Search results for: DCMD module
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 738

Search results for: DCMD module

378 A Cost Effective Solar Powered Water Pump Solution for Household Application in the Rural Area of Bangladesh

Authors: Khosru M. Salim, Md. Jasim Uddin, Mohammad Rejwan Uddin

Abstract:

Developing countries like Bangladesh has huge population lives in the rural areas out of electricity. They are using manually operated tube well for collecting underground water to meet their daily demand. A human labour is required to lift water from tube well. Sometimes, it is impossible for a elementary school going child to operate a tube well in the school. Solar powered water pump could be a sustainable water pumping solution in the rural area of Bangladesh. To minimize the cost, a 0.5 horse power solar water pump is designed considering the requirement of water for a typical house hold in this research. A prototype of the 0.5 hp capacity system is implemented and tested in the rooftop of the university lab to validate the performances. Based on the experimental data, the performance of the system is analyzed and presented in this paper.

Keywords: water pump, solar photovoltaic module, performance analysis, feasibility study

Procedia PDF Downloads 309
377 Voxel Models as Input for Heat Transfer Simulations with Siemens NX Based on X-Ray Microtomography Images of Random Fibre Reinforced Composites

Authors: Steven Latré, Frederik Desplentere, Ilya Straumit, Stepan V. Lomov

Abstract:

A method is proposed in order to create a three-dimensional finite element model representing fibre reinforced insulation materials for the simulation software Siemens NX. VoxTex software, a tool for quantification of µCT images of fibrous materials, is used for the transformation of microtomography images of random fibre reinforced composites into finite element models. An automatic tool was developed to execute the import of the models to the thermal solver module of Siemens NX. The paper describes the numerical tools used for the image quantification and the transformation and illustrates them on several thermal simulations of fibre reinforced insulation blankets filled with low thermal conductive fillers. The calculation of thermal conductivity is validated by comparison with the experimental data.

Keywords: analysis, modelling, thermal, voxel

Procedia PDF Downloads 287
376 Dual Ion-Crosslinking Human Keratin Based Bioink for 3D Bioprinting

Authors: Jae Seo Lee, Il Keun Kwon

Abstract:

In the last decades, keratin-based on natural extracts has considerably increased interest as a skin tissue regeneration. However, most parts of keratin had a limitation to 3D scaffolds due to low biological affinity and general low mechanical properties. To create a 3D structure, a facile bioink was designed with a photocurable crosslinking stage system using natural polymer-based human keratin. Keratin-based bioink enables the crosslinking more quickly through two types of photo and ion crosslinking for module engineering assembly. Rheological results showed that keratin-based bioink with high concentration possessed superior mechanical rigidity for 3D bioprinting. Different 3D geometrically constructs were successfully fabricated with optimal bioprinting parameters through the 3D printer with X-Y-Z controlled UV laser system. The presented study has offered a distinct advantage for 3D printing of keratin-based hydrogel into 3D complex-shaped biomimetic constructs. Thus, keratin-based bioink opens up new avenues in bioprinting to directly substitute tissue or organs.

Keywords: human keratin, hydrogel, ion-crosslinking, 3D bioprinting

Procedia PDF Downloads 124
375 A Smart Visitors’ Notification System with Automatic Secure Door Lock Using Mobile Communication Technology

Authors: Rabail Shafique Satti, Sidra Ejaz, Madiha Arshad, Marwa Khalid, Sadia Majeed

Abstract:

The paper presents the development of an automated security system to automate the entry of visitors, providing more flexibility of managing their record and securing homes or workplaces. Face recognition is part of this system to authenticate the visitors. A cost effective and SMS based door security module has been developed and integrated with the GSM network and made part of this system to allow communication between system and owner. This system functions in real time as when the visitor’s arrived it will detect and recognizes his face and on the result of face recognition process it will open the door for authorized visitors or notifies and allows the owner’s to take further action in case of unauthorized visitor. The proposed system is developed and it is successfully ensuring security, managing records and operating gate without physical interaction of owner.

Keywords: SMS, e-mail, GSM modem, authenticate, face recognition, authorized

Procedia PDF Downloads 789
374 CO2 Utilization by Reverse Water-Shift and Fischer-Tropsch Synthesis for Production of Heavier Fraction Hydrocarbons in a Container-Sized Mobile Unit

Authors: Francisco Vidal Vázquez, Pekka Simell, Christian Frilund, Matti Reinikainen, Ilkka Hiltunen, Tim Böltken, Benjamin Andris, Paolo Piermartini

Abstract:

Carbon capture and utilization (CCU) are one of the key topics in mitigation of CO2 emissions. There are many different technologies that are applied for the production of diverse chemicals from CO2 such as synthetic natural gas, Fischer-Tropsch products, methanol and polymers. Power-to-Gas and Power-to-Liquids concepts arise as a synergetic solution for storing energy and producing value added products from the intermittent renewable energy sources and CCU. VTT is a research and technology development company having energy in transition as one of the key focus areas. VTT has extensive experience in piloting and upscaling of new energy and chemical processes. Recently, VTT has developed and commissioned a Mobile Synthesis Unit (MOBSU) in close collaboration with INERATEC, a spin-off company of Karlsruhe Institute of Technology (KIT, Germany). The MOBSU is a multipurpose synthesis unit for CO2 upgrading to energy carriers and chemicals, which can be transported on-site where CO2 emission and renewable energy are available. The MOBSU is initially used for production of fuel compounds and chemical intermediates by combination of two consecutive processes: reverse Water-Gas Shift (rWGS) and Fischer-Tropsch synthesis (FT). First, CO2 is converted to CO by high-pressure rWGS and then, the CO and H2 rich effluent is used as feed for FT using an intensified reactor technology developed and designed by INERATEC. Chemical equilibrium of rWGS reaction is not affected by pressure. Nevertheless, compression would be required in between rWGS and FT in the case when rWGS is operated at atmospheric pressure. This would also require cooling of rWGS effluent, water removal and reheating. For that reason, rWGS is operated using precious metal catalyst in the MOBSU at similar pressure as FT to simplify the process. However, operating rWGS at high pressures has also some disadvantages such as methane and carbon formation, and more demanding specifications for materials. The main parts of FT module are an intensified reactor, a hot trap to condense the FT wax products, and a cold trap to condense the FT liquid products. The FT synthesis is performed using cobalt catalyst in a novel compact reactor technology with integrated highly-efficient water evaporation cooling cycle. The MOBSU started operation in November 2016. First, the FT module is tested using as feedstock H2 and CO. Subsequently, rWGS and FT modules are operated together using CO2 and H2 as feedstock of ca. 5 Nm3/hr total flowrate. On spring 2017, The MOBSU unit will be integrated together with a direct air capture (DAC) of CO2 unit, and a PEM electrolyser unit at Lappeenranta University of Technology (LUT) premises for demonstration of the SoletAir concept. This would be the first time when synthetic fuels are produced by combination of DAC unit and electrolyser unit which uses solar power for H2 production.

Keywords: CO2 utilization, demonstration, Fischer-Tropsch synthesis, intensified reactors, reverse water-gas shift

Procedia PDF Downloads 290
373 Effective Cooling of Photovoltaic Solar Cells by Inserting Triangular Ribs: A Numerical Study

Authors: S. Saadi, S. Benissaad, S. Poncet, Y. Kabar

Abstract:

In photovoltaic (PV) cells, most of the absorbed solar radiation cannot be converted into electricity. A large amount of solar radiation is converted to heat, which should be dissipated by any cooling techniques. In the present study, the cooling is achieved by inserting triangular ribs in the duct. A comprehensive two-dimensional thermo-fluid model for the effective cooling of PV cells has been developed. It has been first carefully validated against experimental and numerical results available in the literature. A parametric analysis was then carried out about the influence of the number and size of the ribs, wind speed, solar irradiance and inlet fluid velocity on the average solar cell and outlet air temperatures as well as the thermal and electrical efficiencies of the module. Results indicated that the use of triangular ribbed channels is a very effective cooling technique, which significantly reduces the average temperature of the PV cell, especially when increasing the number of ribs.

Keywords: effective cooling, numerical modeling, photovoltaic cell, triangular ribs

Procedia PDF Downloads 177
372 A Smart Electric Power Wheelchair Controlled by Head Motion

Authors: Dechrit Maneetham

Abstract:

The aim of this paper was to design a smart electric power wheelchair (SEPW) with a novel control system for quadriplegics with head and neck mobility. Head movement has been used as a control interface for people with motor impairments in a range of applications. Acquiring measurements from the module is simplified through a synchronous a motor. Axis measures the two directions namely X ,Y and Z. The model of a DC motor is considered as a speed control by selection of a PID parameters using genetic algorithm. An experimental set-up constructed, which consists of micro controller Arduino ATmega32u4 as controllers, a DC motor driven SEPW and feedback elements. And this paper is tuning methods of parameter for a pulse width modulation (PWM) control system. A speed controller has been designed successfully for closed loop of the DC motor so that the motor runs very closed to the reference speed and angle. SEPW controller can be used to ensure the person’s head is attending the direction of travel asserted by a conventional, direction and speed control.

