Search results for: comprehensive feature extraction
5710 Hand Motion Trajectory Analysis for Dynamic Hand Gestures Used in Indian Sign Language
Authors: Daleesha M. Viswanathan, Sumam Mary Idicula
Abstract:
Dynamic hand gestures are an intrinsic component in sign language communication. Extracting spatial temporal features of the hand gesture trajectory plays an important role in a dynamic gesture recognition system. Finding a discrete feature descriptor for the motion trajectory based on the orientation feature is the main concern of this paper. Kalman filter algorithm and Hidden Markov Models (HMM) models are incorporated with this recognition system for hand trajectory tracking and for spatial temporal classification, respectively.Keywords: orientation features, discrete feature vector, HMM., Indian sign language
Procedia PDF Downloads 3685709 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 735708 Fault Detection and Isolation in Sensors and Actuators of Wind Turbines
Authors: Shahrokh Barati, Reza Ramezani
Abstract:
Due to the countries growing attention to the renewable energy producing, the demand for energy from renewable energy has gone up among the renewable energy sources; wind energy is the fastest growth in recent years. In this regard, in order to increase the availability of wind turbines, using of Fault Detection and Isolation (FDI) system is necessary. Wind turbines include of various faults such as sensors fault, actuator faults, network connection fault, mechanical faults and faults in the generator subsystem. Although, sensors and actuators have a large number of faults in wind turbine but have discussed fewer in the literature. Therefore, in this work, we focus our attention to design a sensor and actuator fault detection and isolation algorithm and Fault-tolerant control systems (FTCS) for Wind Turbine. The aim of this research is to propose a comprehensive fault detection and isolation system for sensors and actuators of wind turbine based on data-driven approaches. To achieve this goal, the features of measurable signals in real wind turbine extract in any condition. The next step is the feature selection among the extract in any condition. The next step is the feature selection among the extracted features. Features are selected that led to maximum separation networks that implemented in parallel and results of classifiers fused together. In order to maximize the reliability of decision on fault, the property of fault repeatability is used.Keywords: FDI, wind turbines, sensors and actuators faults, renewable energy
Procedia PDF Downloads 4005707 Separation of Copper(II) and Iron(III) by Solvent Extraction and Membrane Processes with Ionic Liquids as Carriers
Authors: Beata Pospiech
Abstract:
Separation of metal ions from aqueous solutions is important as well as difficult process in hydrometallurgical technology. This process is necessary for obtaining of clean metals. Solvent extraction and membrane processes are well known as separation methods. Recently, ionic liquids (ILs) are very often applied and studied as extractants and carriers of metal ions from aqueous solutions due to their good extractability properties for various metals. This work discusses a method to separate copper(II) and iron(III) from hydrochloric acid solutions by solvent extraction and transport across polymer inclusion membranes (PIM) with the selected ionic liquids as extractants/ion carriers. Cyphos IL 101 (trihexyl(tetradecyl)phosphonium chloride), Cyphos IL 104 (trihexyl(tetradecyl)phosphonium bis(2,4,4 trimethylpentyl)phosphi-nate), trioctylmethylammonium thiosalicylate [A336][TS] and trihexyl(tetradecyl)phosphonium thiosalicylate [PR4][TS] were used for the investigations. Effect of different parameters such as hydrochloric acid concentration in aqueous phase on iron(III) and copper(II) extraction has been investigated. Cellulose triacetate membranes with the selected ionic liquids as carriers have been prepared and applied for transport of iron(IIII) and copper(II) from hydrochloric acid solutions.Keywords: copper, iron, ionic liquids, solvent extraction
Procedia PDF Downloads 2795706 Study of the Effect of Extraction Solvent on the Content of Total Phenolic, Total Flavonoids and the Antioxidant Activity of an Endemic Medicinal Plant Growing in Morocco
Authors: Aghoutane Basma, Naama Amal, Talbi Hayat, El Manfalouti Hanae, Kartah Badreddine
Abstract:
Aromatic and medicinal plants are used by man for different needs, including food and medicinal needs for their biological properties attributed mainly to phenolic compounds and for their antioxidant capacity. In our study, the aim is to compare three extraction solvents by evaluating the contents of phenolic compounds, the contents of flavonoids, and the antioxidant activities of extracts from different methods of extracting the aerial part of an endemic medicinal plant from Morocco. This activity was also confirmed by three methods (2,2-diphenyl-1-picrylhydrazyl (DPPH), antioxidant reducing power of iron (FRAP), and total antioxidant capacity (CAT)). The results showed that this plant is rich in polyphenols and flavonoids, as well as it has a very important antioxidant capacity in whatever the solvent or the extraction method. This suggests the importance of using extracts from this plant as a new natural source of food additives and potent antioxidants in the food industry.Keywords: endemic plant of Morocco, phenolic compound, solvent, extraction technique, antioxidant activity
