communication strategy of a company. The problematic is: How communicate with social network can be a solution for companies? The challenges stressed by this thesis were to suggest limits and recommendations to Sonelgaz Enterprise concerning social networks. The whole social networks represent more than a billion people as a potential target for the companies. Thanks to research and a qualitative approach, we have identified tree valid hypothesis. The first hypothesis allows confirming that using social networks cannot be ignored by any company in its communication strategy. However, the second hypothesis demonstrates that it’s necessary to prepare a strategy that integrates social networks in the communication plan of the company. The risk of this strategy is very limited because failure on social networks is not a restraint for the enterprise, social networking is not expensive and, a bad image which could result from it is not as important in the long-term. Furthermore, the return on investment is difficult to evaluate. Finally, the last hypothesis shows that firms establish a new relation between consumers and brands thanks to the proximity allowed by social networks. After the validation of the hypothesis, we suggested some recommendations to Sonelgaz Enterprise regarding the communication through social networks. Firstly, the company must use the interactivity of social network in order to have fruitful exchanges with the community. We also recommended having a strategy to treat negative comments. The company must also suggest delivering resources to the community thanks to a community manager, in order to have a good relation with the community. Furthermore, we advised using social networks to do business intelligence. Sonelgaz Enterprise can have some creative and interactive contents with some amazing applications on Facebook for example. Finally, we recommended to the company to be not intrusive with “fans” or “followers” and to be open to all the platforms: Twitter, Facebook, Linked-In for example.

Keywords: social network, buzz, communication, consumer, return on investment, internet users, web 2.0, Facebook, Twitter, interaction

Procedia PDF Downloads 422
3268 Clustering the Wheat Seeds Using SOM Artificial Neural Networks

Authors: Salah Ghamari

Abstract:

In this study, the ability of self organizing map artificial (SOM) neural networks in clustering the wheat seeds varieties according to morphological properties of them was considered. The SOM is one type of unsupervised competitive learning. Experimentally, five morphological features of 300 seeds (including three varieties: gaskozhen, Md and sardari) were obtained using image processing technique. The results show that the artificial neural network has a good performance (90.33% accuracy) in classification of the wheat varieties despite of high similarity in them. The highest classification accuracy (100%) was achieved for sardari.

Keywords: artificial neural networks, clustering, self organizing map, wheat variety

Procedia PDF Downloads 656
3267 Print Media Framing of National Disasters: A Content Analysis of the Daily Graphic and Daily Guide

Authors: Abena Abokoma Asemanyi

Abstract:

The study examined how the National Disasters are framed in the print media: a study of Daily Graphic newspaper in Ghana. The communication theories employed to conduct this study was Agenda Setting Theory by McCombs and Shaw and the Framing theory by Goffman and Entman. The media’s coverage of National Disasters are of much concern to the general public. This research seeks to know how the Daily Graphic framed National Disasters that occurred in January 2015 and June 2015 respectively. The January 2015 National Disasters was termed as Fire Outbreaks while the June 2015 National Disasters was Twin Disasters. A total of 43 disaster news stories were analysed for this study. Out of the total number, 9 headline stories were analysed in the month of January 2015 and 34 headline stories were looked at in the month of June 2015. The study came up with five (5) themes. Through Content Analysis, the study also revealed that the theme of Action featured more than the other themes which are Fear, Violence, Sympathy and Confusion. Finally, the study showed the number of days disaster news headlines lasted in the Daily Graphic during the period stated above. It was revealed that the Fire Outbreaks in January 2015 appeared in the Daily Graphic for 8 days while the Twin Disasters appeared in 16 days in June 2015.

Keywords: national disaster framing, ghana, daily graphic, daily guide

Procedia PDF Downloads 428
3266 A Neural Network Approach to Understanding Turbulent Jet Formations

Authors: Nurul Bin Ibrahim

Abstract:

Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.

Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence

Procedia PDF Downloads 70
3265 Assessing Missouri State Park Employee Perceptions of Vulnerability and Resilience to Extreme Weather Events

Authors: Ojetunde Ojewola, Mark Morgan, Sonja Wilhelm-Stanis

Abstract:

State parks and historic sites are vulnerable to extreme weather events which can affect visitor experiences, management priorities, and legislative requests for disaster relief funds. Recently, global attention has been focused on the perceptions of global warming and how the presence of extreme weather events might impact protected areas, both now and in the future. The effects of climate change are not equally distributed across the United States, leading to varied perceptions based on personal experience with extreme weather events. This study describes employee perceptions of vulnerability and resilience in Missouri State Parks & Historic Sites due to extreme weather events that occur across the state but grouped according to physiographic provinces. Using a four-point rating scale, perceptions of vulnerability and resilience were divided into high and low sub-groups, thus allowing researchers to construct a two by two typology of employee responses. Subsequently, this data was used to develop a three-point continuum of environmental concern (higher scores meant more concern). Employee scores were then compared against a statewide assessment which combined social, economic, infrastructural and environmental indicators of vulnerability and resilience. State park employees thought the system was less vulnerable and more resilient to climate change than data found in statewide assessment This result was also consistent in three out of five physiographic regions across Missouri. Implications suggest that Missouri state park should develop a climate change adaptation strategy for emergency preparedness.

Keywords: extreme weather events, resilience, state parks, vulnerability

Procedia PDF Downloads 124
3264 A CM-Based Model for 802.11 Networks Security Policies Enforcement

Authors: Karl Mabiala Dondia, Jing Ma

Abstract:

In recent years, networks based on the 802.11 standards have gained a prolific deployment. The reason for this massive acceptance of the technology by both home users and corporations is assuredly due to the "plug-and-play" nature of the technology and the mobility. The lack of physical containment due to inherent nature of the wireless medium makes maintenance very challenging from a security standpoint. This study examines via continuous monitoring various predictable threats that 802.11 networks can face, how they are executed, where each attack may be executed and how to effectively defend against them. The key goal is to identify the key components of an effective wireless security policy.

Keywords: wireless LAN, IEEE 802.11 standards, continuous monitoring, security policy

Procedia PDF Downloads 380
3263 Nonparametric Sieve Estimation with Dependent Data: Application to Deep Neural Networks

Authors: Chad Brown

Abstract:

This paper establishes general conditions for the convergence rates of nonparametric sieve estimators with dependent data. We present two key results: one for nonstationary data and another for stationary mixing data. Previous theoretical results often lack practical applicability to deep neural networks (DNNs). Using these conditions, we derive convergence rates for DNN sieve estimators in nonparametric regression settings with both nonstationary and stationary mixing data. The DNN architectures considered adhere to current industry standards, featuring fully connected feedforward networks with rectified linear unit activation functions, unbounded weights, and a width and depth that grows with sample size.

Keywords: sieve extremum estimates, nonparametric estimation, deep learning, neural networks, rectified linear unit, nonstationary processes

Procedia PDF Downloads 41
3262 Learning Grammars for Detection of Disaster-Related Micro Events

Authors: Josef Steinberger, Vanni Zavarella, Hristo Tanev

Abstract:

Natural disasters cause tens of thousands of victims and massive material damages. We refer to all those events caused by natural disasters, such as damage on people, infrastructure, vehicles, services and resource supply, as micro events. This paper addresses the problem of micro - event detection in online media sources. We present a natural language grammar learning algorithm and apply it to online news. The algorithm in question is based on distributional clustering and detection of word collocations. We also explore the extraction of micro-events from social media and describe a Twitter mining robot, who uses combinations of keywords to detect tweets which talk about effects of disasters.

Keywords: online news, natural language processing, machine learning, event extraction, crisis computing, disaster effects, Twitter

Procedia PDF Downloads 478
3261 Key Concepts of 5th Generation Mobile Technology

Authors: Magri Hicham, Noreddine Abghour, Mohamed Ouzzif

Abstract:

The 5th generation of mobile networks is term used in various research papers and projects to identify the next major phase of mobile telecommunications standards. 5G wireless networks will support higher peak data rate, lower latency and provide best connections with QoS guarenty. In this article, we discuss various promising technologies for 5G wireless communication systems, such as IPv6 support, World Wide Wireless Web (WWWW), Dynamic Adhoc Wireless Networks (DAWN), BEAM DIVISION MULTIPLE ACCESS (BDMA), Cloud Computing and cognitive radio technology.