Keywords: wheelchair, quadriplegia, rehabilitation, medical devices, speed control

Procedia PDF Downloads 404
371 Improved Soil and Snow Treatment with the Rapid Update Cycle Land-Surface Model for Regional and Global Weather Predictions

Authors: Tatiana G. Smirnova, Stan G. Benjamin

Abstract:

Rapid Update Cycle (RUC) land surface model (LSM) was a land-surface component in several generations of operational weather prediction models at the National Center for Environment Prediction (NCEP) at the National Oceanic and Atmospheric Administration (NOAA). It was designed for short-range weather predictions with an emphasis on severe weather and originally was intentionally simple to avoid uncertainties from poorly known parameters. Nevertheless, the RUC LSM, when coupled with the hourly-assimilating atmospheric model, can produce a realistic evolution of time-varying soil moisture and temperature, as well as the evolution of snow cover on the ground surface. This result is possible only if the soil/vegetation/snow component of the coupled weather prediction model has sufficient skill to avoid long-term drift. RUC LSM was first implemented in the operational NCEP Rapid Update Cycle (RUC) weather model in 1998 and later in the Weather Research Forecasting Model (WRF)-based Rapid Refresh (RAP) and High-resolution Rapid Refresh (HRRR). Being available to the international WRF community, it was implemented in operational weather models in Austria, New Zealand, and Switzerland. Based on the feedback from the US weather service offices and the international WRF community and also based on our own validation, RUC LSM has matured over the years. Also, a sea-ice module was added to RUC LSM for surface predictions over the Arctic sea-ice. Other modifications include refinements to the snow model and a more accurate specification of albedo, roughness length, and other surface properties. At present, RUC LSM is being tested in the regional application of the Unified Forecast System (UFS). The next generation UFS-based regional Rapid Refresh FV3 Standalone (RRFS) model will replace operational RAP and HRRR at NCEP. Over time, RUC LSM participated in several international model intercomparison projects to verify its skill using observed atmospheric forcing. The ESM-SnowMIP was the last of these experiments focused on the verification of snow models for open and forested regions. The simulations were performed for ten sites located in different climatic zones of the world forced with observed atmospheric conditions. While most of the 26 participating models have more sophisticated snow parameterizations than in RUC, RUC LSM got a high ranking in simulations of both snow water equivalent and surface temperature. However, ESM-SnowMIP experiment also revealed some issues in the RUC snow model, which will be addressed in this paper. One of them is the treatment of grid cells partially covered with snow. RUC snow module computes energy and moisture budgets of snow-covered and snow-free areas separately by aggregating the solutions at the end of each time step. Such treatment elevates the importance of computing in the model snow cover fraction. Improvements to the original simplistic threshold-based approach have been implemented and tested both offline and in the coupled weather model. The detailed description of changes to the snow cover fraction and other modifications to RUC soil and snow parameterizations will be described in this paper.

Keywords: land-surface models, weather prediction, hydrology, boundary-layer processes

Procedia PDF Downloads 88
370 The Energy Efficient Water Reuse by Combination of Nano-Filtration and Capacitive Deionization Processes

Authors: Youngmin Kim, Jae-Hwan Ahn, Seog-Ku Kim, Hye-Cheol Oh, Bokjin Lee, Hee-Jun Kang

Abstract:

The high energy consuming processes such as advanced oxidation and reverse osmosis are used as a reuse process. This study aims at developing an energy efficient reuse process by combination of nanofiltration (NF) and capacitive deionization processes (CDI) processes. Lab scale experiments were conducted by using effluents from a wastewater treatment plant located at Koyang city in Korea. Commercial NF membrane (NE4040-70, Toray Ltd.) and CDI module (E40, Siontech INC.) were tested in series. The pollutant removal efficiencies were evaluated on the basis of Korean water quality criteria for water reuse. In addition, the energy consumptions were also calculated. As a result, the hybrid process showed lower energy consumption than conventional reverse osmosis process even though its effluent did meet the Korean standard. Consequently, this study suggests that the hybrid process is feasible for the energy efficient water reuse.

Keywords: capacitive deionization, energy efficient process, nanofiltration, water reuse

Procedia PDF Downloads 182
369 Decision-Making Tool for Planning the Construction of Infrastructure Projects

Authors: Rolla Monib, Chris I. Goodier, Alistair Gibbs

Abstract:

The aim of this paper is to investigate the key drivers in planning the construction phase for infrastructure projects to reduce project delays. To achieve this aim, the research conducted three case studies using semi-structured and unstructured interviews (n=36). The results conclude that a lack of modularisation awareness is among the key factors attributed to project delays. The current emotive and ill-informed approach to decision-making, coupled with the lack of knowledge regarding appropriate construction method selection, prevents the potential benefits of modularisation being fully realised. To assist with decision-making for the best construction method, the research presents project management tools to help decision makers to choose the most appropriate construction approach through optimising the use of modularisation in EC. A decision-making checklist and diagram are presented in this paper. These checklist tools and diagrams assist the project team in determining the best construction method, taking into consideration the module type.

