Search results for: cloud effect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15381

Search results for: cloud effect

15021 The Experience of Community-based Tourism in Yunguilla, Ecuador and Its Social-Cultural Impact

Authors: York Neudel

Abstract:

The phenomenon of tourism has been considered as tool to overcome cultural frontiers, to comprehend the other and to cope with mutual mistrust and suspicion. Well, that has been a myth, at least when it comes to mass-tourism. Other approaches, like community-based tourism, still are based on the idea of embracing the other in order to help or to understand the cultural difference. In 1997, two American NGOs incentivized a tourism-project in a community in the highlands of Ecuador, in order to protect the cloud forest from destructive exploitation of its own inhabitants. Nineteen years after that, I analyze in this investigation the interactions between the Ecuadorian hosts in the mestizo-community of Yunguilla and the foreign tourist in the quest for “authentic life” in the Ecuadorian cloud forest. As a sort of “contemporary pilgrim” the traveller tries to find authenticity in other times and places far away from their everyday life in Europe or North America. Therefore, tourists are guided by stereotypes and expectations that are produced by the touristic industry. The host, on the other hand, has to negotiate this pre-established imaginary. That generates a kind of theatre-play with front- and backstage in organic gardens, little fabrics and even private housing, since this alternative project offers to share the private space of the host with the tourist in the setting the community-based tourism. In order to protect their privacy, the community creates new hybrid spaces that oscillate between front- and backstages that culminates in a game of hide and seek – a phenomenon that promises interesting frictions for an anthropological case-study.

Keywords: Tourism, Authenticity, Community-based tourism, Ecuador, Yunguilla

Procedia PDF Downloads 284
15020 Yarkovsky Effect on the Orbital Dynamics of the Asteroid (101955) Bennu

Authors: Sanjay Narayan Deo, Badam Singh Kushvah

Abstract:

Bennu(101955) is a half kilometer potentially hazardous near-Earth asteroid. We analyze the influence of Yarkovsky effect and relativistic effect of the Sun on the motion of the asteroid Bennu. The transverse model is used to compute Yarkovsky force on asteroid Bennu. Our dynamical model includes Newtonian perturbations of eight planets, the Moon, the Sun and three massive asteroid (1Ceres, 2Palas and 4Vesta). We showed the variation in orbital elements of nominal orbit of the asteroid. In the presence of Yarkovsky effect, the Semi-major axis of the orbit of the asteroid is decreases by 350 m over one period of orbital motion. The magnitude of Yarkovsky force is computed. We find that maximum magnitude of Yarkovsky force is 0.09 N at the perihelion . We also found that the magnitude of the Sun relativity effect is greater than the Yarkovsky effect on the motion the asteroid Bennu.

Keywords: Bennu, orbital elements, relativistic effect, Yarkovsky effect

Procedia PDF Downloads 296
15019 A Machine Learning Based Framework for Education Levelling in Multicultural Countries: UAE as a Case Study

Authors: Shatha Ghareeb, Rawaa Al-Jumeily, Thar Baker

Abstract:

In Abu Dhabi, there are many different education curriculums where sector of private schools and quality assurance is supervising many private schools in Abu Dhabi for many nationalities. As there are many different education curriculums in Abu Dhabi to meet expats’ needs, there are different requirements for registration and success. In addition, there are different age groups for starting education in each curriculum. In fact, each curriculum has a different number of years, assessment techniques, reassessment rules, and exam boards. Currently, students that transfer curriculums are not being placed in the right year group due to different start and end dates of each academic year and their date of birth for each year group is different for each curriculum and as a result, we find students that are either younger or older for that year group which therefore creates gaps in their learning and performance. In addition, there is not a way of storing student data throughout their academic journey so that schools can track the student learning process. In this paper, we propose to develop a computational framework applicable in multicultural countries such as UAE in which multi-education systems are implemented. The ultimate goal is to use cloud and fog computing technology integrated with Artificial Intelligence techniques of Machine Learning to aid in a smooth transition when assigning students to their year groups, and provide leveling and differentiation information of students who relocate from a particular education curriculum to another, whilst also having the ability to store and access student data from anywhere throughout their academic journey.

Keywords: admissions, algorithms, cloud computing, differentiation, fog computing, levelling, machine learning

Procedia PDF Downloads 142
15018 Payment for Pain: Differences between Hypothetical and Real Preferences

Authors: J. Trarbach, S. Schosser, B. Vogt

Abstract:

Decision-makers tend to prefer the first alternative over subsequent alternatives which is called the primacy effect. To reliably measure this effect, we conducted an experiment with real consequences for preference statements. Therefore, we elicit preferences of subjects using a rating scale, i.e. hypothetical preferences, and willingness to pay, i.e. real preferences, for two sequences of pain. Within these sequences, both overall intensity and duration of pain are identical. Hence, a rational decision-maker should be indifferent, whereas the primacy effect predicts a stronger preference for the first sequence. What we see is a primacy effect only for hypothetical preferences. This effect vanishes for real preferences.