Procedia PDF Downloads 2975705 Liquid-Liquid Extraction of Uranium (VI) from Aqueous Solution Using 1-Hydroxyalkylidene-1,1-Diphosphonic Acids
Authors: Mustapha Bouhoun Ali, Ahmed Yacine Badjah Hadj Ahmed, Mouloud Attou, Abdel Hamid Elias, Mohamed Amine Didi
Abstract:
The extraction of uranium(VI) from aqueous solutions has been investigated using 1-hydroxyhexadecylidene-1,1-diphosphonic acid (HHDPA) and 1-hydroxydodecylidene-1,1-diphosphonic acid (HDDPA), which were synthesized and characterized by elemental analysis and by FT-IR, 1H NMR, 31P NMR spectroscopy. In this paper, we propose a tentative assignment for the shifts of those two ligands and their specific complexes with uranium(VI). We carried out the extraction of uranium(VI) by HHDPA and HDDPA from [carbon tetrachloride + 2-octanol (v/v: 90%/10%)] solutions. Various factors such as contact time, pH, organic/aqueous phase ratio and extractant concentration were considered. The optimum conditions obtained were: contact time = 20 min, organic/aqueous phase ratio = 1, pH value = 3.0 and extractant concentration = 0.3M. The extraction yields are more significant in the case of the HHDPA which is equipped with a hydrocarbon chain, longer than that of the HDDPA. Logarithmic plots of the uranium(VI) distribution ratio vs. pHeq and the extractant concentration showed that the ratio of extractant to extracted uranium(VI) (ligand/metal) is 2:1. The formula of the complex of uranium(VI) with the HHDPA and the DHDPA is UO2(H3L)2 (HHDPA and DHDPA are denoted as H4L). A spectroscopic analysis has showed that coordination of uranium(VI) takes place via oxygen atoms.Keywords: liquid-liquid extraction, uranium(VI), 1-hydroxyalkylidene-1, 1-diphosphonic acids, HHDPA, HDDPA, aqueous solution
Procedia PDF Downloads 5285704 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children
Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco
Abstract:
Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.Keywords: evolutionary computation, feature selection, classification, clustering
Procedia PDF Downloads 3705703 Real-Time Multi-Vehicle Tracking Application at Intersections Based on Feature Selection in Combination with Color Attribution
Authors: Qiang Zhang, Xiaojian Hu
Abstract:
In multi-vehicle tracking, based on feature selection, the tracking system efficiently tracks vehicles in a video with minimal error in combination with color attribution, which focuses on presenting a simple and fast, yet accurate and robust solution to the problem such as inaccurately and untimely responses of statistics-based adaptive traffic control system in the intersection scenario. In this study, a real-time tracking system is proposed for multi-vehicle tracking in the intersection scene. Considering the complexity and application feasibility of the algorithm, in the object detection step, the detection result provided by virtual loops were post-processed and then used as the input for the tracker. For the tracker, lightweight methods were designed to extract and select features and incorporate them into the adaptive color tracking (ACT) framework. And the approbatory online feature selection algorithms are integrated on the mature ACT system with good compatibility. The proposed feature selection methods and multi-vehicle tracking method are evaluated on KITTI datasets and show efficient vehicle tracking performance when compared to the other state-of-the-art approaches in the same category. And the system performs excellently on the video sequences recorded at the intersection. Furthermore, the presented vehicle tracking system is suitable for surveillance applications.Keywords: real-time, multi-vehicle tracking, feature selection, color attribution
Procedia PDF Downloads 1635702 Technologies of Isolation and Separation of Anthraquinone Derivatives
Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina
Abstract:
In review the generalized data about different methods of extraction, separation and purification of natural and modify anthraquinones is presented. The basic regularity of an isolation process is analyzed. Action of temperature, pH, and polarity of extragent, catalysts and other factors on an isolation process is revealed. Procedia PDF Downloads 3415701 Analysis Of Non-uniform Characteristics Of Small Underwater Targets Based On Clustering
Authors: Tianyang Xu
Abstract:
Small underwater targets generally have a non-centrosymmetric geometry, and the acoustic scattering field of the target has spatial inhomogeneity under active sonar detection conditions. In view of the above problems, this paper takes the hemispherical cylindrical shell as the research object, and considers the angle continuity implied in the echo characteristics, and proposes a cluster-driven research method for the non-uniform characteristics of target echo angle. First, the target echo features are extracted, and feature vectors are constructed. Secondly, the t-SNE algorithm is used to improve the internal connection of the feature vector in the low-dimensional feature space and to construct the visual feature space. Finally, the implicit angular relationship between echo features is extracted under unsupervised condition by cluster analysis. The reconstruction results of the local geometric structure of the target corresponding to different categories show that the method can effectively divide the angle interval of the local structure of the target according to the natural acoustic scattering characteristics of the target.Keywords: underwater target;, non-uniform characteristics;, cluster-driven method;, acoustic scattering characteristics