Keywords: infrastructure, modularization, decision support, decision-making

Procedia PDF Downloads 60
368 Pyroelectric Effect on Thermoelectricity of AlInN/GaN Heterostructures

Authors: B. K. Sahoo

Abstract:

Superior thermoelectric (TE) efficiency of AlₓIn₁₋ₓN /GaN heterostructure (HS) requires a minimum value of thermal conductivity (k). A smaller k would lead to even further increase of TE figure of merit (ZT). The built-in polarization (BIP) electric field of AlₓIn₁₋ₓN /GaN HS enhances S, and σ of the HS, however, the effect of BIP field on k of the HS has not been explored. Study of thermal conductivities (k: without BIP and kp: including BIP) vs temperature predicts pyroelectric behavior of HS. Both k and kp show crossover at a temperature Tp. The result shows that below Tp, kp < k due to negative thermal expansion coefficient (TEC). However, above Tp, kp > k. Above Tp, piezoelectric polarization dominates over spontaneous polarization due to positive TEC. This generates more lattice mismatch resulting in the significant contribution of BIP field to thermal conductivity. Thus, Tp can be considered as primary pyroelectric transition temperature of the material as above Tp thermal expansion takes place which is the reason for the secondary pyroelectric effect. It is found that below Tp, kp is decreased; thus enhancing TE efficiency. For x=0.1, 0.2 and 0.3; Tp are close to 200, 210 and 260 K, respectively. Thus, k of the HS can be modified as per requirement by tailoring the Al composition; making it suitable simultaneously for the design of high-temperature pyroelectric sensors and TE module for maximum power production.

Keywords: AlₓIn₁₋ₓN/GaN heterostructure, built in polarization, pyroelectric behavior, thermoelectric efficiency

Procedia PDF Downloads 121
367 Geographic Information System Applications in Prioritizing Karlahi Forest Reserve Area for Conservation

Authors: Samuel Hyellamada Jerry

Abstract:

This study focused on assessing conservation priorities within the Karlahi Forest Reserve of Fufore Local Government in Adamawa State. The main objective was to identify specific areas within the forest reserve that require immediate conservation attention. The research employed remote sensing and GIS techniques to achieve this goal. By overlaying the IDRIS Silva module results, a spatial distribution map was generated, highlighting the cumulative priority areas within and outside the forest. Among the total vegetated area of 26.38 km² in the Karlahi Forest Reserve, the analysis revealed that 16.16 km² were classified as high-priority conservation zones. Additionally, 4.59 km² and 5.63 km² were identified as medium and low-priority areas, respectively. In light of these findings, it is recommended that conservation efforts incorporate detailed land cover information and regular assessments of species diversity. Furthermore, strict adherence to national and state policies regarding forest reserves and parks is crucial for effective conservation management.

Keywords: priority, Karlahi, forest, reserve, IDRISI Silva, species diversity

Procedia PDF Downloads 151
366 Proof of Concept Design and Development of a Computer-Aided Medical Evaluation of Symptoms Web App: An Expert System for Medical Diagnosis in General Practice

Authors: Ananda Perera

Abstract:

Computer-Assisted Medical Evaluation of Symptoms (CAMEOS) is a medical expert system designed to help General Practices (GPs) make an accurate diagnosis. CAMEOS comprises a knowledge base, user input, inference engine, reasoning module, and output statement. The knowledge base was developed by the author. User input is an Html file. The physician user collects data in the consultation. Data is sent to the inference engine at servers. CAMEOS uses set theory to simulate diagnostic reasoning. The program output is a list of differential diagnoses, the most probable diagnosis, and the diagnostic reasoning.

Keywords: CDSS, computerized decision support systems, expert systems, general practice, diagnosis, diagnostic systems, primary care diagnostic system, artificial intelligence in medicine

Procedia PDF Downloads 155
365 The Role of Entrepreneurship Education in Enhancing Self-Employment: Students' Perspective

Authors: Stanley Fore, Gaetan Ngabonziza

Abstract:

In spite of the need for skilled labour in South Africa, tertiary education graduates are increasingly faced with unemployment, which poses a serious obstacle to the economic growth of the country. This paper is an outcome of the study that investigated students’ perceptions on the role of entrepreneurship education in enhancing graduates’ self-employment. The study was descriptive in nature and used a survey questionnaire to answer questions pertaining to the extent to which entrepreneurship education is important in enhancing self-employment endeavours. Collected data were analysed using of the statistical software for social science (SPSS) for descriptive statistics in the form of tables and charts. The study found that entrepreneurship education is critical in providing knowledge and skills that are required to succeed in self-employment. As one module of entrepreneurship does not ensure self-employment orientation or more positive expectations about entrepreneurial abilities and careers, this study suggests that students, irrespective of their field of study, should be given entrepreneurship modules in every academic year. This will help in reminding them that their success does not solely rely on their ability to find a better-paying employment but also on their ability to employ themselves.