Keywords: decision making, primacy effect, real incentives, willingness to pay

Procedia PDF Downloads 294
15017 Modelling and Simulation of Photovoltaic Cell

Authors: Fouad Berrabeh, Sabir Messalti

Abstract:

The performances of the photovoltaic systems are very dependent on different conditions, such as solar irradiation, temperature, etc. Therefore, it is very important to provide detailed studies for different cases in order to provide continuously power, so the photovoltaic system must be properly sized. This paper presents the modelling and simulation of the photovoltaic cell using single diode model. I-V characteristics and P-V characteristics are presented and it verified at different conditions (irradiance effect, temperature effect, series resistance effect).

Keywords: photovoltaic cell, BP SX 150 BP solar photovoltaic module, irradiance effect, temperature effect, series resistance effect, I–V characteristics, P–V characteristics

Procedia PDF Downloads 489
15016 The Effect of Media Effect, Conformity, and Personality on Customers’ Purchase Intention under the Influence of COVID-19 Pandemic

Authors: Tsai-Yun Liao, Fang-Yi Hsu

Abstract:

Consumer behavior and consumption patterns have changed in reacting to the threat of COVID-19 pandemic situations. In order to explore the factors affecting customers’ purchase intention under the influence of the COVID-19 pandemic, this research uses structural equation modeling to explore the effect of media effect, conformity, and personality on customers’ purchase intention. Four essential objectives are investigated: how does media affect the conformity and perceived value of customers; the effect of media effect, conformity, and personality on customers’ purchase intention; the moderating effect of personality; and the mediating effect of perceived value toward purchase intention. By convenience sampling method, 428 questionnaires were collected, and the total number of valid samples was 406. Data analysis and results indicate that: (1) The media effect positively affects conformity. (2) The media effect positively affects perceived value. (3) Both conformity and perceived value positively affect purchase intention. (4) Consumer’s personality of openness to experience moderates the relationship between conformity and purchase intention. (5) Media effect affects purchase intention through the mediating effect of perceived value. This study contributes to the research by providing the factors affecting customers’ purchase intention and to the enterprises by maintaining incumbent customers and attracting potential customers.

Keywords: COVID-19, media effect, conformity, personality, purchase intention

Procedia PDF Downloads 145
15015 Use of Thermosonication to Obtain Minimally Processed Mosambi Juice

Authors: Ruby Siwach, Manish Kumar, Raman Seth

Abstract:

Extent of inactivation of pectin methylesterase (PME) in mosambi juice during thermal and thermosonication treatments was studied to obtain a minimally processed product. Effect of both treatments on cloud value, pH, titratable acidity, oBrix, and sensory attributes (flavour and taste) was studied. Thermal treatments (HT) were carried out at three temperatures 60, 70, and 80°C in a serological water bath for 5, 10, 15, and 20 min at each temperature. Thermosonication treatments (TS) were also given for same time-temperature combinations in water bath of a thermosonicator. Treated samples were stored in a deep freezer at 18°C for PME assay. PME activity of untreated sample was also assayed and residual PME activity and % loss in PME activity was calculated at each time-temperature combination. The extent of inactivation of PME increased with increase in treatment temperature and duration. Thermosonication treatments were found far more effective than thermal treatments of same time temperature combination in PME inactivation and retention of sensory attributes.

Keywords: pectin methylesterase, heat inactivation kinetics, thermosonication, thermal treatment

Procedia PDF Downloads 431
15014 Predicting Photovoltaic Energy Profile of Birzeit University Campus Based on Weather Forecast

Authors: Muhammad Abu-Khaizaran, Ahmad Faza’, Tariq Othman, Yahia Yousef

Abstract:

This paper presents a study to provide sufficient and reliable information about constructing a Photovoltaic energy profile of the Birzeit University campus (BZU) based on the weather forecast. The developed Photovoltaic energy profile helps to predict the energy yield of the Photovoltaic systems based on the weather forecast and hence helps planning energy production and consumption. Two models will be developed in this paper; a Clear Sky Irradiance model and a Cloud-Cover Radiation model to predict the irradiance for a clear sky day and a cloudy day, respectively. The adopted procedure for developing such models takes into consideration two levels of abstraction. First, irradiance and weather data were acquired by a sensory (measurement) system installed on the rooftop of the Information Technology College building at Birzeit University campus. Second, power readings of a fully operational 51kW commercial Photovoltaic system installed in the University at the rooftop of the adjacent College of Pharmacy-Nursing and Health Professions building are used to validate the output of a simulation model and to help refine its structure. Based on a comparison between a mathematical model, which calculates Clear Sky Irradiance for the University location and two sets of accumulated measured data, it is found that the simulation system offers an accurate resemblance to the installed PV power station on clear sky days. However, these comparisons show a divergence between the expected energy yield and actual energy yield in extreme weather conditions, including clouding and soiling effects. Therefore, a more accurate prediction model for irradiance that takes into consideration weather factors, such as relative humidity and cloudiness, which affect irradiance, was developed; Cloud-Cover Radiation Model (CRM). The equivalent mathematical formulas implement corrections to provide more accurate inputs to the simulation system. The results of the CRM show a very good match with the actual measured irradiance during a cloudy day. The developed Photovoltaic profile helps in predicting the output energy yield of the Photovoltaic system installed at the University campus based on the predicted weather conditions. The simulation and practical results for both models are in a very good match.

