Search results for: RF signal tracker
1362 Proposed Alternative System for Existing Traffic Signal System
Authors: Alluri Swaroopa, L. V. N. Prasad
Abstract:
Alone with fast urbanization in world, traffic control problem became a big issue in urban construction. Having an efficient and reliable traffic control system is crucial to macro-traffic control. Traffic signal is used to manage conflicting requirement by allocating different sets of mutually compatible traffic movement during distinct time interval. Many approaches have been made proposed to solve this discrete stochastic problem. Recognizing the need to minimize right-of-way impacts while efficiently handling the anticipated high traffic volumes, the proposed alternative system gives effective design. This model allows for increased traffic capacity and reduces delays by eliminating a step in maneuvering through the freeway interchange. The concept proposed in this paper involves construction of bridges and ramps at intersection of four roads to control the vehicular congestion and to prevent traffic breakdown.Keywords: bridges, junctions, ramps, urban traffic control
Procedia PDF Downloads 5541361 High Performance Electrocardiogram Steganography Based on Fast Discrete Cosine Transform
Authors: Liang-Ta Cheng, Ching-Yu Yang
Abstract:
Based on fast discrete cosine transform (FDCT), the authors present a high capacity and high perceived quality method for electrocardiogram (ECG) signal. By using a simple adjusting policy to the 1-dimentional (1-D) DCT coefficients, a large volume of secret message can be effectively embedded in an ECG host signal and be successfully extracted at the intended receiver. Simulations confirmed that the resulting perceived quality is good, while the hiding capability of the proposed method significantly outperforms that of existing techniques. In addition, our proposed method has a certain degree of robustness. Since the computational complexity is low, it is feasible for our method being employed in real-time applications.Keywords: data hiding, ECG steganography, fast discrete cosine transform, 1-D DCT bundle, real-time applications
Procedia PDF Downloads 1941360 Keypoints Extraction for Markerless Tracking in Augmented Reality Applications: A Case Study in Dar As-Saraya Museum
Authors: Jafar W. Al-Badarneh, Abdalkareem R. Al-Hawary, Abdulmalik M. Morghem, Mostafa Z. Ali, Rami S. Al-Gharaibeh
Abstract:
Archeological heritage is at the heart of each country’s national glory. Moreover, it could develop into a source of national income. Heritage management requires socially-responsible marketing that achieves high visitor satisfaction while maintaining high site conservation. We have developed an Augmented Reality (AR) experience for heritage and cultural reservation at Dar-As-Saraya museum in Jordan. Our application of this notion relied on markerless-based tracking approach. This approach uses keypoints extraction technique where features of the environment are identified and defined into the system as keypoints. A set of these keypoints forms a tracker for an augmented object to be displayed and overlaid with a real scene at Dar As-Saraya museum. We tested and compared several techniques for markerless tracking and then applied the best technique to complete a mosaic artifact with AR content. The successful results from our application open the door for applications in open archeological sites where markerless tracking is mostly needed.Keywords: augmented reality, cultural heritage, keypoints extraction, virtual recreation
Procedia PDF Downloads 3371359 Monitoring of Spectrum Usage and Signal Identification Using Cognitive Radio
Authors: O. S. Omorogiuwa, E. J. Omozusi
Abstract:
The monitoring of spectrum usage and signal identification, using cognitive radio, is done to identify frequencies that are vacant for reuse. It has been established that ‘internet of things’ device uses secondary frequency which is free, thereby facing the challenge of interference from other users, where some primary frequencies are not being utilised. The design was done by analysing a specific frequency spectrum, checking if all the frequency stations that range from 87.5-108 MHz are presently being used in Benin City, Edo State, Nigeria. From the results, it was noticed that by using Software Defined Radio/Simulink, we were able to identify vacant frequencies in the range of frequency under consideration. Also, we were able to use the significance of energy detection threshold to reuse this vacant frequency spectrum, when the cognitive radio displays a zero output (that is decision H0), meaning that the channel is unoccupied. Hence, the analysis was able to find the spectrum hole and identify how it can be reused.Keywords: spectrum, interference, telecommunication, cognitive radio, frequency
Procedia PDF Downloads 2251358 Design and Performance Analysis of Advanced B-Spline Algorithm for Image Resolution Enhancement
Authors: M. Z. Kurian, M. V. Chidananda Murthy, H. S. Guruprasad
Abstract:
An approach to super-resolve the low-resolution (LR) image is presented in this paper which is very useful in multimedia communication, medical image enhancement and satellite image enhancement to have a clear view of the information in the image. The proposed Advanced B-Spline method generates a high-resolution (HR) image from single LR image and tries to retain the higher frequency components such as edges in the image. This method uses B-Spline technique and Crispening. This work is evaluated qualitatively and quantitatively using Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR). The method is also suitable for real-time applications. Different combinations of decimation and super-resolution algorithms in the presence of different noise and noise factors are tested.Keywords: advanced b-spline, image super-resolution, mean square error (MSE), peak signal to noise ratio (PSNR), resolution down converter
Procedia PDF Downloads 3991357 A Cooperative Signaling Scheme for Global Navigation Satellite Systems
Authors: Keunhong Chae, Seokho Yoon
Abstract:
Recently, the global navigation satellite system (GNSS) such as Galileo and GPS is employing more satellites to provide a higher degree of accuracy for the location service, thus calling for a more efficient signaling scheme among the satellites used in the overall GNSS network. In that the network throughput is improved, the spatial diversity can be one of the efficient signaling schemes; however, it requires multiple antenna that could cause a significant increase in the complexity of the GNSS. Thus, a diversity scheme called the cooperative signaling was proposed, where the virtual multiple-input multiple-output (MIMO) signaling is realized with using only a single antenna in the transmit satellite of interest and with modeling the neighboring satellites as relay nodes. The main drawback of the cooperative signaling is that the relay nodes receive the transmitted signal at different time instants, i.e., they operate in an asynchronous way, and thus, the overall performance of the GNSS network could degrade severely. To tackle the problem, several modified cooperative signaling schemes were proposed; however, all of them are difficult to implement due to a signal decoding at the relay nodes. Although the implementation at the relay nodes could be simpler to some degree by employing the time-reversal and conjugation operations instead of the signal decoding, it would be more efficient if we could implement the operations of the relay nodes at the source node having more resources than the relay nodes. So, in this paper, we propose a novel cooperative signaling scheme, where the data signals are combined in a unique way at the source node, thus obviating the need of the complex operations such as signal decoding, time-reversal and conjugation at the relay nodes. The numerical results confirm that the proposed scheme provides the same performance in the cooperative diversity and the bit error rate (BER) as the conventional scheme, while reducing the complexity at the relay nodes significantly. Acknowledgment: This work was supported by the National GNSS Research Center program of Defense Acquisition Program Administration and Agency for Defense Development.Keywords: global navigation satellite network, cooperative signaling, data combining, nodes
Procedia PDF Downloads 2811356 A Comprehensive Analysis of the Phylogenetic Signal in Ramp Sequences in 211 Vertebrates
Authors: Lauren M. McKinnon, Justin B. Miller, Michael F. Whiting, John S. K. Kauwe, Perry G. Ridge
Abstract:
Background: Ramp sequences increase translational speed and accuracy when rare, slowly-translated codons are found at the beginnings of genes. Here, the results of the first analysis of ramp sequences in a phylogenetic construct are presented. Methods: Ramp sequences were compared from 211 vertebrates (110 Mammalian and 101 non-mammalian). The presence and absence of ramp sequences were analyzed as a binary character in a parsimony and maximum likelihood framework. Additionally, ramp sequences were mapped to the Open Tree of Life taxonomy to determine the number of parallelisms and reversals that occurred, and these results were compared to what would be expected due to random chance. Lastly, aligned nucleotides in ramp sequences were compared to the rest of the sequence in order to examine possible differences in phylogenetic signal between these regions of the gene. Results: Parsimony and maximum likelihood analyses of the presence/absence of ramp sequences recovered phylogenies that are highly congruent with established phylogenies. Additionally, the retention index of ramp sequences is significantly higher than would be expected due to random chance (p-value = 0). A chi-square analysis of completely orthologous ramp sequences resulted in a p-value of approximately zero as compared to random chance. Discussion: Ramp sequences recover comparable phylogenies as other phylogenomic methods. Although not all ramp sequences appear to have a phylogenetic signal, more ramp sequences track speciation than expected by random chance. Therefore, ramp sequences may be used in conjunction with other phylogenomic approaches.Keywords: codon usage bias, phylogenetics, phylogenomics, ramp sequence