Keywords: entrepreneurship, education, self-employment, students

Procedia PDF Downloads 254
364 Vascular Targeted Photodynamic Therapy Monitored by Real-Time Laser Speckle Imaging

Authors: Ruth Goldschmidt, Vyacheslav Kalchenko, Lilah Agemy, Rachel Elmoalem, Avigdor Scherz

Abstract:

Vascular Targeted Photodynamic therapy (VTP) is a new modality for selective cancer treatment that leads to the complete tumor ablation. A photosensitizer, a bacteriochlorophyll derivative in our case, is first administered to the patient and followed by the illumination of the tumor area, by a near-IR laser for its photoactivation. The photoactivated drug releases reactive oxygen species (ROS) in the circulation, which reacts with blood cells and the endothelium leading to the occlusion of the blood vasculature. If the blood vessels are only partially closed, the tumor may recover, and cancer cells could survive. On the other hand, excessive treatment may lead to toxicity of healthy tissues nearby. Simultaneous VTP monitoring and image processing independent of the photoexcitation laser has not yet been reported, to our knowledge. Here we present a method for blood flow monitoring, using a real-time laser speckle imaging (RTLSI) in the tumor during VTP. We have synthesized over the years a library of bacteriochlorophyll derivatives, among them WST11 and STL-6014. Both are water soluble derivatives that are retained in the blood vasculature through their partial binding to HSA. WST11 has been approved in Mexico for VTP treatment of prostate cancer at a certain drug dose, and time/intensity of illumination. Application to other bacteriochlorophyll derivatives or other cancers may require different treatment parameters (such as light/drug administration). VTP parameters for STL-6014 are still under study. This new derivative mainly differs from WST11 by its lack of the central Palladium, and its conjugation to an Arg-Gly-Asp (RGD) sequence. RGD is a tumor-specific ligand that is used for targeting the necrotic tumor domains through its affinity to αVβ3 integrin receptors. This enables the study of cell-targeted VTP. We developed a special RTLSI module, based on Labview software environment for data processing. The new module enables to acquire raw laser speckle images and calculate the values of the laser temporal statistics of time-integrated speckles in real time, without additional off-line processing. Using RTLSI, we could monitor the tumor’s blood flow following VTP in a CT26 colon carcinoma ear model. VTP with WST11 induced an immediate slow down of the blood flow within the tumor and a complete final flow arrest, after some sporadic reperfusions. If the irradiation continued further, the blood flow stopped also in the blood vessels of the surrounding healthy tissue. This emphasizes the significance of light dose control. Using our RTLSI system, we could prevent any additional healthy tissue damage by controlling the illumination time and restrict blood flow arrest within the tumor only. In addition, we found that VTP with STL-6014 was the most effective when the photoactivation was conducted 4h post-injection, in terms of tumor ablation success in-vivo and blood vessel flow arrest. In conclusion, RTSLI application should allow to optimize VTP efficacy vs. toxicity in both the preclinical and clinical arenas.

Keywords: blood vessel occlusion, cancer treatment, photodynamic therapy, real time imaging

Procedia PDF Downloads 223
363 An Industrial Wastewater Management Using Cloud Based IoT System

Authors: Kaarthik K., Harshini S., Karthika M., Kripanandhini T.

Abstract:

Water is an essential part of living organisms. Major water pollution is caused due to contamination of industrial wastewater in the river. The most important step in bringing wastewater contaminants down to levels that are safe for nature is wastewater treatment. The contamination of river water harms both humans who consume it and the aquatic life that lives there. We introduce a new cloud-based industrial IoT paradigm in this work for real-time control and monitoring of wastewater. The proposed system prevents prohibited entry of industrial wastewater into the plant by monitoring temperature, hydrogen power (pH), CO₂ and turbidity factors from the wastewater input that the wastewater treatment facility will process. Real-time sensor values are collected and uploaded to the cloud by the system using an IoT Wi-Fi Module. By doing so, we can prevent the contamination of industrial wastewater entering the river earlier, and the necessary actions will be taken by the users. The proposed system's results are 90% efficient, preventing water pollution due to industry and protecting human lives.

Keywords: sensors, pH, CO₂, temperature, turbidity

Procedia PDF Downloads 110
362 A Virtual Reality Cybersecurity Training Knowledge-Based Ontology

Authors: Shaila Rana, Wasim Alhamdani

Abstract:

Effective cybersecurity learning relies on an engaging, interactive, and entertaining activity that fosters positive learning outcomes. VR cybersecurity training may promote these aforementioned variables. However, a methodological approach and framework have not yet been created to allow trainers and educators to employ VR cybersecurity training methods to promote positive learning outcomes to the author’s best knowledge. Thus, this paper aims to create an approach that cybersecurity trainers can follow to create a VR cybersecurity training module. This methodology utilizes concepts from other cybersecurity training frameworks, such as NICE and CyTrONE. Other cybersecurity training frameworks do not incorporate the use of VR. VR training proposes unique challenges that cannot be addressed in current cybersecurity training frameworks. Subsequently, this ontology utilizes concepts unique to developing VR training to create a relevant methodology for creating VR cybersecurity training modules. The outcome of this research is to create a methodology that is relevant and useful for designing VR cybersecurity training modules.