Keywords: clear-sky irradiance model, cloud-cover radiation model, photovoltaic, weather forecast

Procedia PDF Downloads 132
15013 Bioethanol Production from Wild Sorghum (Sorghum arundinacieum) and Spear Grass (Heteropogon contortus)

Authors: Adeyinka Adesanya, Isaac Bamgboye

Abstract:

There is a growing need to develop the processes to produce renewable fuels and chemicals due to the economic, political, and environmental concerns associated with fossil fuels. Lignocellulosic biomass is an excellent renewable feedstock because it is both abundant and inexpensive. This project aims at producing bioethanol from lignocellulosic plants (Sorghum Arundinacieum and Heteropogon Contortus) by biochemical means, computing the energy audit of the process and determining the fuel properties of the produced ethanol. Acid pretreatment (0.5% H2SO4 solution) and enzymatic hydrolysis (using malted barley as enzyme source) were employed. The ethanol yield of wild sorghum was found to be 20% while that of spear grass was 15%. The fuel properties of the bioethanol from wild sorghum are 1.227 centipoise for viscosity, 1.10 g/cm3 for density, 0.90 for specific gravity, 78 °C for boiling point and the cloud point was found to be below -30 °C. That of spear grass was 1.206 centipoise for viscosity, 0.93 g/cm3 for density 1.08 specific gravity, 78 °C for boiling point and the cloud point was also found to be below -30 °C. The energy audit shows that about 64 % of the total energy was used up during pretreatment, while product recovery which was done manually demanded about 31 % of the total energy. Enzymatic hydrolysis, fermentation, and distillation total energy input were 1.95 %, 1.49 % and 1.04 % respectively, the alcoholometric strength of bioethanol from wild sorghum was found to be 47 % and the alcoholometric strength of bioethanol from spear grass was 72 %. Also, the energy efficiency of the bioethanol production for both grasses was 3.85 %.

Keywords: lignocellulosic biomass, wild sorghum, spear grass, biochemical conversion

Procedia PDF Downloads 236
15012 Digital Manufacturing: Evolution and a Process Oriented Approach to Align with Business Strategy

Authors: Abhimanyu Pati, Prabir K. Bandyopadhyay

Abstract:

The paper intends to highlight the significance of Digital Manufacturing (DM) strategy in support and achievement of business strategy and goals of any manufacturing organization. Towards this end, DM initiatives have been given a process perspective, while not undermining its technological significance, with a view to link its benefits directly with fulfilment of customer needs and expectations in a responsive and cost-effective manner. A digital process model has been proposed to categorize digitally enabled organizational processes with a view to create synergistic groups, which adopt and use digital tools having similar characteristics and functionalities. This will throw future opportunities for researchers and developers to create a unified technology environment for integration and orchestration of processes. Secondly, an effort has been made to apply “what” and “how” features of Quality Function Deployment (QFD) framework to establish the relationship between customers’ needs – both for external and internal customers, and the features of various digital processes, which support for the achievement of these customer expectations. The paper finally concludes that in the present highly competitive environment, business organizations cannot thrive to sustain unless they understand the significance of digital strategy and integrate it with their business strategy with a clearly defined implementation roadmap. A process-oriented approach to DM strategy will help business executives and leaders to appreciate its value propositions and its direct link to organization’s competitiveness.

Keywords: knowledge management, cloud computing, knowledge management approaches, cloud-based knowledge management

Procedia PDF Downloads 309
15011 Increasing the System Availability of Data Centers by Using Virtualization Technologies

Authors: Chris Ewe, Naoum Jamous, Holger Schrödl

Abstract:

Like most entrepreneurs, data center operators pursue goals such as profit-maximization, improvement of the company’s reputation or basically to exist on the market. Part of those aims is to guarantee a given quality of service. Quality characteristics are specified in a contract called the service level agreement. Central part of this agreement is non-functional properties of an IT service. The system availability is one of the most important properties as it will be shown in this paper. To comply with availability requirements, data center operators can use virtualization technologies. A clear model to assess the effect of virtualization functions on the parts of a data center in relation to the system availability is still missing. This paper aims to introduce a basic model that shows these connections, and consider if the identified effects are positive or negative. Thus, this work also points out possible disadvantages of the technology. In consequence, the paper shows opportunities as well as risks of data center virtualization in relation to system availability.