Procedia PDF Downloads 1631355 Poincare Plot for Heart Rate Variability
Authors: Mazhar B. Tayel, Eslam I. AlSaba
Abstract:
The heart is the most important part in any body organisms. It effects and affected by any factor in the body. Therefore, it is a good detector of any matter in the body. When the heart signal is non-stationary signal, therefore, it should be study its variability. So, the Heart Rate Variability (HRV) has attracted considerable attention in psychology, medicine and have become important dependent measure in psychophysiology and behavioral medicine. Quantification and interpretation of heart rate variability. However, remain complex issues are fraught with pitfalls. This paper presents one of the non-linear techniques to analyze HRV. It discusses 'What Poincare plot is?', 'How it is work?', 'its usage benefits especially in HRV', 'the limitation of Poincare cause of standard deviation SD1, SD2', and 'How overcome this limitation by using complex correlation measure (CCM)'. The CCM is most sensitive to changes in temporal structure of the Poincaré plot as compared to SD1 and SD2.Keywords: heart rate variability, chaotic system, poincare, variance, standard deviation, complex correlation measure
Procedia PDF Downloads 4011354 Signal Transduction in a Myenteric Ganglion
Authors: I. M. Salama, R. N. Miftahof
Abstract:
A functional element of the myenteric nervous plexus is a morphologically distinct ganglion. Composed of sensory, inter- and motor neurons and arranged via synapses in neuronal circuits, their task is to decipher and integrate spike coded information within the plexus into regulatory output signals. The stability of signal processing in response to a wide range of internal/external perturbations depends on the plasticity of individual neurons. Any aberrations in this inherent property may lead to instability with the development of a dynamics chaos and can be manifested as pathological conditions, such as intestinal dysrhythmia, irritable bowel syndrome. The aim of this study is to investigate patterns of signal transduction within a two-neuronal chain - a ganglion - under normal physiological and structurally altered states. The ganglion contains the primary sensory (AH-type) and motor (S-type) neurons linked through a cholinergic dendro somatic synapse. The neurons have distinguished electrophysiological characteristics including levels of the resting and threshold membrane potentials and spiking activity. These are results of ionic channel dynamics namely: Na+, K+, Ca++- activated K+, Ca++ and Cl-. Mechanical stretches of various intensities and frequencies are applied at the receptive field of the AH-neuron generate a cascade of electrochemical events along the chain. At low frequencies, ν < 0.3 Hz, neurons demonstrate strong connectivity and coherent firing. The AH-neuron shows phasic bursting with spike frequency adaptation while the S-neuron responds with tonic bursts. At high frequency, ν > 0.5 Hz, the pattern of electrical activity changes to rebound and mixed mode bursting, respectively, indicating ganglionic loss of plasticity and adaptability. A simultaneous increase in neuronal conductivity for Na+, K+ and Ca++ ions results in tonic mixed spiking of the sensory neuron and class 2 excitability of the motor neuron. Although the signal transduction along the chain remains stable the synchrony in firing pattern is not maintained and the number of discharges of the S-type neuron is significantly reduced. A concomitant increase in Ca++- activated K+ and a decrease in K+ in conductivities re-establishes weak connectivity between the two neurons and converts their firing pattern to a bistable mode. It is thus demonstrated that neuronal plasticity and adaptability have a stabilizing effect on the dynamics of signal processing in the ganglion. Functional modulations of neuronal ion channel permeability, achieved in vivo and in vitro pharmacologically, can improve connectivity between neurons. These findings are consistent with experimental electrophysiological recordings from myenteric ganglia in intestinal dysrhythmia and suggest possible pathophysiological mechanisms.Keywords: neuronal chain, signal transduction, plasticity, stability
Procedia PDF Downloads 3921353 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients
Authors: Subha D. Puthankattil, Paul K. Joseph
Abstract:
Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.Keywords: EEG, depression, wavelet entropy, approximate entropy, relative wavelet energy, multiresolution decomposition
Procedia PDF Downloads 3331352 Coordinated Interference Canceling Algorithm for Uplink Massive Multiple Input Multiple Output Systems
Authors: Messaoud Eljamai, Sami Hidouri
Abstract:
Massive multiple-input multiple-output (MIMO) is an emerging technology for new cellular networks such as 5G systems. Its principle is to use many antennas per cell in order to maximize the network's spectral efficiency. Inter-cellular interference remains a fundamental problem. The use of massive MIMO will not derogate from the rule. It improves performances only when the number of antennas is significantly greater than the number of users. This, considerably, limits the networks spectral efficiency. In this paper, a coordinated detector for an uplink massive MIMO system is proposed in order to mitigate the inter-cellular interference. The proposed scheme combines the coordinated multipoint technique with an interference-cancelling algorithm. It requires the serving cell to send their received symbols, after processing, decision and error detection, to the interfered cells via a backhaul link. Each interfered cell is capable of eliminating intercellular interferences by generating and subtracting the user’s contribution from the received signal. The resulting signal is more reliable than the original received signal. This allows the uplink massive MIMO system to improve their performances dramatically. Simulation results show that the proposed detector improves system spectral efficiency compared to classical linear detectors.Keywords: massive MIMO, COMP, interference canceling algorithm, spectral efficiency
Procedia PDF Downloads 1481351 Enhancement of Performance Utilizing Low Complexity Switched Beam Antenna
Authors: P. Chaipanya, R. Keawchai, W. Sombatsanongkhun, S. Jantaramporn
Abstract:
To manage the demand of wireless communication that has been dramatically increased, switched beam antenna in smart antenna system is focused. Implementation of switched beam antennas at mobile terminals such as notebook or mobile handset is a preferable choice to increase the performance of the wireless communication systems. This paper proposes the low complexity switched beam antenna using single element of antenna which is suitable to implement at mobile terminal. Main beam direction is switched by changing the positions of short circuit on the radiating patch. There are four cases of switching that provide four different directions of main beam. Moreover, the performance in terms of Signal to Interference Ratio when utilizing the proposed antenna is compared with the one using omni-directional antenna to confirm the performance improvable.Keywords: switched beam, shorted circuit, single element, signal to interference ratio
Procedia PDF Downloads 1721350 Material Detection by Phase Shift Cavity Ring-Down Spectroscopy
Authors: Rana Muhammad Armaghan Ayaz, Yigit Uysallı, Nima Bavili, Berna Morova, Alper Kiraz
Abstract:
Traditional optical methods for example resonance wavelength shift and cavity ring-down spectroscopy used for material detection and sensing have disadvantages, for example, less resistance to laser noise, temperature fluctuations and extraction of the required information can be a difficult task like ring downtime in case of cavity ring-down spectroscopy. Phase shift cavity ring down spectroscopy is not only easy to use but is also capable of overcoming the said problems. This technique compares the phase difference between the signal coming out of the cavity with the reference signal. Detection of any material is made by the phase difference between them. By using this technique, air, water, and isopropyl alcohol can be recognized easily. This Methodology has far-reaching applications and can be used in air pollution detection, human breath analysis and many more.Keywords: materials, noise, phase shift, resonance wavelength, sensitivity, time domain approach
Procedia PDF Downloads 1501349 Secured Embedding of Patient’s Confidential Data in Electrocardiogram Using Chaotic Maps
Authors: Butta Singh
Abstract:
This paper presents a chaotic map based approach for secured embedding of patient’s confidential data in electrocardiogram (ECG) signal. The chaotic map generates predefined locations through the use of selective control parameters. The sample value difference method effectually hides the confidential data in ECG sample pairs at these predefined locations. Evaluation of proposed method on all 48 records of MIT-BIH arrhythmia ECG database demonstrates that the embedding does not alter the diagnostic features of cover ECG. The secret data imperceptibility in stego-ECG is evident through various statistical and clinical performance measures. Statistical metrics comprise of Percentage Root Mean Square Difference (PRD) and Peak Signal to Noise Ratio (PSNR). Further, a comparative analysis between proposed method and existing approaches was also performed. The results clearly demonstrated the superiority of proposed method.Keywords: chaotic maps, ECG steganography, data embedding, electrocardiogram
Procedia PDF Downloads 1981348 The Variable Sampling Interval Xbar Chart versus the Double Sampling Xbar Chart
Authors: Michael B. C. Khoo, J. L. Khoo, W. C. Yeong, W. L. Teoh
Abstract:
The Shewhart Xbar control chart is a useful process monitoring tool in manufacturing industries to detect the presence of assignable causes. However, it is insensitive in detecting small process shifts. To circumvent this problem, adaptive control charts are suggested. An adaptive chart enables at least one of the chart’s parameters to be adjusted to increase the chart’s sensitivity. Two common adaptive charts that exist in the literature are the double sampling (DS) Xbar and variable sampling interval (VSI) Xbar charts. This paper compares the performances of the DS and VSI Xbar charts, based on the average time to signal (ATS) criterion. The ATS profiles of the DS Xbar and VSI Xbar charts are obtained using the Mathematica and Statistical Analysis System (SAS) programs, respectively. The results show that the VSI Xbar chart is generally superior to the DS Xbar chart.Keywords: adaptive charts, average time to signal, double sampling, charts, variable sampling interval
Procedia PDF Downloads 2871347 Design and Implementation Wireless System by Using Microcontrollers.Application for Drive Acquisition System with Multiple Sensors
Authors: H. Fekhar
Abstract:
Design and implementation acquisition system using radio frequency (RF) ASK module and micro controllers PIC is proposed in this work. The paper includes hardware and software design. The design tools are divided into two units , namely the sender MCU and receiver.The system was designed to measure temperatures of two furnaces and pressure pneumatic process. The wireless transmitter unit use the 433.95 MHz band directly interfaced to micro controller PIC18F4620. The sender unit consists of temperatures-pressure sensors , conditioning circuits , keypad GLCD display and RF module.Signal conditioner converts the output of the sensors into an electric quantity suitable for operation of the display and recording system.The measurements circuits are connected directly to 10 bits multiplexed A/D converter.The graphic liquid crystal display (GLCD) is used . The receiver (RF) module connected to a second microcontroller ,receive the signal via RF receiver , decode the Address/data and reproduces the original data . The strategy adopted for establishing communication between the sender MCU and receiver uses the specific protocol “Header, Address and data”.The communication protocol dealing with transmission and reception have been successfully implemented . Some experimental results are provided to demonstrate the effectiveness of the proposed wireless system. This embedded system track temperatures – pressure signal reasonably well with a small error.Keywords: microcontrollers, sensors, graphic liquid cristal display, protocol, temperature, pressure
Procedia PDF Downloads 4611346 Optimizing of Machining Parameters of Plastic Material Using Taguchi Method
Authors: Jumazulhisham Abdul Shukor, Mohd. Sazali Said, Roshanizah Harun, Shuib Husin, Ahmad Razlee Ab Kadir
Abstract:
This paper applies Taguchi Optimization Method in determining the best machining parameters for pocket milling process on Polypropylene (PP) using CNC milling machine where the surface roughness is considered and the Carbide inserts cutting tool are used. Three machining parameters; speed, feed rate and depth of cut are investigated along three levels; low, medium and high of each parameter (Taguchi Orthogonal Arrays). The setting of machining parameters were determined by using Taguchi Method and the Signal-to-Noise (S/N) ratio are assessed to define the optimal levels and to predict the effect of surface roughness with assigned parameters based on L9. The final experimental outcomes are presented to prove the optimization parameters recommended by manufacturer are accurate.Keywords: inserts, milling process, signal-to-noise (S/N) ratio, surface roughness, Taguchi Optimization Method
Procedia PDF Downloads 6401345 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification
Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh
Abstract:
The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine
Procedia PDF Downloads 6391344 Numerical Investigation on Feasibility of Electromagnetic Wave as Water Hardness Detection in Water Cooling System Industrial
Authors: K. H. Teng, A. Shaw, M. Ateeq, A. Al-Shamma'a, S. Wylie, S. N. Kazi, B. T. Chew
Abstract:
Numerical and experimental of using novel electromagnetic wave technique to detect water hardness concentration has been presented in this paper. Simulation is powerful and efficient engineering methods which allow for a quick and accurate prediction of various engineering problems. The RF module is used in this research to predict and design electromagnetic wave propagation and resonance effect of a guided wave to detect water hardness concentration in term of frequency domain, eigenfrequency, and mode analysis. A cylindrical cavity resonator is simulated and designed in the electric field of fundamental mode (TM010). With the finite volume method, the three-dimensional governing equations were discretized. Boundary conditions for the simulation were the cavity materials like