Procedia PDF Downloads 1305700 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection
Authors: Yulan Wu
Abstract:
With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 965699 Optimization of Ultrasound Assisted Extraction of Polysaccharides from Plant Waste Materials: Selected Model Material is Hazelnut Skin
Abstract:
In this study, optimization of ultrasound assisted extraction (UAE) of hemicellulose based polysaccharides from plant waste material has been studied. Selected material is hazelnut skin. Extraction variables for the operation are extraction time, amplitude and application temperature. Optimum conditions have been evaluated depending on responses such as amount of wet crude polysaccharide, total carbohydrate content and dried sample. Pretreated hazelnut skin powders were used for the experiments. 10 grams of samples were suspended in 100 ml water in a jacketed vessel with additional magnetic stirring. Mixture was sonicated by immersing ultrasonic probe processor. After the extraction procedures, ethanol soluble and insoluble sides were separated for further examinations. The obtained experimental data were analyzed by analysis of variance (ANOVA). Second order polynomial models were developed using multiple regression analysis. The individual and interactive effects of applied variables were evaluated by Box Behnken Design. The models developed from the experimental design were predictive and good fit with the experimental data with high correlation coefficient value (R2 more than 0.95). Extracted polysaccharides from hazelnut skin are assumed to be pectic polysaccharides according to the literature survey of Fourier Transform Spectrometry (FTIR) analysis results. No more change can be observed between spectrums of different sonication times. Application of UAE at optimized condition has an important effect on extraction of hemicellulose from plant material by satisfying partial hydrolysis to break the bounds with other components in plant cell wall material. This effect can be summarized by varied intensity of microjets and microstreaming at varied sonication conditions.Keywords: hazelnut skin, optimization, polysaccharide, ultrasound assisted extraction
Procedia PDF Downloads 3315698 Metal Extraction into Ionic Liquids and Hydrophobic Deep Eutectic Mixtures
Authors: E. E. Tereshatov, M. Yu. Boltoeva, V. Mazan, M. F. Volia, C. M. Folden III
Abstract:
Room temperature ionic liquids (RTILs) are a class of liquid organic salts with melting points below 20 °C that are considered to be environmentally friendly ‘designers’ solvents. Pure hydrophobic ILs are known to extract metallic species from aqueous solutions. The closest analogues of ionic liquids are deep eutectic solvents (DESs), which are a eutectic mixture of at least two compounds with a melting point lower than that of each individual component. DESs are acknowledged to be attractive for organic synthesis and metal processing. Thus, these non-volatile and less toxic compounds are of interest for critical metal extraction. The US Department of Energy and the European Commission consider indium as a key metal. Its chemical homologue, thallium, is also an important material for some applications and environmental safety. The aim of this work is to systematically investigate In and Tl extraction from aqueous solutions into pure fluorinated ILs and hydrophobic DESs. The dependence of the Tl extraction efficiency on the structure and composition of the ionic liquid ions, metal oxidation state, and initial metal and aqueous acid concentrations have been studied. The extraction efficiency of the TlXz3–z anionic species (where X = Cl– and/or Br–) is greater for ionic liquids with more hydrophobic cations. Unexpectedly high distribution ratios (> 103) of Tl(III) were determined even by applying a pure ionic liquid as receiving phase. An improved mathematical model based on ion exchange and ion pair formation mechanisms has been developed to describe the co-extraction of two different anionic species, and the relative contributions of each mechanism have been determined. The first evidence of indium extraction into new quaternary ammonium- and menthol-based hydrophobic DESs from hydrochloric and oxalic acid solutions with distribution ratios up to 103 will be provided. Data obtained allow us to interpret the mechanism of thallium and indium extraction into ILs and DESs media. The understanding of Tl and In chemical behavior in these new media is imperative for the further improvement of separation and purification of these elements.Keywords: deep eutectic solvents, indium, ionic liquids, thallium
Procedia PDF Downloads 2415697 Solvent Effects on Anticancer Activities of Medicinal Plants
Authors: Jawad Alzeer
Abstract:
Natural products are well recognized as sources of drugs in several human ailments. To investigate the impact of variable extraction techniques on the cytotoxic effects of medicinal plant extracts, 5 well-known medicinal plants from Palestine were extracted with 90% ethanol, 80% methanol, acetone, coconut water, apple vinegar, grape vinegar or 5% acetic acid. The resulting extracts were screened for cytotoxic activities against three different cancer cell lines (B16F10, MCF-7, and HeLa) using a standard resazurin-based cytotoxicity assay and Nile Blue A as the positive control. Highly variable toxicities and tissue sensitivity were observed, depending upon the solvent used for extraction. Acetone consistently gave lower extraction yields but higher cytotoxicity, whereas other solvent systems gave much higher extraction yields with lower cytotoxicity. Interestingly, coconut water was found to offer a potential alternative to classical organic solvents; it gave consistently highest extraction yields, and in the case of S. officinalis L., highly toxic extracts towards MCF-7 cells derived from human breast cancer. These results demonstrate how the cytotoxicity of plant extracts can be inversely proportional to the yield, and that solvent selection plays an important role in both factors.Keywords: plant extract, natural products, anti cancer drug, cytotoxicity
Procedia PDF Downloads 4545696 Extraction of Biodiesel from Microalgae Using the Solvent Extraction Process, Typically Soxhlet Extraction Method
Authors: Gracious Tendai Matayaya
Abstract:
The world is facing problems in finding alternative resources to offset the decline in global petroleum reserves. The use of fossil fuels has prompted biofuel development, particularly in the transportation sector. In these circumstances, looking for alternative renewable energy sources makes sense. Petroleum-based fuels also result in a lot of carbon dioxide being released into the environment causing global warming. Replacing petroleum and fossil fuel-based fuels with biofuels has the advantage of reducing undesirable aspects of these fuels, which are mostly the production of greenhouse gas and dependence on unstable foreign suppliers. Algae refer to a group of aquatic microorganisms that produce a lot of lipids up to 60% of their total weight. This project aims to exploit the large amounts of oil produced by these microorganisms in the Soxhlet extraction to make biodiesel. Experiments were conducted to establish the cultivability of algae, harvesting methods, the oil extraction process, and the transesterification process. Although there are various methods for producing algal oil, the Soxhlet extraction method was employed for this particular research. After extraction, the oil was characterized before being used in the transesterification process that used methanol and hydrochloric acid as the process reactants. The properties of the resulting biodiesel were then determined. Because there is a requirement to dry wet algae, the experimental findings showed that Soxhlet extraction was the optimum way to produce a higher yield of microalgal oil. Upon cultivating algae, Compound D fertilizer was added as a source of nutrients (Phosphorous and Nitrogen), and the highest growth of algae was observed at 6 days (using 2 g of fertilizer), after which it started to decrease. Butanol, hexane, heptane and acetone have been experimented with as solvents, and heptane gave the highest amount of oil (89ml of oil) when 300 ml of solvent was used. This was compared to 73.21ml produced by butanol, 81.90 produced by hexane and 69.57ml produced by acetone, and as a result, heptane was used for the rest of the experiments, which included a variation of the mass of dried algae and time of extraction. This meant that the oil composition of algae was higher than other oil sources like peanuts, soybean etc. Algal oil was heated at 150℃ for 150 minutes in the presence of methanol (reactant) and hydrochloric acid (HCl), which was used as a catalyst. A temperature of 200℃ produced 93.64%, and a temperature of 250℃ produced 92.13 of biodiesel at 150 minutes.Keywords: microalgae, algal oil, biodiesel, soxhlet extraction
Procedia PDF Downloads 825695 Speciation, Preconcentration, and Determination of Iron(II) and (III) Using 1,10-Phenanthroline Immobilized on Alumina-Coated Magnetite Nanoparticles as a Solid Phase Extraction Sorbent in Pharmaceutical Products
Authors: Hossein Tavallali, Mohammad Ali Karimi, Gohar Deilamy-Rad
Abstract:
The proposed method for speciation, preconcentration and determination of Fe(II) and Fe(III) in pharmaceutical products was developed using of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) as solid phase extraction (SPE) sorbent in magnetic mixed hemimicell solid phase extraction (MMHSPE) technique followed by flame atomic absorption spectrometry analysis. The procedure is based on complexation of Fe(II) with 1, 10-phenanthroline (OP) as complexing reagent for Fe(II) that immobilized on the modified Fe3O4/Al2O3 NPs. The extraction and concentration process for pharmaceutical sample was carried out in a single step by mixing the extraction solvent, magnetic adsorbents under ultrasonic action. Then, the adsorbents were isolated from the complicated matrix easily with an external magnetic field. Fe(III) ions determined after facility reduced to Fe(II) by added a proper reduction agent to sample solutions. Compared with traditional methods, the MMHSPE method simplified the operation procedure and reduced the analysis time. Various influencing parameters on the speciation and preconcentration of trace iron, such as pH, sample volume, amount of sorbent, type and concentration of eluent, were studied. Under the optimized operating conditions, the preconcentration factor of the modified nano magnetite for Fe(II) 167 sample was obtained. The detection limits and linear range of this method for iron were 1.0 and 9.0 - 175 ng.mL−1, respectively. Also the relative standard deviation for five replicate determinations of 30.00 ng.mL-1 Fe2+ was 2.3%.Keywords: Alumina-Coated magnetite nanoparticles, Magnetic Mixed Hemimicell Solid-Phase Extraction, Fe(ΙΙ) and Fe(ΙΙΙ), pharmaceutical sample