Keywords: availability, cloud computing IT service, quality of service, service level agreement, virtualization

Procedia PDF Downloads 536
15010 Exploring the Quest for Centralized Identity in Mohsin Hamid's "The Last White Man": Post-Apocalyptic Transformations and Societal Reconfigurations

Authors: Kashifa Khalid, Eesham Fatima

Abstract:

This study aims to analyze the loss of identity and its impact on one’s life in ‘The Last White Man’ by Mohsin Hamid. The theory of Alienation Effect by Bertolt Brecht has been applied to the text as Hamid offers the readers a unique perspective, alluding to significant themes like identity, race, and death. The aspects of defamiliarization align impeccably with the plot, as existence and the corresponding concept of identity seem to have dissolved into utter chaos. This extends from the unexplained transformation to the way the entire world unravels from its general norm into a dystopian mayhem. The characters, starting with the protagonist Anders, have lost their center. One’s own self transforms into the ‘other,’ and the struggle is to get refamiliarized with one’s own self. Alienation and isolation only rise as the construct of race and identity is taken apart brick by brick, ironically at its own pace as many new realities are blown to bits. The inseparable relationship between identity and grief under the ever-looming cloud of ‘death’ is studied in detail. The theoretical framework and thematic aspects harmonize in accordance with the writing style put forth by Hamid, tying all the loose ends together.

Keywords: alienation, chaos, identity, transformation

Procedia PDF Downloads 44
15009 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 64
15008 BOX Effect Sensitivity to Fin Width in SOI-Multi-FinFETs

Authors: A. N. Moulai Khatir

Abstract:

SOI-Multifin-FETs are placed to be the workhorse of the industry for the coming few generations, and thus, in a few years because their excellent transistor characteristics, ideal sub-threshold swing, low drain induced barrier lowering (DIBL) without pocket implantation, and negligible body bias dependency. The corner effect may also exist in the two lower corners; this effect is called the BOX effect, which can also occur in the direction X-Z. The electric field lines from the source and drain cross the bottom oxide and arrive in the silicon. This effect is also called DIVSB (Drain Induced Virtual Substrate Basing). The potential in the silicon film in particular near the drain is increased by the drain bias. It is similar to DIBL and result in a decrease of the threshold voltage. This work provides an understanding of the limitation of this effect by reducing the fin width for components with increased fin number.

Keywords: SOI, finFET, corner effect, dual-gate, tri-gate, BOX, multi-finFET

Procedia PDF Downloads 496
15007 A Vehicle Monitoring System Based on the LoRa Technique

Authors: Chao-Linag Hsieh, Zheng-Wei Ye, Chen-Kang Huang, Yeun-Chung Lee, Chih-Hong Sun, Tzai-Hung Wen, Jehn-Yih Juang, Joe-Air Jiang

Abstract:

Air pollution and climate warming become more and more intensified in many areas, especially in urban areas. Environmental parameters are critical information to air pollution and weather monitoring. Thus, it is necessary to develop a suitable air pollution and weather monitoring system for urban areas. In this study, a vehicle monitoring system (VMS) based on the IoT technique is developed. Cars are selected as the research tool because it can reach a greater number of streets to collect data. The VMS can monitor different environmental parameters, including ambient temperature and humidity, and air quality parameters, including PM2.5, NO2, CO, and O3. The VMS can provide other information, including GPS signals and the vibration information through driving a car on the street. Different sensor modules are used to measure the parameters and collect the measured data and transmit them to a cloud server through the LoRa protocol. A user interface is used to show the sensing data storing at the cloud server. To examine the performance of the system, a researcher drove a Nissan x-trail 1998 to the area close to the Da’an District office in Taipei to collect monitoring data. The collected data are instantly shown on the user interface. The four kinds of information are provided by the interface: GPS positions, weather parameters, vehicle information, and air quality information. With the VMS, users can obtain the information regarding air quality and weather conditions when they drive their car to an urban area. Also, government agencies can make decisions on traffic planning based on the information provided by the proposed VMS.

Keywords: LoRa, monitoring system, smart city, vehicle

Procedia PDF Downloads 416
15006 Analysis of Tourism Development Level and Research on Improvement Strategies - Take Chongqing as an Example

Authors: Jiajun Lu, Yun Ma

Abstract:

As a member of the tertiary industry, tourism is an important driving factor for urban economic development. As a well-known tourist city in China, according to statistics, the added value of tourism and related industries in 2022 will reach 106.326 billion yuan, a year-on-year increase of 1.2%, accounting for 3.7% of the city's GDP. However, the overall tourism development level of Chongqing is seriously unbalanced, and the tourism strength of the main urban area is much higher than that of the southeast Chongqing, northeast Chongqing and the surrounding city tourism area, and the overall tourism strength of the other three regions is relatively balanced. Based on the estimation of tourism development level and the geographic detector method, this paper finds that the important factors affecting the tourism development level of non-main urban areas in Chongqing are A-level tourist attractions. Through GIS geospatial analysis technology and SPSS data correlation research method, the spatial distribution characteristics and influencing factors of A-level tourist attractions in Chongqing were quantitatively analyzed by using data such as geospatial data cloud, relevant documents of Chongqing Municipal Commission of Culture and Tourism Development, planning cloud, and relevant statistical yearbooks. The results show that: (1) The spatial distribution of tourist attractions in non-main urban areas of Chongqing is agglomeration and uneven. (2) The spatial distribution of A-level tourist attractions in non-main urban areas of Chongqing is affected by ecological factors, and the degree of influence is in the order of water factors> topographic factors > green space factors.