aluminum, two ports which include transmitting and receiving port, and assumption of vacuum inside the cavity. The design model was success to simulate a fundamental mode and extract S21 transmission signal within 2.1 – 2.8 GHz regions. The signal spectrum under effect of port selection technique and dielectric properties of different water concentration were studied. It is observed that the linear increment of magnitude in frequency domain when concentration increase. The numerical results were validated closely by the experimentally available data. Hence, conclusion for the available COMSOL simulation package is capable of providing acceptable data for microwave research.Keywords: electromagnetic wave technique, frequency domain, signal spectrum, water hardness concentration
Procedia PDF Downloads 2731343 Highly Linear and Low Noise AMR Sensor Using Closed Loop and Signal-Chopped Architecture
Authors: N. Hadjigeorgiou, A. C. Tsalikidou, E. Hristoforou, P. P. Sotiriadis
Abstract:
During the last few decades, the continuously increasing demand for accurate and reliable magnetic measurements has paved the way for the development of different types of magnetic sensing systems as well as different measurement techniques. Sensor sensitivity and linearity, signal-to-noise ratio, measurement range, cross-talk between sensors in multi-sensor applications are only some of the aspects that have been examined in the past. In this paper, a fully analog closed loop system in order to optimize the performance of AMR sensors has been developed. The operation of the proposed system has been tested using a Helmholtz coil calibration setup in order to control both the amplitude and direction of magnetic field in the vicinity of the AMR sensor. Experimental testing indicated that improved linearity of sensor response, as well as low noise levels can be achieved, when the system is employed.Keywords: AMR sensor, closed loop, memory effects, chopper, linearity improvement, sensitivity improvement, magnetic noise, electronic noise
Procedia PDF Downloads 3621342 Man Eaters and the Eaten Men: A Study of the Portrayal of Indians in the Writings of Jim Corbett
Authors: Iti Roychowdhury
Abstract:
India to the Colonial mind was a crazy quilt of multicoloured patchwork- a land of untold wealth and bejewelled maharajas, of snake charmers and tight rope walkers. India was also the land that offered unparalled game. Indeed Shikar (hunting) was de rigueur for the Raj experience. Tales of shootings and trophies were told and retold in clubs and in company. Foremost among the writers of this genre is Jim Corbett – tracker, hunter, writer, conservationist. Corbett is best known for the killing of man eating tigers and his best known books are Man eaters of Kumaon, The Temple Tiger, Man eating Leopard of Rudraprayag etc. The stories of Jim Corbett are stories of hunting, with no palpable design, no subtext of hegemony, or white man’s burden. The protagonists are the cats. Nevertheless from his writings emerge a vibrant picture of Indian villages, of men, women and children toiling for a livelihood under the constant shadow of the man eaters. Corbett shared a symbiotic relationship with the villagers. They needed him to kill the predators while Corbett needed the support of the locals as drum beaters, coolies and runners to accomplish his tasks. The aim of the present paper is to study the image of Indians in the writings of Jim Corbett and to examine them in the light of colonial perception of Indians.Keywords: hegemony, orientalism, Shikar literature, White Man's Burden
Procedia PDF Downloads 2771341 Multi-Objective Optimization of Intersections
Authors: Xiang Li, Jian-Qiao Sun
Abstract:
As the crucial component of city traffic network, intersections have significant impacts on urban traffic performance. Despite of the rapid development in transportation systems, increasing traffic volumes result in severe congestions especially at intersections in urban areas. Effective regulation of vehicle flows at intersections has always been an important issue in the traffic control system. This study presents a multi-objective optimization method at intersections with cellular automata to achieve better traffic performance. Vehicle conflicts and pedestrian interference are considered. Three categories of the traffic performance are studied including transportation efficiency, energy consumption and road safety. The left-turn signal type, signal timing and lane assignment are optimized for different traffic flows. The multi-objective optimization problem is solved with the cell mapping method. The optimization results show the conflicting nature of different traffic performance. The influence of different traffic variables on the intersection performance is investigated. It is observed that the proposed optimization method is effective in regulating the traffic at the intersection to meet multiple objectives. Transportation efficiency can be usually improved by the permissive left-turn signal, which sacrifices safety. Right-turn traffic suffers significantly when the right-turn lanes are shared with the through vehicles. The effect of vehicle flow on the intersection performance is significant. The display pattern of the optimization results can be changed remarkably by the traffic volume variation. Pedestrians have strong interference with the traffic system.Keywords: cellular automata, intersection, multi-objective optimization, traffic system