Keywords: WWWW, BDMA, DAWN, 5G, 4G, IPv6, Cloud Computing

Procedia PDF Downloads 514
3260 Function Approximation with Radial Basis Function Neural Networks via FIR Filter

Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim

Abstract:

Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended Kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore, the number of centers will be considered since it affects the performance of approximation.

Keywords: extended Kalman filter, classification problem, radial basis function networks (RBFN), finite impulse response (FIR) filter

Procedia PDF Downloads 456
3259 Social Networks Global Impact on Protest Movements and Human Rights Activism

Authors: Marcya Burden, Savonna Greer

Abstract:

In the wake of social unrest around the world, protest movements have been captured like never before. As protest movements have evolved, so too have their visibility and sources of coverage. Long gone are the days of print media as our only glimpse into the action surrounding a protest. Now, with social networks such as Facebook, Instagram and Snapchat, we have access to real-time video footage of protest movements and human rights activism that can reach millions of people within seconds. This research paper investigated various social media network platforms’ statistical usage data in the areas of human rights activism and protest movements, paralleling with other past forms of media coverage. This research demonstrates that social networks are extremely important to protest movements and human rights activism. With over 2.9 billion users across social media networks globally, these platforms are the heart of most recent protests and human rights activism. This research shows the paradigm shift from the Selma March of 1965 to the more recent protests of Ferguson in 2014, Ni Una Menos in 2015, and End Sars in 2018. The research findings demonstrate that today, almost anyone may use their social networks to protest movement leaders and human rights activists. From a student to an 80-year-old professor, the possibility of reaching billions of people all over the world is limitless. Findings show that 82% of the world’s internet population is on social networks 1 in every 5 minutes. Over 65% of Americans believe social media highlights important issues. Thus, there is no need to have a formalized group of people or even be known online. A person simply needs to be engaged on their respective social media networks (Facebook, Twitter, Instagram, Snapchat) regarding any cause they are passionate about. Information may be exchanged in real time around the world and a successful protest can begin.

Keywords: activism, protests, human rights, networks

Procedia PDF Downloads 95
3258 Recent Trends in Transportable First Response Healthcare Architecture

Authors: Stephen Verderber

Abstract:

The World Health Organization (WHO) calls for research and development on ecologically sustainable, resilient structures capable of effectively responding to disaster events globally, in response to climate change, politically based diasporas, earthquakes, and other adverse events upending the rhythms of everyday life globally. By 2050, nearly 80% of the world’s population will reside in coastal zones, and this, coupled with the increasingly dire impacts of climate change, constitute a recipe for further chaos and disruption, and in light of these events, architects have yet to rise up to meet the challenge. In the arena of healthcare, rapidly deployable clinics and field hospitals can provide immediate assistance in medically underserved disaster strike zones. Transportable facilities offer multiple advantages over conventional, fixed-site hospitals, as lightweight, comparatively unencumbered alternatives. These attributes have been proven repeatedly in 20th century vehicular and tent-based structures deployed in frontline combat theaters and in prior natural disasters. Prefab transportable clinics and trauma centers recently responded adroitly to medical emergencies in the aftermath of the Haitian (2010) and Ecuadorian (2016) earthquakes, and in North American post-hurricane relief efforts (2017) while architects continue to be castigated by their engineer colleagues as chronically poor first responders. Architecturally based portable structures for healthcare currently include Redeployable Health Centers (RHCs), Redeployable Trauma Centers (RTCs), and Permanent Modular Installations (PMIs). Five tectonic variants within this typology have recently been operationalized in the field: 1. Vehicular-based Nomadics: Prefab modules installed on a truck chassis with interior compartments dropped in prior to final assembly. Alternately, a two-component apparatus is preferred, with a truck cab pulling a modular medical unit, with independent transiting component; 2. Tent and Pneumatic Systems: Tent/yurt precursors and inflatable systems lightweight and responsive to topographically challenging terrain and diverse climates; 3. Containerized Systems: The standard modular intermodal-shipping container affords structural strength, resiliency in difficult transiting conditions, and can be densely close-packed and these can be custom-built or hold flat-pack systems; 4. Flat-Packs and Pop-Up Systems: These kit-of-part assemblies are shipped in standardized or specially-designed ISO containers; and 5. Hybrid Systems: These consist of composite facilities representing a synthesis of mobile vehicular components and/or tent or shipping containers, fused with conventional or pneumatically activated tent systems. Hybrids are advantageous in many installation contexts from an aesthetic, fabrication, and transiting perspective. Advantages/disadvantages of various modular systems are comparatively examined, followed by presentation of a compendium of 80 evidence (research)-based planning and design considerations addressing site/context, transiting and commissioning, triage, decontamination/intake, diagnostic and treatment, facility tectonics, and administration/total environment. The benefits of offsite pre-manufactured fabrication are examined, as is anticipated growth in international demand for transportable healthcare facilities to meet the challenges posed by accelerating global climate change and global conflicts. This investigation into rapid response facilities for pre and post-disaster zones is drawn from a recent book by the author, the first on architecture on this topic (Innovations in Transportable Healthcare Architecture).