Procedia PDF Downloads 2925694 Cadmium and Lead Extraction from Environmental Samples with Complexes Matrix by Nanomagnetite Solid-Phase and Determine Their Trace Amounts
Authors: Hossein Tavallali, Mohammad Ali Karimi, Gohar Deilamy-Rad
Abstract:
In this study, a new type of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) with sodium dodecyl sulfate- 1-(2-pyridylazo)-2-naphthol (SDS-PAN) as a new sorbent solid phase extraction (SPE) has been successfully synthesized and applied for preconcentration and separation of Cd and Pb in environmental samples. Compared with conventional SPE methods, the advantages of this new magnetic Mixed Hemimicelles Solid-Phase Extraction Procedure (MMHSPE) still include easy preparation and regeneration of sorbents, short times of sample pretreatment, high extraction yields, and high breakthrough volumes. It shows great analytical potential in preconcentration of Cd and Pb compounds from large volume water samples. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS-PAN, satisfactory concentration factor and extraction recoveries can be produced with only 0.05 g Fe3O4/Al2O3 NPs. The metals were eluted with 3mL HNO3 2 mol L-1 directly and detected with the detection system Flame Atomic Absorption Spectrometry (FAAS). Various influencing parameters on the separation and preconcentration of trace metals, such as the amount of PAN, pH value, sample volume, standing time, desorption solvent and maximal extraction volume, amount of sorbent and concentration of eluent, were studied. The detection limits of this method for Cd and Pb were 0.3 and 0.7 ng mL−1 and the R.S.D.s were 3.4 and 2.8% (C = 28.00 ng mL-1, n = 6), respectively. The preconcentration factor of the modified nanoparticles was 166.6. The proposed method has been applied to the determination of these metal ions at trace levels in soil, river, tap, mineral, spring and wastewater samples with satisfactory results.Keywords: Alumina-coated magnetite nanoparticles, Magnetic Mixed Hemimicell Solid-Phase Extraction, Cd and Pb, soil sample
Procedia PDF Downloads 3165693 Temporally Coherent 3D Animation Reconstruction from RGB-D Video Data
Authors: Salam Khalifa, Naveed Ahmed
Abstract:
We present a new method to reconstruct a temporally coherent 3D animation from single or multi-view RGB-D video data using unbiased feature point sampling. Given RGB-D video data, in form of a 3D point cloud sequence, our method first extracts feature points using both color and depth information. In the subsequent steps, these feature points are used to match two 3D point clouds in consecutive frames independent of their resolution. Our new motion vectors based dynamic alignment method then fully reconstruct a spatio-temporally coherent 3D animation. We perform extensive quantitative validation using novel error functions to analyze the results. We show that despite the limiting factors of temporal and spatial noise associated to RGB-D data, it is possible to extract temporal coherence to faithfully reconstruct a temporally coherent 3D animation from RGB-D video data.Keywords: 3D video, 3D animation, RGB-D video, temporally coherent 3D animation
Procedia PDF Downloads 3735692 Sustainability of Offshore Petroleum Resources Extraction and Management of Bangladesh: International and Regional Frameworks
Authors: Muhammad Farhad Hosen
Abstract:
This article examines the sustainability of offshore petroleum resource extraction and management in Bangladesh, focusing on international and regional frameworks. The analysis includes international conventions such as UNCLOS, IMO regulations, and SDGs, as well as regional cooperation through organizations like BIMSTEC and SAARC. The objective is to highlight the impact of these frameworks on sustainable extraction practices, address challenges, and offer recommendations for enhancing Bangladesh's legal and regulatory approaches to offshore resource management. The article underscores the need for harmonizing national laws with international standards, enhancing enforcement mechanisms, and promoting regional cooperation to ensure sustainable development.Keywords: Bangladesh, international frameworks, offshore petroleum, regional framework, sustainability
Procedia PDF Downloads 285691 Understanding the Qualitative Nature of Product Reviews by Integrating Text Processing Algorithm and Usability Feature Extraction
Authors: Cherry Yieng Siang Ling, Joong Hee Lee, Myung Hwan Yun
Abstract:
The quality of a product to be usable has become the basic requirement in consumer’s perspective while failing the requirement ends up the customer from not using the product. Identifying usability issues from analyzing quantitative and qualitative data collected from usability testing and evaluation activities aids in the process of product design, yet the lack of studies and researches regarding analysis methodologies in qualitative text data of usability field inhibits the potential of these data for more useful applications. While the possibility of analyzing qualitative text data found with the rapid development of data analysis studies such as natural language processing field in understanding human language in computer, and machine learning field in providing predictive model and clustering tool. Therefore, this research aims to study the application capability of text processing algorithm in analysis of qualitative text data collected from usability activities. This research utilized datasets collected from LG neckband headset usability experiment in which the datasets consist of headset survey text data, subject’s data and product physical data. In the analysis procedure, which integrated with the text-processing algorithm, the process includes training of comments onto vector space, labeling them with the subject and product physical feature data, and clustering to validate the result of comment vector clustering. The result shows 'volume and music control button' as the usability feature that matches best with the cluster of comment vectors where centroid comments of a cluster emphasized more on button positions, while centroid comments of the other cluster emphasized more on button interface issues. When volume and music control buttons are designed separately, the participant experienced less confusion, and thus, the comments mentioned only about the buttons' positions. While in the situation where the volume and music control buttons are designed as a single button, the participants experienced interface issues regarding the buttons such as operating methods of functions and confusion of functions' buttons. The relevance of the cluster centroid comments with the extracted feature explained the capability of text processing algorithms in analyzing qualitative text data from usability testing and evaluations.Keywords: usability, qualitative data, text-processing algorithm, natural language processing
Procedia PDF Downloads 2855690 Forensic Speaker Verification in Noisy Environmental by Enhancing the Speech Signal Using ICA Approach
Authors: Ahmed Kamil Hasan Al-Ali, Bouchra Senadji, Ganesh Naik
Abstract:
We propose a system to real environmental noise and channel mismatch for forensic speaker verification systems. This method is based on suppressing various types of real environmental noise by using independent component analysis (ICA) algorithm. The enhanced speech signal is applied to mel frequency cepstral coefficients (MFCC) or MFCC feature warping to extract the essential characteristics of the speech signal. Channel effects are reduced using an intermediate vector (i-vector) and probabilistic linear discriminant analysis (PLDA) approach for classification. The proposed algorithm is evaluated by using an Australian forensic voice comparison database, combined with car, street and home noises from QUT-NOISE at a signal to noise ratio (SNR) ranging from -10 dB to 10 dB. Experimental results indicate that the MFCC feature warping-ICA achieves a reduction in equal error rate about (48.22%, 44.66%, and 50.07%) over using MFCC feature warping when the test speech signals are corrupted with random sessions of street, car, and home noises at -10 dB SNR.Keywords: noisy forensic speaker verification, ICA algorithm, MFCC, MFCC feature warping
Procedia PDF Downloads 4085689 Partially Phosphorylated Polyvinyl Phosphate-PPVP Composite: Synthesis and Its Potentiality for Zr (IV) Extraction from an Acidic Medium
Authors: Khaled Alshamari
Abstract:
Synthesized partially phosphorylated polyvinyl phosphate derivative (PPVP) was functionalized to extract Zirconium (IV) from Egyptian zircon sand. The specifications for the PPVP composite were approved effectively via different techniques, namely, FT-IR, XPS, BET, EDX, TGA, HNMR, C-NMR, GC-MS, XRD and ICP-OES analyses, which demonstrated a satisfactory synthesis of PPVP and zircon dissolution from Egyptian zircon sand. Factors controlling parameters, such as pH values, shaking time, initial zirconium concentration, PPVP dose, nitrate ions concentration, co-ions, temperature and eluting agents, have been optimized. At 25 ◦C, pH 0, 20 min shaking, 0.05 mol/L zirconium ions and 0.5 mol/L nitrate ions, PPVP has an exciting preservation potential of 195 mg/g, equivalent to 390 mg/L zirconium ions. From the extraction–distribution isotherm, the practical outcomes of Langmuir’s modeling are better than the Freundlich model, with a theoretical value of 196.07 mg/g, which is more in line with the experimental results of 195 mg/g. The zirconium ions adsorption onto the PPVP composite follows the pseudo-second-order kinetics with a theoretical capacity value of 204.08 mg/g. According to thermodynamic potential, the extraction process was expected to be an exothermic, spontaneous and beneficial extraction at low temperatures. The thermodynamic parameters ∆S (−0.03 kJ/mol), ∆H (−12.22 kJ/mol) and ∆G were also considered. As the temperature grows, ∆G values increase from −2.948 kJ/mol at 298 K to −1.941 kJ/mol at 338 K. Zirconium ions may be eluted from the working loaded PPVP by 0.025M HNO₃, with a 99% efficiency rate. It was found that zirconium ions revealed good separation factors towards some co-ions such as Hf⁴+ (28.82), Fe³+ (10.64), Ti⁴+ (28.82), V⁵+ (86.46) and U⁶+ (68.17). A successful alkali fusion technique with NaOH flux followed by the extraction with PPVP is used to obtain a high-purity zirconia concentrate with a zircon content of 72.77 % and a purity of 98.29%. As a result of this, the improved factors could finally be used.Keywords: zirconium extraction, partially phosphorylated polyvinyl phosphate (PPVP), acidic medium, zircon
Procedia PDF Downloads 665688 Human Action Retrieval System Using Features Weight Updating Based Relevance Feedback Approach