Keywords: tourist attractions, geographic detectors, quantitative research, ecological factors, GIS technology, SPSS analysis

Procedia PDF Downloads 11
15005 Channel Length Modulation Effect on Monolayer Graphene Nanoribbon Field Effect Transistor

Authors: Mehdi Saeidmanesh, Razali Ismail

Abstract:

Recently, Graphene Nanoribbon Field Effect Transistors (GNR FETs) attract a great deal of attention due to their better performance in comparison with conventional devices. In this paper, channel length Modulation (CLM) effect on the electrical characteristics of GNR FETs is analytically studied and modeled. To this end, the special distribution of the electric potential along the channel and current-voltage characteristic of the device is modeled. The obtained results of analytical model are compared to the experimental data of published works. As a result, it is observable that considering the effect of CLM, the current-voltage response of GNR FET is more realistic.

Keywords: graphene nanoribbon, field effect transistors, short channel effects, channel length modulation

Procedia PDF Downloads 402
15004 Automated Detection of Targets and Retrieve the Corresponding Analytics Using Augmented Reality

Authors: Suvarna Kumar Gogula, Sandhya Devi Gogula, P. Chanakya

Abstract:

Augmented reality is defined as the collection of the digital (or) computer generated information like images, audio, video, 3d models, etc. and overlay them over the real time environment. Augmented reality can be thought as a blend between completely synthetic and completely real. Augmented reality provides scope in a wide range of industries like manufacturing, retail, gaming, advertisement, tourism, etc. and brings out new dimensions in the modern digital world. As it overlays the content, it makes the users enhance the knowledge by providing the content blended with real world. In this application, we integrated augmented reality with data analytics and integrated with cloud so the virtual content will be generated on the basis of the data present in the database and we used marker based augmented reality where every marker will be stored in the database with corresponding unique ID. This application can be used in wide range of industries for different business processes, but in this paper, we mainly focus on the marketing industry which helps the customer in gaining the knowledge about the products in the market which mainly focus on their prices, customer feedback, quality, and other benefits. This application also focuses on providing better market strategy information for marketing managers who obtain the data about the stocks, sales, customer response about the product, etc. In this paper, we also included the reports from the feedback got from different people after the demonstration, and finally, we presented the future scope of Augmented Reality in different business processes by integrating with new technologies like cloud, big data, artificial intelligence, etc.

Keywords: augmented reality, data analytics, catch room, marketing and sales

Procedia PDF Downloads 237
15003 Optimizing Data Integration and Management Strategies for Upstream Oil and Gas Operations

Authors: Deepak Singh, Rail Kuliev

Abstract:

The abstract highlights the critical importance of optimizing data integration and management strategies in the upstream oil and gas industry. With its complex and dynamic nature generating vast volumes of data, efficient data integration and management are essential for informed decision-making, cost reduction, and maximizing operational performance. Challenges such as data silos, heterogeneity, real-time data management, and data quality issues are addressed, prompting the proposal of several strategies. These strategies include implementing a centralized data repository, adopting industry-wide data standards, employing master data management (MDM), utilizing real-time data integration technologies, and ensuring data quality assurance. Training and developing the workforce, “reskilling and upskilling” the employees and establishing robust Data Management training programs play an essential role and integral part in this strategy. The article also emphasizes the significance of data governance and best practices, as well as the role of technological advancements such as big data analytics, cloud computing, Internet of Things (IoT), and artificial intelligence (AI) and machine learning (ML). To illustrate the practicality of these strategies, real-world case studies are presented, showcasing successful implementations that improve operational efficiency and decision-making. In present study, by embracing the proposed optimization strategies, leveraging technological advancements, and adhering to best practices, upstream oil and gas companies can harness the full potential of data-driven decision-making, ultimately achieving increased profitability and a competitive edge in the ever-evolving industry.

Keywords: master data management, IoT, AI&ML, cloud Computing, data optimization

Procedia PDF Downloads 70
15002 First Systematic Review on Aerosol Bound Water: Exploring the Existing Knowledge Domain Using the CiteSpace Software

Authors: Kamila Widziewicz-Rzonca

Abstract:

The presence of PM bound water as an integral chemical compound of suspended aerosol particles (PM) has become one of the hottest issues in recent years. The UN climate summits on climate change (COP24) indicate that PM of anthropogenic origin (released mostly from coal combustion) is directly responsible for climate change. Chemical changes at the particle-liquid (water) interface determine many phenomena occurring in the atmosphere such as visibility, cloud formation or precipitation intensity. Since water-soluble particles such as nitrates, sulfates, or sea salt easily become cloud condensation nuclei, they affect the climate for example by increasing cloud droplet concentration. Aerosol water is a master component of atmospheric aerosols and a medium that enables all aqueous-phase reactions occurring in the atmosphere. Thanks to a thorough bibliometric analysis conducted using CiteSpace Software, it was possible to identify past trends and possible future directions in measuring aerosol-bound water. This work, in fact, doesn’t aim at reviewing the existing literature in the related topic but is an in-depth bibliometric analysis exploring existing gaps and new frontiers in the topic of PM-bound water. To assess the major scientific areas related to PM-bound water and clearly define which among those are the most active topics we checked Web of Science databases from 1996 till 2018. We give an answer to the questions: which authors, countries, institutions and aerosol journals to the greatest degree influenced PM-bound water research? Obtained results indicate that the paper with the greatest citation burst was Tang In and Munklewitz H.R. 'water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance', 1994. The largest number of articles in this specific field was published in atmospheric chemistry and physics. An absolute leader in the quantity of publications among all research institutions is the National Aeronautics Space Administration (NASA). Meteorology and atmospheric sciences is a category with the most studies in this field. A very small number of studies on PM-bound water conduct a quantitative measurement of its presence in ambient particles or its origin. Most articles rather point PM-bound water as an artifact in organic carbon and ions measurements without any chemical analysis of its contents. This scientometric study presents the current and most actual literature regarding particulate bound water.

Keywords: systematic review, aerosol-bound water, PM-bound water, CiteSpace, knowledge domain

Procedia PDF Downloads 123
15001 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine

Authors: D. Madhushanka, Y. Liu, H. C. Fernando

Abstract:

Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.

Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2

Procedia PDF Downloads 235
15000 Effects of Research-Based Blended Learning Model Using Adaptive Scaffolding to Enhance Graduate Students' Research Competency and Analytical Thinking Skills

Authors: Panita Wannapiroon, Prachyanun Nilsook

Abstract:

This paper is a report on the findings of a Research and Development (R&D) aiming to develop the model of Research-Based Blended Learning Model Using Adaptive Scaffolding (RBBL-AS) to enhance graduate students’ research competency and analytical thinking skills, to study the result of using such model. The sample consisted of 10 experts in the fields during the model developing stage, while there were 23 graduate students of KMUTNB for the RBBL-AS model try out stage. The research procedures included 4 phases: 1) literature review, 2) model development, 3) model experiment, and 4) model revision and confirmation. The research results were divided into 3 parts according to the procedures as described in the following session. First, the data gathering from the literature review were reported as a draft model; followed by the research finding from the experts’ interviews indicated that the model should be included 8 components to enhance graduate students’ research competency and analytical thinking skills. The 8 components were 1) cloud learning environment, 2) Ubiquitous Cloud Learning Management System (UCLMS), 3) learning courseware, 4) learning resources, 5) adaptive Scaffolding, 6) communication and collaboration tolls, 7) learning assessment, and 8) research-based blended learning activity. Second, the research finding from the experimental stage found that there were statistically significant difference of the research competency and analytical thinking skills posttest scores over the pretest scores at the .05 level. The Graduate students agreed that learning with the RBBL-AS model was at a high level of satisfaction. Third, according to the finding from the experimental stage and the comments from the experts, the developed model was revised and proposed in the report for further implication and references.

Keywords: research based learning, blended learning, adaptive scaffolding, research competency, analytical thinking skills

Procedia PDF Downloads 418
14999 Effect of Shrinkage on Heat and Mass Transfer Parameters of Solar Dried Potato Samples of Variable Diameter

Authors: Kshanaprava Dhalsamant, Punyadarshini P. Tripathy, Shanker L. Shrivastava

Abstract:

Potato is chosen as the food product for carrying out the natural convection mixed-mode solar drying experiments since they are easily available and globally consumed. The convective heat and mass transfer coefficients along with effective diffusivity were calculated considering both shrinkage and without shrinkage for the potato cylinders of different geometry (8, 10 and 13 mm diameters and a constant length of 50 mm). The convective heat transfer coefficient (hc) without considering shrinkage effect were 24.28, 18.69, 15.89 W/m2˚C and hc considering shrinkage effect were 37.81, 29.21, 25.72 W/m2˚C for 8, 10 and 13 mm diameter samples respectively. Similarly, the effective diffusivity (Deff) without considering shrinkage effect were 3.20×10-9, 4.82×10-9, 2.48×10-8 m2/s and Deff considering shrinkage effect were 1.68×10-9, 2.56×10-9, 1.34×10-8 m2/s for 8, 10 and 13 mm diameter samples respectively and the mass transfer coefficient (hm) without considering the shrinkage effect were 5.16×10-7, 2.93×10-7, 2.59×10-7 m/s and hm considering shrinkage effect were 3.71×10-7, 2.04×10-7, 1.80×10-7 m/s for 8, 10 and 13 mm diameter samples respectively. Increased values of hc were obtained by considering shrinkage effect in all diameter samples because shrinkage results in decreasing diameter with time achieving in enhanced rate of water loss. The average values of Deff determined without considering the shrinkage effect were found to be almost double that with shrinkage effect. The reduction in hm values is due to the fact that with increasing sample diameter, the exposed surface area per unit mass decreases, resulting in a slower moisture removal. It is worth noting that considering shrinkage effect led to overestimation of hc values in the range of 55.72-61.86% and neglecting the shrinkage effect in the mass transfer analysis, the values of Deff and hm are overestimated in the range of 85.02-90.27% and 39.11-45.11%, respectively, for the range of sample diameter investigated in the present study.