Procedia PDF Downloads 5811340 Power Integrity Analysis of Power Delivery System in High Speed Digital FPGA Board
Authors: Anil Kumar Pandey
Abstract:
Power plane noise is the most significant source of signal integrity (SI) issues in a high-speed digital design. In this paper, power integrity (PI) analysis of multiple power planes in a power delivery system of a 12-layer high-speed FPGA board is presented. All 10 power planes of HSD board are analyzed separately by using 3D Electromagnetic based PI solver, then the transient simulation is performed on combined PI data of all planes along with voltage regulator modules (VRMs) and 70 current drawing chips to get the board level power noise coupling on different high-speed signals. De-coupling capacitors are placed between power planes and ground to reduce power noise coupling with signals.Keywords: power integrity, power-aware signal integrity analysis, electromagnetic simulation, channel simulation
Procedia PDF Downloads 4371339 Fault Diagnosis in Induction Motors Using the Discrete Wavelet Transform
Authors: Khaled Yahia
Abstract:
This paper deals with the problem of stator faults diagnosis in induction motors. Using the discrete wavelet transform (DWT) for the current Park’s vector modulus (CPVM) analysis, the inter-turn short-circuit faults diagnosis can be achieved. This method is based on the decomposition of the CPVM signal, where wavelet approximation and detail coefficients of this signal have been extracted. The energy evaluation of a known bandwidth detail permits to define a fault severity factor (FSF). This method has been tested through the simulation of an induction motor using a mathematical model based on the winding-function approach. Simulation, as well as experimental, results show the effectiveness of the used method.Keywords: induction motors (IMs), inter-turn short-circuits diagnosis, discrete wavelet transform (DWT), current park’s vector modulus (CPVM)
Procedia PDF Downloads 5691338 Excitation Experiments of a Cone Loudspeaker and Vibration-Acoustic Analysis Using FEM
Authors: Y. Hu, X. Zhao, T. Yamaguchi, M. Sasajima, Y. Koike
Abstract:
To focus on the vibration mode of a cone loudspeaker, which acts as an electroacoustic transducer, excitation experiments were performed using two types of loudspeaker units: one employing an impulse hammer and the other a sweep signal. The on-axis sound pressure frequency properties of the loudspeaker were evaluated, and the characteristic properties of the loudspeakers were successfully determined in both excitation experiments. Moreover, under conditions identical to the experiment conditions, a coupled analysis of the vibration-acoustics of the cone loudspeaker was performed using an acoustic analysis software program that considers the impact of damping caused by air viscosity. The result of sound pressure frequency properties with the numerical analysis are the most closely match that measured in the excitation experiments over a wide range of frequency bands.Keywords: anechoic room, finite element method, impulse hammer, loudspeaker, reverberation room, sweep signal
Procedia PDF Downloads 4361337 System Identification of Timber Masonry Walls Using Shaking Table Test
Authors: Timir Baran Roy, Luis Guerreiro, Ashutosh Bagchi
Abstract:
Dynamic study is important in order to design, repair and rehabilitation of structures. It has played an important role in the behavior characterization of structures; such as bridges, dams, high-rise buildings etc. There had been a substantial development in this area over the last few decades, especially in the field of dynamic identification techniques of structural systems. Frequency Domain Decomposition (FDD) and Time Domain Decomposition are most commonly used methods to identify modal parameters; such as natural frequency, modal damping, and mode shape. The focus of the present research is to study the dynamic characteristics of typical timber masonry walls commonly used in Portugal. For that purpose, a multi-storey structural prototypes of such walls have been tested on a seismic shake table at the National Laboratory for Civil Engineering, Portugal (LNEC). Signal processing has been performed of the output response, which is collected from the shaking table experiment of the prototype using accelerometers. In the present work signal processing of the output response, based on the input response has been done in two ways: FDD and Stochastic Subspace Identification (SSI). In order to estimate the values of the modal parameters, algorithms for FDD are formulated, and parametric functions for the SSI are computed. Finally, estimated values from both the methods are compared to measure the accuracy of both the techniques.Keywords: frequency domain decomposition (fdd), modal parameters, signal processing, stochastic subspace identification (ssi), time domain decomposition