Keywords: virtual reality cybersecurity training, VR cybersecurity training, traditional cybersecurity training, ontology

Procedia PDF Downloads 289
361 Design of a Telemetry, Tracking, and Command Radio-Frequency Receiver for Small Satellites Based on Commercial Off-The-Shelf Components

Authors: A. Lovascio, A. D’Orazio, V. Centonze

Abstract:

From several years till now the aerospace industry is developing more and more small satellites for Low-Earth Orbit (LEO) missions. Such satellites have a low cost of making and launching since they have a size and weight smaller than other types of satellites. However, because of size limitations, small satellites need integrated electronic equipment based on digital logic. Moreover, the LEOs require telecommunication modules with high throughput to transmit to earth a big amount of data in a short time. In order to meet such requirements, in this paper we propose a Telemetry, Tracking & Command module optimized through the use of the Commercial Off-The-Shelf components. The proposed approach exploits the major flexibility offered by these components in reducing costs and optimizing the performance. The method has been applied in detail for the design of the front-end receiver, which has a low noise figure (1.5 dB) and DC power consumption (smaller than 2 W). Such a performance is particularly attractive since it allows fulfilling the energy budget stringent constraints that are typical for LEO small platforms.

Keywords: COTS, LEO, small-satellite, TT&C

Procedia PDF Downloads 131
360 Fine Grained Action Recognition of Skateboarding Tricks

Authors: Frederik Calsius, Mirela Popa, Alexia Briassouli

Abstract:

In the field of machine learning, it is common practice to use benchmark datasets to prove the working of a method. The domain of action recognition in videos often uses datasets like Kinet-ics, Something-Something, UCF-101 and HMDB-51 to report results. Considering the properties of the datasets, there are no datasets that focus solely on very short clips (2 to 3 seconds), and on highly-similar fine-grained actions within one specific domain. This paper researches how current state-of-the-art action recognition methods perform on a dataset that consists of highly similar, fine-grained actions. To do so, a dataset of skateboarding tricks was created. The performed analysis highlights both benefits and limitations of state-of-the-art methods, while proposing future research directions in the activity recognition domain. The conducted research shows that the best results are obtained by fusing RGB data with OpenPose data for the Temporal Shift Module.

Keywords: activity recognition, fused deep representations, fine-grained dataset, temporal modeling

Procedia PDF Downloads 231
359 Analysis of Lightweight Register Hardware Threat

Authors: Yang Luo, Beibei Wang

Abstract:

In this paper, we present a design methodology of lightweight register transfer level (RTL) hardware threat implemented based on a MAX II FPGA platform. The dynamic power consumed by the toggling of the various bit of registers as well as the dynamic power consumed per unit of logic circuits were analyzed. The hardware threat was designed taking advantage of the differences in dynamic power consumed per unit of logic circuits to hide the transfer information. The experiment result shows that the register hardware threat was successfully implemented by using different dynamic power consumed per unit of logic circuits to hide the key information of DES encryption module. It needs more than 100000 sample curves to reduce the background noise by comparing the sample space when it completely meets the time alignment requirement. In additional, an external trigger signal is playing a very important role to detect the hardware threat in this experiment.

Keywords: side-channel analysis, hardware Trojan, register transfer level, dynamic power

Procedia PDF Downloads 279
358 Determination of Thermal Properties of Crosslinked EVA in Outdoor Exposure by DSC, TSC and DMTA Methods

Authors: Kamel Agroui, George Collins, Rydha Yaiche

Abstract:

The objective of this study is to better understand the thermal characteristics and molecular behaviour of cured EVA before and after outdoor exposure. Thermal analysis methods as DSC, TSC and DMTA studies were conducted on EVA material. DSC experiments on EVA show a glass transition at about -33.1° C which is characteristic of crystalline phase and an endothermic peak at temperature of 55 °C characteristic of amorphous phase. The magnitude of the integrated temperature DSC peak for EVA is 14.4 J/g. The basic results by TSC technique is that there are two relaxations that are reproducibly observed in cured EVA encapsulant material. At temperature polarization 85°C, a low temperature relaxation occurs at –24.4°C and a high temperature relaxation occurs at +30.4ºC. DMTA results exhibit two tan peaks located at -14.9°C and +66.6°C. After outdoor exposure cured EVA by DSC analysis revealed two endothermic peaks due to post crystallization phenomenon and TSC suggests that prolonged exposure selectively effects the poly(vinyl acetate)-rich phase, with much less impact on the polyethylene-rich phase.

Keywords: EVA, encapsulation process, PV module, thermal analysis, quality control

Procedia PDF Downloads 55
357 Design and Implementation of Neural Network Based Controller for Self-Driven Vehicle

Authors: Hassam Muazzam

Abstract:

This paper devises an autonomous self-driven vehicle that is capable of taking a disabled person to his/her desired location using three different power sources (gasoline, solar, electric) without any control from the user, avoiding the obstacles in the way. The GPS co-ordinates of the desired location are sent to the main processing board via a GSM module. After the GPS co-ordinates are sent, the path to be followed by the vehicle is devised by Pythagoras theorem. The distance and angle between the present location and the desired location is calculated and then the vehicle starts moving in the desired direction. Meanwhile real-time data from ultrasonic sensors is fed to the board for obstacle avoidance mechanism. Ultrasonic sensors are used to quantify the distance of the vehicle from the object. The distance and position of the object is then used to make decisions regarding the direction of vehicle in order to avoid the obstacles using artificial neural network which is implemented using ATmega1280. Also the vehicle provides the feedback location at remote location.