Keywords: shrinkage, convective heat transfer coefficient, effectivive diffusivity, convective mass transfer coefficient

Procedia PDF Downloads 258
14998 Internet of Things, Edge and Cloud Computing in Rock Mechanical Investigation for Underground Surveys

Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo

Abstract:

Rock mechanical investigation is one of the most crucial activities in underground operations, especially in surveys related to hydrocarbon exploration and production, geothermal reservoirs, energy storage, mining, and geotechnics. There is a wide range of traditional methods for driving, collecting, and analyzing rock mechanics data. However, these approaches may not be suitable or work perfectly in some situations, such as fractured zones. Cutting-edge technologies have been provided to solve and optimize the mentioned issues. Internet of Things (IoT), Edge, and Cloud Computing technologies (ECt & CCt, respectively) are among the most widely used and new artificial intelligence methods employed for geomechanical studies. IoT devices act as sensors and cameras for real-time monitoring and mechanical-geological data collection of rocks, such as temperature, movement, pressure, or stress levels. Structural integrity, especially for cap rocks within hydrocarbon systems, and rock mass behavior assessment, to further activities such as enhanced oil recovery (EOR) and underground gas storage (UGS), or to improve safety risk management (SRM) and potential hazards identification (P.H.I), are other benefits from IoT technologies. EC techniques can process, aggregate, and analyze data immediately collected by IoT on a real-time scale, providing detailed insights into the behavior of rocks in various situations (e.g., stress, temperature, and pressure), establishing patterns quickly, and detecting trends. Therefore, this state-of-the-art and useful technology can adopt autonomous systems in rock mechanical surveys, such as drilling and production (in hydrocarbon wells) or excavation (in mining and geotechnics industries). Besides, ECt allows all rock-related operations to be controlled remotely and enables operators to apply changes or make adjustments. It must be mentioned that this feature is very important in environmental goals. More often than not, rock mechanical studies consist of different data, such as laboratory tests, field operations, and indirect information like seismic or well-logging data. CCt provides a useful platform for storing and managing a great deal of volume and different information, which can be very useful in fractured zones. Additionally, CCt supplies powerful tools for predicting, modeling, and simulating rock mechanical information, especially in fractured zones within vast areas. Also, it is a suitable source for sharing extensive information on rock mechanics, such as the direction and size of fractures in a large oil field or mine. The comprehensive review findings demonstrate that digital transformation through integrated IoT, Edge, and Cloud solutions is revolutionizing traditional rock mechanical investigation. These advanced technologies have empowered real-time monitoring, predictive analysis, and data-driven decision-making, culminating in noteworthy enhancements in safety, efficiency, and sustainability. Therefore, by employing IoT, CCt, and ECt, underground operations have experienced a significant boost, allowing for timely and informed actions using real-time data insights. The successful implementation of IoT, CCt, and ECt has led to optimized and safer operations, optimized processes, and environmentally conscious approaches in underground geological endeavors.

Keywords: rock mechanical studies, internet of things, edge computing, cloud computing, underground surveys, geological operations

Procedia PDF Downloads 62
14997 Approach on Conceptual Design and Dimensional Synthesis of the Linear Delta Robot for Additive Manufacturing

Authors: Efrain Rodriguez, Cristhian Riano, Alberto Alvares

Abstract:

In recent years, robots manipulators with parallel architectures are used in additive manufacturing processes – 3D printing. These robots have advantages such as speed and lightness that make them suitable to help with the efficiency and productivity of these processes. Consequently, the interest for the development of parallel robots for additive manufacturing applications has increased. This article deals with the conceptual design and dimensional synthesis of the linear delta robot for additive manufacturing. Firstly, a methodology based on structured processes for the development of products through the phases of informational design, conceptual design and detailed design is adopted: a) In the informational design phase the Mudge diagram and the QFD matrix are used to aid a set of technical requirements, to define the form, functions and features of the robot. b) In the conceptual design phase, the functional modeling of the system through of an IDEF0 diagram is performed, and the solution principles for the requirements are formulated using a morphological matrix. This phase includes the description of the mechanical, electro-electronic and computational subsystems that constitute the general architecture of the robot. c) In the detailed design phase, a digital model of the robot is drawn on CAD software. A list of commercial and manufactured parts is detailed. Tolerances and adjustments are defined for some parts of the robot structure. The necessary manufacturing processes and tools are also listed, including: milling, turning and 3D printing. Secondly, a dimensional synthesis method applied on design of the linear delta robot is presented. One of the most important key factors in the design of a parallel robot is the useful workspace, which strongly depends on the joint space, the dimensions of the mechanism bodies and the possible interferences between these bodies. The objective function is based on the verification of the kinematic model for a prescribed cylindrical workspace, considering geometric constraints that possibly lead to singularities of the mechanism. The aim is to determine the minimum dimensional parameters of the mechanism bodies for the proposed workspace. A method based on genetic algorithms was used to solve this problem. The method uses a cloud of points with the cylindrical shape of the workspace and checks the kinematic model for each of the points within the cloud. The evolution of the population (point cloud) provides the optimal parameters for the design of the delta robot. The development process of the linear delta robot with optimal dimensions for additive manufacture is presented. The dimensional synthesis enabled to design the mechanism of the delta robot in function of the prescribed workspace. Finally, the implementation of the robotic platform developed based on a linear delta robot in an additive manufacturing application using the Fused Deposition Modeling (FDM) technique is presented.