Procedia PDF Downloads 2661336 Electron Spin Resonance of Conduction and Spin Waves Dynamics Investigations in Bi-2223 Superconductor for Decoding Pairing Mechanism
Authors: S. N. Ekbote, G. K. Padam, Manju Arora
Abstract:
Electron spin resonance (ESR) spectroscopic investigations of (Bi, Pb)₂Sr₂Ca₂Cu₃O₁₀₋ₓ (Bi-2223) bulk samples were carried out in both the normal and superconducting states. A broad asymmetric resonance signal with side signals is obtained in the normal state, and all of them disappear in the superconducting state. The temperature and angular orientation effects on these signals suggest that the broad asymmetric signal arises from electron spin resonance of conduction electrons (CESR) and the side signals from exchange interactions as Platzman-Wolff type spin waves. The disappearance of CESR and spin waves in a superconducting state demonstrates the role of exchange interactions in Cooper pair formation.Keywords: Bi-2223 superconductor, CESR, ESR, exchange interactions, spin waves
Procedia PDF Downloads 1311335 Navigating Uncertainties in Project Control: A Predictive Tracking Framework
Authors: Byung Cheol Kim
Abstract:
This study explores a method for the signal-noise separation challenge in project control, focusing on the limitations of traditional deterministic approaches that use single-point performance metrics to predict project outcomes. We detail how traditional methods often overlook future uncertainties, resulting in tracking biases when reliance is placed solely on immediate data without adjustments for predictive accuracy. Our investigation led to the development of the Predictive Tracking Project Control (PTPC) framework, which incorporates network simulation and Bayesian control models to adapt more effectively to project dynamics. The PTPC introduces controlled disturbances to better identify and separate tracking biases from useful predictive signals. We will demonstrate the efficacy of the PTPC with examples, highlighting its potential to enhance real-time project monitoring and decision-making, marking a significant shift towards more accurate project management practices.Keywords: predictive tracking, project control, signal-noise separation, Bayesian inference
Procedia PDF Downloads 231334 Localization Mobile Beacon Using RSSI
Authors: Sallama Resen, Celal Öztürk
Abstract:
Distance estimation between tow nodes has wide scope of surveillance and tracking applications. This paper suggests a Bluetooth Low Energy (BLE) technology as a media for transceiver and receiver signal in small indoor areas. As an example, BLE communication technologies used in child safety domains. Local network is designed to detect child position in indoor school area consisting Mobile Beacons (MB), Access Points (AP) and Smart Phones (SP) where MBs stuck in children’s shoes as wearable sensors. This paper presents a technique that can detect mobile beacons’ position and help finding children’s location within dynamic environment. By means of bluetooth beacons that are attached to child’s shoes, the distance between the MB and teachers SP is estimated with an accuracy of less than one meter. From the simulation results, it is shown that high accuracy of position coordinates are achieved for multi-mobile beacons in different environments.Keywords: bluetooth low energy, child safety, mobile beacons, received signal strength
Procedia PDF Downloads 3491333 A Novel Method For Non-Invasive Diagnosis Of Hepatitis C Virus Using Electromagnetic Signal Detection: A Multicenter International Study
Authors: Gamal Shiha, Waleed Samir, Zahid Azam, Premashis Kar, Saeed Hamid, Shiv Sarin
Abstract:
A simple, rapid and non-invasive electromagnetic sensor (C-FAST device) was- patented; for diagnosis of HCV RNA. Aim: To test the validity of the device compared to standard HCV PCR. Subjects and Methods: The first phase was done as pilot in Egypt on 79 participants; the second phase was done in five centers: one center from Egypt, two centers from Pakistan and two centers from India (800, 92 and 113 subjects respectively). The third phase was done nationally as multicenter study on (1600) participants for ensuring its representativeness. Results: When compared to PCR technique, C-FAST device revealed sensitivity 95% to 100%, specificity 95.5% to 100%, PPV 89.5% to 100%, NPV 95% to 100% and positive likelihood ratios 21.8% to 38.5%. Conclusion: It is practical evidence that HCV nucleotides emit electromagnetic signals that can be used for its identification. As compared to PCR, C-FAST is an accurate, valid and non-invasive device.Keywords: C-FAST- a valid and reliable device, distant cellular interaction, electromagnetic signal detection, non-invasive diagnosis of HCV
Procedia PDF Downloads 432