Authors: Munaf Rashid
Abstract:
For content-based human action retrieval systems, search accuracy is often inferior because of the following two reasons 1) global information pertaining to videos is totally ignored, only low level motion descriptors are considered as a significant feature to match the similarity between query and database videos, and 2) the semantic gap between the high level user concept and low level visual features. Hence, in this paper, we propose a method that will address these two issues and in doing so, this paper contributes in two ways. Firstly, we introduce a method that uses both global and local information in one framework for an action retrieval task. Secondly, to minimize the semantic gap, a user concept is involved by incorporating features weight updating (FWU) Relevance Feedback (RF) approach. We use statistical characteristics to dynamically update weights of the feature descriptors so that after every RF iteration feature space is modified accordingly. For testing and validation purpose two human action recognition datasets have been utilized, namely Weizmann and UCF. Results show that even with a number of visual challenges the proposed approach performs well.Keywords: relevance feedback (RF), action retrieval, semantic gap, feature descriptor, codebook
Procedia PDF Downloads 4725687 Synthesis and Use of Thiourea Derivative (1-Phenyl-3- Benzoyl-2-Thiourea) for Extraction of Cadmium Ion
Authors: Abdulfattah M. Alkherraz, Zaineb I. Lusta, Ahmed E. Zubi
Abstract:
The environmental pollution by heavy metals became more problematic nowadays. To solve the problem of Cadmium accumulation in human organs which lead to dangerous effects on human health, and to determine its concentration, the organic legand 1-phenyl-3-benzoyl-2-thiourea was used to extract the cadmium ions from its solution. This legand as one of thiourea derivatives was successfully synthesized. The legand was characterized by NMR and CHN elemental analysis, and used to extract the cadmium from its solutions by formation of a stable complex at neutral pH. The complex was characterized by elemental analysis and melting point. The concentrations of cadmium ions before and after the extraction were determined by Atomic Absorption Spectrophotometer (AAS). The data show the percentage of the extract was more than 98.7% of the concentration of cadmium used in the study.Keywords: thiourea derivatives, cadmium extraction, water, environment
Procedia PDF Downloads 3495686 Multi-Stream Graph Attention Network for Recommendation with Knowledge Graph
Abstract:
In recent years, Graph neural network has been widely used in knowledge graph recommendation. The existing recommendation methods based on graph neural network extract information from knowledge graph through entity and relation, which may not be efficient in the way of information extraction. In order to better propose useful entity information for the current recommendation task in the knowledge graph, we propose an end-to-end Neural network Model based on multi-stream graph attentional Mechanism (MSGAT), which can effectively integrate the knowledge graph into the recommendation system by evaluating the importance of entities from both users and items. Specifically, we use the attention mechanism from the user's perspective to distil the domain nodes information of the predicted item in the knowledge graph, to enhance the user's information on items, and generate the feature representation of the predicted item. Due to user history, click items can reflect the user's interest distribution, we propose a multi-stream attention mechanism, based on the user's preference for entities and relationships, and the similarity between items to be predicted and entities, aggregate user history click item's neighborhood entity information in the knowledge graph and generate the user's feature representation. We evaluate our model on three real recommendation datasets: Movielens-1M (ML-1M), LFM-1B 2015 (LFM-1B), and Amazon-Book (AZ-book). Experimental results show that compared with the most advanced models, our proposed model can better capture the entity information in the knowledge graph, which proves the validity and accuracy of the model.Keywords: graph attention network, knowledge graph, recommendation, information propagation
Procedia PDF Downloads 1165685 Ultrasound-Assisted Extraction of Bioactive Compounds from Cocoa Shell and Their Encapsulation in Gum Arabic and Maltodextrin: A Technology to Produce Functional Food Ingredients
Authors: Saeid Jafari, Khursheed Ahmad Sheikh, Randy W. Worobo, Kitipong Assatarakul
Abstract:
In this study, the extraction of cocoa shell powder (CSP) was optimized, and the optimized extracts were spray-dried for encapsulation purposes. Temperature (45-65 ◦C), extraction time (30–60 min), and ethanol concentration (60–100%) were the extraction parameters. The response surface methodology analysis revealed that the model was significant (p ≤ 0.05) in interactions between all variables (total phenolic compound, total flavonoid content, and antioxidant activity as measured by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP assays), with a lack of fit test for the model being insignificant (p > 0.05). Temperature (55 ◦C), time (45 min), and ethanol concentration (60%) were found to be the optimal extraction conditions. For spray-drying encapsulation, some quality metrics (e.g., water solubility, water activity) were insignificant (p > 0.05). The microcapsules were found to be spherical in shape using a scanning electron microscope. Thermogravimetric and differential thermogravimetric measurements of the microcapsules revealed nearly identical results. The gum arabic + maltodextrin microcapsule (GMM) showed potential antibacterial (zone of inhibition: 11.50 mm; lower minimum inhibitory concentration: 1.50 mg/mL) and antioxidant (DPPH: 1063 mM trolox/100g dry wt.) activities (p ≤ 0.05). In conclusion, the microcapsules in this study, particularly GMM, are promising antioxidant and antibacterial agents to be fortified as functional food ingredients for the production of nutraceutical foods with health-promoting properties.Keywords: functional foods, coco shell powder, antioxidant activity, encapsulation, extraction
Procedia PDF Downloads 575684 Anatomical Survey for Text Pattern Detection
Abstract:
The ultimate aim of machine intelligence is to explore and materialize the human capabilities, one of which is the ability to detect various text objects within one or more images displayed on any canvas including prints, videos or electronic displays. Multimedia data has increased rapidly in past years. Textual information present in multimedia contains important information about the image/video content. However, it needs to technologically testify the commonly used human intelligence of detecting and differentiating the text within an image, for computers. Hence in this paper feature set based on anatomical study of human text detection system is proposed. Subsequent examination bears testimony to the fact that the features extracted proved instrumental to text detection.Keywords: biologically inspired vision, content based retrieval, document analysis, text extraction
Procedia PDF Downloads 4445683 Production of Nanocrystalline Cellulose (NCC) from Rice Husk Biomass by Chemical Extraction Process
Authors: Md. Sakinul Islam, Nhol Kao, Sati Bhattacharya, Rahul Gupta
Abstract:
The objective of the study is to produce naocrystalline cellulose (NCC) from rice husk by chemical extraction process. The chemical extraction processes of this production are delignification, bleaching and hydrolysis. In order to produce NCC, raw rice husk (RRH) was grinded and converted to powder form. Powder rice husk was obtained by sieving and the particles in the 75-710 μm size range was used for experimental work. The production of NCC was conducted into the jacketed glass reactor at 80 ˚C temperature under predetermined experimental conditions. In this work NaOH (4M) solution was used for delignification process. After certain experimental time delignified powder RH was collected from the reactor then washed, bleached and finally hydrolyzed in order to degrade cellulose to nanocrystalline cellulose (NCC). For bleaching and hydrolysis processes NaOCl (20%) and H2SO4 (4M) solutions were used, respectively. The resultant products from hydrolysis was neutralized by buffer solution and analyzed by FTIR, XRD, SEM, AFM and TEM. From the analysis, NCC has been identified successfully and the particle dimension has been confirmed to be in the range of 20-50 nm. From XRD results, the crystallinity of NCC was found to be approximately 45%.Keywords: nanocrystalline cellulose, NCC, rice husk, biomass, chemical extraction
Procedia PDF Downloads 4015682 A Conglomerate of Multiple Optical Character Recognition Table Detection and Extraction
Authors: Smita Pallavi, Raj Ratn Pranesh, Sumit Kumar
Abstract:
Information representation as tables is compact and concise method that eases searching, indexing, and storage requirements. Extracting and cloning tables from parsable documents is easier and widely used; however, industry still faces challenges in detecting and extracting tables from OCR (Optical Character Recognition) documents or images. This paper proposes an algorithm that detects and extracts multiple tables from OCR document. The algorithm uses a combination of image processing techniques, text recognition, and procedural coding to identify distinct tables in the same image and map the text to appropriate the corresponding cell in dataframe, which can be stored as comma-separated values, database, excel, and multiple other usable formats.Keywords: table extraction, optical character recognition, image processing, text extraction, morphological transformation
Procedia PDF Downloads 1435681 Implementation of a Low-Cost Driver Drowsiness Evaluation System Using a Thermal Camera
Authors: Isa Moazen, Ali Nahvi
Abstract:
Driver drowsiness is a major cause of vehicle accidents, and facial images are highly valuable to detect drowsiness. In this paper, we perform our research via a thermal camera to record drivers' facial images on a driving simulator. A robust real-time algorithm extracts the features using horizontal and vertical integration projection, contours, contour orientations, and cropping tools. The features are included four target areas on the cheeks and forehead. Qt compiler and OpenCV are used with two cameras with different resolutions. A high-resolution thermal camera is used for fifteen subjects, and a low-resolution one is used for a person. The results are investigated by four temperature plots and evaluated by observer rating of drowsiness.Keywords: advanced driver assistance systems, thermal imaging, driver drowsiness detection, feature extraction
Procedia PDF Downloads 138