Keywords: autonomous self-driven vehicle, obstacle avoidance, desired location, pythagoras theorem, neural network, remote location

Procedia PDF Downloads 409
356 Aspen Plus Simulation of Saponification of Ethyl Acetate in the Presence of Sodium Hydroxide in a Plug Flow Reactor

Authors: U. P. L. Wijayarathne, K. C. Wasalathilake

Abstract:

This work presents the modelling and simulation of saponification of ethyl acetate in the presence of sodium hydroxide in a plug flow reactor using Aspen Plus simulation software. Plug flow reactors are widely used in the industry due to the non-mixing property. The use of plug flow reactors becomes significant when there is a need for continuous large scale reaction or fast reaction. Plug flow reactors have a high volumetric unit conversion as the occurrence for side reactions is minimum. In this research Aspen Plus V8.0 has been successfully used to simulate the plug flow reactor. In order to simulate the process as accurately as possible HYSYS Peng-Robinson EOS package was used as the property method. The results obtained from the simulation were verified by the experiment carried out in the EDIBON plug flow reactor module. The correlation coefficient (r2) was 0.98 and it proved that simulation results satisfactorily fit for the experimental model. The developed model can be used as a guide for understanding the reaction kinetics of a plug flow reactor.

Keywords: aspen plus, modelling, plug flow reactor, simulation

Procedia PDF Downloads 602
355 Implementation of MPPT Algorithm for Grid Connected PV Module with IC and P&O Method

Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati

Abstract:

In recent years, the use of renewable energy resources instead of pollutant fossil fuels and other forms has increased. Photovoltaic generation is becoming increasingly important as a renewable resource since it does not cause in fuel costs, pollution, maintenance, and emitting noise compared with other alternatives used in power applications. In this paper, Perturb and Observe and Incremental Conductance methods are used to improve energy conversion efficiency under different environmental conditions. PI controllers are used to control easily DC-link voltage, active and reactive currents. The whole system is simulated under standard climatic conditions (1000 W/m2, 250C) in MATLAB and the irradiance is varied from 1000 W/m2 to 300 W/m2. The use of PI controller makes it easy to directly control the power of the grid connected PV system. Finally the validity of the system will be verified through the simulations in MATLAB/Simulink environment.

Keywords: incremental conductance algorithm, modeling of PV panel, perturb and observe algorithm, photovoltaic system and simulation results

Procedia PDF Downloads 509
354 The Exact Specification for Consumption of Blood-Pressure Regulating Drugs with a Numerical Model of Pulsatile Micropolar Fluid Flow in Elastic Vessel

Authors: Soroush Maddah, Houra Asgarian, Mahdi Navidbakhsh

Abstract:

In the present paper, the problem of pulsatile micropolar blood flow through an elastic artery has been studied. An arbitrary Lagrangian-Eulerian (ALE) formulation for the governing equations has been produced to model the fully-coupled fluid-structure interaction (FSI) and has been solved numerically using finite difference scheme by exploiting a mesh generation technique which leads to a uniformly spaced grid in the computational plane. Effect of the variations of cardiac output and wall artery module of elasticity on blood pressure with blood-pressure regulating drugs like Atenolol has been determined. Also, a numerical model has been produced to define precisely the effects of various dosages of a drug on blood flow in arteries without the numerous experiments that have many mistakes and expenses.

Keywords: arbitrary Lagrangian-Eulerian, Atenolol, fluid structure interaction, micropolar fluid, pulsatile blood flow

Procedia PDF Downloads 421
353 Development of Ceramic Spheres Buoyancy Modules for Deep-Sea Oil Exploration

Authors: G. Blugan, B. Jiang, J. Thornberry, P. Sturzenegger, U. Gonzenbach, M. Misson, D. Cartlidge, R. Stenerud, J. Kuebler

Abstract:

Low-cost ceramic spheres were developed and manufactured from the engineering ceramic aluminium oxide. Hollow spheres of 50 mm diameter with a wall thickness of 0.5-1.0 mm were produced via an adapted slip casting technique. It was possible to produce the spheres with good repeatability and with no defects or failures in the spheres due to the manufacturing process. The spheres were developed specifically for use in buoyancy devices for deep-sea exploration conditions at depths of 3000 m below sea level. The spheres with a 1.0 mm wall thickness exhibit a buoyancy of over 54% while the spheres with a 0.5 mm wall thickness exhibit a buoyancy of over 73%. The mechanical performance of the spheres was confirmed by performing a hydraulic burst pressure test on individual spheres. With a safety factor of 3, all spheres with 1.0 mm wall thickness survived a hydraulic pressure of greater than 150 MPa which is equivalent to a depth of more than 5000 m below sea level. The spheres were then incorporated into a buoyancy module. These hollow aluminium oxide ceramic spheres offer an excellent possibility of deep-sea exploration to depths greater than the currently used technology.