Keywords: disaster mitigation, rapid response healthcare architecture, offsite prefabrication

Procedia PDF Downloads 118
3257 Smart Trust Management for Vehicular Networks

Authors: Amel Ltifi, Ahmed Zouinkhi, Med Salim Bouhlel

Abstract:

Spontaneous networks such as VANET are in general deployed in an open and thus easily accessible environment. Therefore, they are vulnerable to attacks. Trust management is one of a set of security solutions dedicated to this type of networks. Moreover, the strong mobility of the nodes (in the case of VANET) makes the establishment of a trust management system complex. In this paper, we present a concept of ‘Active Vehicle’ which means an autonomous vehicle that is able to make decision about trustworthiness of alert messages transmitted about road accidents. The behavior of an “Active Vehicle” is modeled using Petri Nets.

Keywords: active vehicle, cooperation, petri nets, trust management, VANET

Procedia PDF Downloads 405
3256 Performance Analysis of Wireless Sensor Networks in Areas for Sports Activities and Environmental Preservation

Authors: Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, José Anderson Rodrigues de Souza, Ítalo de Pontes Oliveira

Abstract:

This paper presents a analysis of performance the Received Strength Signal Indicator (RSSI) to Wireless Sensor Networks, with a finality of investigate a behavior of ZigBee devices operating into real environments. The test of performance was realize using two Series 1 ZigBee Module and two modules of development Arduino Uno R3, evaluating in this form a measurements of RSSI into environments like places of sports, preservation forests and water reservoir.

Keywords: wireless sensor networks, RSSI, Arduino, environments

Procedia PDF Downloads 619
3255 Dissolved Gas Analysis Based Regression Rules from Trained ANN for Transformer Fault Diagnosis

Authors: Deepika Bhalla, Raj Kumar Bansal, Hari Om Gupta

Abstract:

Dissolved Gas Analysis (DGA) has been widely used for fault diagnosis in a transformer. Artificial neural networks (ANN) have high accuracy but are regarded as black boxes that are difficult to interpret. For many problems it is desired to extract knowledge from trained neural networks (NN) so that the user can gain a better understanding of the solution arrived by the NN. This paper applies a pedagogical approach for rule extraction from function approximating neural networks (REFANN) with application to incipient fault diagnosis using the concentrations of the dissolved gases within the transformer oil, as the input to the NN. The input space is split into subregions and for each subregion there is a linear equation that is used to predict the type of fault developing within a transformer. The experiments on real data indicate that the approach used can extract simple and useful rules and give fault predictions that match the actual fault and are at times also better than those predicted by the IEC method.

Keywords: artificial neural networks, dissolved gas analysis, rules extraction, transformer

Procedia PDF Downloads 536
3254 Blockchain Security in MANETs

Authors: Nada Mouchfiq, Ahmed Habbani, Chaimae Benjbara

Abstract:

The security aspect of the IoT occupies a place of great importance especially after the evolution that has known this field lastly because it must take into account the transformations and the new applications .Blockchain is a new technology dedicated to the data sharing. However, this does not work the same way in the different systems with different operating principles. This article will discuss network security using the Blockchain to facilitate the sending of messages and information, enabling the use of new processes and enabling autonomous coordination of devices. To do this, we will discuss proposed solutions to ensure a high level of security in these networks in the work of other researchers. Finally, our article will propose a method of security more adapted to our needs as a team working in the ad hoc networks, this method is based on the principle of the Blockchain and that we named ”MPR Blockchain”.

Keywords: Ad hocs networks, blockchain, MPR, security

Procedia PDF Downloads 185