Keywords: additive manufacturing, delta parallel robot, dimensional synthesis, genetic algorithms

Procedia PDF Downloads 190
14996 Direct Measurements of the Electrocaloric Effect in Solid Ferroelectric Materials via Thermoreflectance

Authors: Layla Farhat, Mathieu Bardoux, Stéphane Longuemart, Ziad Herro, Abdelhak Hadj Sahraoui

Abstract:

Electrocaloric (EC) effect refers to the isothermal entropy or adiabatic temperature changes of a dielectric material induced by an external electric field. This phenomenon has been largely ignored for application because only modest EC effects (2.6

Keywords: electrocaloric effect, thermoreflectance, ferroelectricity, cooling system

Procedia PDF Downloads 182
14995 Effect of Aggregate Size on Mechanical Behavior of Passively Confined Concrete Subjected to 3D Loading

Authors: Ibrahim Ajani Tijani, C. W. Lim

Abstract:

Limited studies have examined the effect of size on the mechanical behavior of confined concrete subjected to 3-dimensional (3D) test. With the novel 3D testing system to produce passive confinement, concrete cubes were tested to examine the effect of size on stress-strain behavior of the specimens. The effect of size on 3D stress-strain relationship was scrutinized and compared to the stress-strain relationship available in the literature. It was observed that the ultimate stress and the corresponding strain was related to the confining rigidity and size. The size shows a significant effect on the intersection stress and a new model was proposed for the intersection stress based on the conceptual design of the confining plates.

Keywords: concrete, aggregate size, size effect, 3D compression, passive confinement

Procedia PDF Downloads 208
14994 Behavioral Finance: Anomalies at Real Markets, Weekday Effect

Authors: Vera Jancurova

Abstract:

The financial theory is dominated by the believe that weekday effect has disappeared from current markets. The purpose of this article is to study anomalies, especially weekday effect, at real markets that disrupt the efficiency of financial markets. The research is based on the analyses of historical daily exchange rates of significant world indices to determine the presence of weekday effects on financial markets. The methodology used for the study is based on the analyzes of daily averages of particular indexes for different time periods. Average daily gains were analyzed for their whole time interval and then for particular five and ten years periods with the aim to detect the presence on current financial markets. The results confirm the presence of weekday effect at the most significant indices - for example: Nasdaq, S & P 500, FTSE 100 and the Hang Seng. It was confirmed that in the last ten years, the weekend effect disappeared from financial markets. However in last year’s the indicators show that weekday effect is coming back. The study shows that weekday effect has to be taken into consideration on financial markets, especially in the past years.

Keywords: indices, anomalies, behavioral finance, weekday effect

Procedia PDF Downloads 339
14993 Economic Stability in a Small Open Economy with Income Effect on Leisure Demand

Authors: Yu-Shan Hsu

Abstract:

This paper studies a two-sector growth model with a technology of social constant returns and with a utility that features either a zero or a positive income effect on the demand for leisure. The purpose is to investigate how the existence of aggregate instability or equilibrium indeterminacy depends on both the intensity of the income effect on the demand for leisure and the value of the labor supply elasticity. The main finding is that when there is a factor intensity reversal between the private perspective and the social perspective, indeterminacy arises even if the utility has a positive income effect on leisure demand. Moreover, we find that a smaller value of the labor supply elasticity increases the range of the income effect on leisure demand and thus increases the possibility of equilibrium indeterminacy. JEL classification: E3; O41

Keywords: indeterminacy, non-separable preferences, income effect, labor supply elasticity

Procedia PDF Downloads 177
14992 Study of Inhibition of the End Effect Based on AR Model Predict of Combined Data Extension and Window Function

Authors: Pan Hongxia, Wang Zhenhua

Abstract:

In this paper, the EMD decomposition in the process of endpoint effect adopted data based on AR model to predict the continuation and window function method of combining the two effective inhibition. Proven by simulation of the simulation signal obtained the ideal effect, then, apply this method to the gearbox test data is also achieved good effect in the process, for the analysis of the subsequent data processing to improve the calculation accuracy. In the end, under various working conditions for the gearbox fault diagnosis laid a good foundation.

Keywords: gearbox, fault diagnosis, ar model, end effect

Procedia PDF Downloads 366