Keywords: buoyancy, ceramic spheres, deep-sea, oil exploration

Procedia PDF Downloads 414
352 In-Silico Investigation of Phytochemicals from Ocimum Sanctum as Plausible Antiviral Agent in COVID-19

Authors: Dileep Kumar, Janhavi Ramchandra Rao Kumar, Rao

Abstract:

COVID-19 has ravaged the globe, and it is spreading its Spectre day by day. In the absence of established drugs, this disease has created havoc. Some of the infected persons are symptomatic or asymptomatic. The respiratory system, cardiac system, digestive system, etc. in human beings are affected by this virus. In our present investigation, we have undertaken a study of the Indian Ayurvedic herb, Ocimum sanctum against SARS-CoV-2 using molecular docking and dynamics studies. The docking analysis was performed on the Glide module of Schrödinger suite on two different proteins from SARS-CoV-2 viz. NSP15 Endoribonuclease and spike receptor-binding domain. MM-GBSA based binding free energy calculations also suggest the most favorable binding affinities of carvacrol, β elemene, and β caryophyllene with binding energies of −61.61, 58.23, and −54.19 Kcal/mol respectively with spike receptor-binding domain and NSP15 Endoribonuclease. It rekindles our hope for the design and development of new drug candidates for the treatment of COVID19.

Keywords: molecular docking, COVID-19, ocimum sanctum, binding energy

Procedia PDF Downloads 187
351 PUF-Based Lightweight Iot Secure Authentication Chip Design

Authors: Wenxuan Li, Lei Li, Jin Li, Yuanhang He

Abstract:

This paper designed a secure chip for IoT communication security integrated with the PUF-based firmware protection scheme. Then, the Xilinx Kintex-7 and STM-32 were used for the prototype verification. Firmware protection worked well on FPGA and embedded platforms. For the ASIC implementation of the PUF module, contact PUF is chosen. The post-processing method and its improvement are analyzed with emphasis. This paper proposed a more efficient post-processing method for contact PUF named SXOR, which has practical value for realizing lightweight security modules in IoT devices. The analysis was carried out under the hypothesis that the contact holes are independent and combine the existing data in the open literature. The post-processing effects of SXOR and XOR are basically the same under the condition that the proposed post-processing circuit occupies only 50.6% of the area of XOR. The average Hamming weight of the PUF output bit sequence obtained by the proposed post-processing method is 0.499735, and the average Hamming weight obtained by the XOR-based post-processing method is 0.499999.

Keywords: PUF, IoT, authentication, secure communication, encryption, XOR

Procedia PDF Downloads 141
350 Android – Based Wireless Electronic Stethoscope

Authors: Aw Adi Arryansyah

Abstract:

Using electronic stethoscope for detecting heartbeat sound, and breath sounds, are the effective way to investigate cardiovascular diseases. On the other side, technology is growing towards mobile. Almost everyone has a smartphone. Smartphone has many platforms. Creating mobile applications also became easier. We also can use HTML5 technology to creating mobile apps. Android is the most widely used type. This is the reason for us to make a wireless electronic stethoscope based on Android mobile. Android based Wireless Electronic Stethoscope designed by a simple system, uses sound sensors mounted membrane, then connected with Bluetooth module which will send the heart auscultation voice input data by Bluetooth signal to an android platform. On the software side, android will read the voice input then it will translate to beautiful visualization and release the voice output which can be regulated about how much of it is going to be released. We can change the heart beat sound into BPM data, and heart beat analysis, like normal beat, bradycardia or tachycardia.

Keywords: wireless, HTML 5, auscultation, bradycardia, tachycardia

Procedia PDF Downloads 347
349 Extending the Flipped Classroom Approach: Using Technology in Module Delivery to Students of English Language and Literature at the British University in Egypt

Authors: Azza Taha Zaki

Abstract:

Technology-enhanced teaching has been in the limelight since the 90s when educators started investigating and experimenting with using computers in the classroom as a means of building 21st. century skills and motivating students. The concept of technology-enhanced strategies in education is kaleidoscopic! It has meant different things to different educators. For the purpose of this paper, however, it will be used to refer to the diverse technology-based strategies used to support and enrich the flipped learning process, in the classroom and outside. The paper will investigate how technology is put in the service of teaching and learning to improve the students’ learning experience as manifested in students’ attendance and engagement, achievement rates and finally, students’ projects at the end of the semester. The results will be supported by a student survey about relevant specific aspects of their learning experience in the modules in the study.

Keywords: attendance, British University, Egypt, flipped, student achievement, student-centred, student engagement, students’ projects

Procedia PDF Downloads 118