Search results for: Chandan Deep Singh
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3193

Search results for: Chandan Deep Singh

2833 Low Resistivity Pay Identification in Carbonate Reservoirs of Yadavaran Oilfield

Authors: Mohammad Mardi

Abstract:

Generally, the resistivity is high in oil layer and low in water layer. Yet there are intervals of oil-bearing zones showing low resistivity, high porosity, and low resistance. In the typical example, well A (depth: 4341.5-4372.0m), both Spectral Gamma Ray (SGR) and Corrected Gamma Ray (CGR) are relatively low; porosity varies from 12-22%. Above 4360 meters, the reservoir shows the conventional positive difference between deep and shallow resistivity with high resistance; below 4360m, the reservoir shows a negative difference with low resistance, especially at depths of 4362.4 meters and 4371 meters, deep resistivity is only 2Ω.m, and the CAST-V imaging map shows that there are low resistance substances contained in the pores or matrix in the reservoirs of this interval. The rock slice analysis data shows that the pyrite volume is 2-3% in the interval 4369.08m-4371.55m. A comprehensive analysis on the volume of shale (Vsh), porosity, invasion features of resistivity, mud logging, and mineral volume indicates that the possible causes for the negative difference between deep and shallow resistivities with relatively low resistance are erosional pores, caves, micritic texture and the presence of pyrite. Full-bore Drill Stem Test (DST) verified 4991.09 bbl/d in this interval. To identify and thoroughly characterize low resistivity intervals coring, Nuclear Magnetic Resonance (NMR) logging and further geological evaluation are needed.

Keywords: low resistivity pay, carbonates petrophysics, microporosity, porosity

Procedia PDF Downloads 167
2832 The Language of Science in Higher Education: Related Topics and Discussions

Authors: Gurjeet Singh, Harinder Singh

Abstract:

In this paper, we present "The Language of Science in Higher Education: Related Questions and Discussions". Linguists have written and researched in depth the role of language in science. On this basis, it is clear that language is not just a medium or vehicle for communicating knowledge and ideas. Nor are there mere signs of language knowledge and conversion of ideas into code. In the process of reading and writing, everyone thinks deeply and struggles to understand concepts and make sense. Linguistics play an important role in achieving concepts. In the context of such linguistic diversity, there is no straightforward and simple answer to the question of which language should be the language of advanced science and technology. Many important topics related to this issue are as follows: Involvement in practical or Deep theoretical issues. Languages for the study of science and other subjects. Language issues of science to be considered separate from the development of science, capitalism, colonial history, the worldview of the common man. The democratization of science and technology education in India is possible only by providing maximum reading/resource material in regional languages. The scientific research should be increase to chances of understanding the subject. Multilingual instead or monolingual. As far as deepening the understanding of the subject is concerned, we can shed light on it based on two or three experiences. An attempt was made to make the famous sociological journal Economic and Political Weekly Hindi almost three decades ago. There were many obstacles in this work. The original articles written in Hindi were not found, and the papers and articles of the English Journal were translated into Hindi, and a journal called Sancha was taken out. Equally important is the democratization of knowledge and the deepening of understanding of the subject. However, the question is that if higher education in science is in Hindi or other languages, then it would be a problem to get job. In fact, since independence, English has been dominant in almost every field except literature. There are historical reasons for this, which cannot be reversed. As mentioned above, due to colonial rule, even before independence, English was established as a language of communication, the language of power/status, the language of higher education, the language of administration, and the language of scholarly discourse. After independence, attempts to make Hindi or Hindustani the national language in India were unsuccessful. Given this history and current reality, higher education should be multilingual or at least bilingual. Translation limits should also be increased for those who choose the material for translation. Writing in regional languages on science, making knowledge of various international languages available in Indian languages, etc., is equally important for all to have opportunities to learn English.

Keywords: language, linguistics, literature, culture, ethnography, punjabi, gurmukhi, higher education

Procedia PDF Downloads 91
2831 Development of Probiotic Edible Film Coated Extruded Food Product

Authors: Manab Bandhu Bera, Navdeep Singh, Paramjit Singh Panesar

Abstract:

In view of exploiting the health benefits of probiotic yeast S.boulardii NCDC 363 and make it available in the form of non-dairy food products, study was undertaken. In this, probiotic yeast S.boulardii NCDC 363 was incorporated in the edible film made from sodium alginate (SA), whey protein concentrate (WPC) and glycerol (50%). Response surface methodology was used to optimize process variables such as; concentration of SA (0.25-0.75%), WPC (1-2%) and temperature (70-80°C) and also to investigate effect of these process variables on viability of probiotic yeast and hardness when applied as an edible coat on extruded food products. Accelerated storage stability of optimized probiotic extruded food products samples was determined at 38 C and 90% RH. The optimized products were packed in high-density polyethylene (HDPE) and aluminum laminated polyethylene (ALP) pouches at 38°C and relative humidity maintained was 90%. It was observed that product stored in ALP had better stability in terms of moisture absorption, hardness and viability.

Keywords: probiotic yeast, extruded food product, WPC, RSM

Procedia PDF Downloads 275
2830 Cellular Traffic Prediction through Multi-Layer Hybrid Network

Authors: Supriya H. S., Chandrakala B. M.

Abstract:

Deep learning based models have been recently successful adoption for network traffic prediction. However, training a deep learning model for various prediction tasks is considered one of the critical tasks due to various reasons. This research work develops Multi-Layer Hybrid Network (MLHN) for network traffic prediction and analysis; MLHN comprises the three distinctive networks for handling the different inputs for custom feature extraction. Furthermore, an optimized and efficient parameter-tuning algorithm is introduced to enhance parameter learning. MLHN is evaluated considering the “Big Data Challenge” dataset considering the Mean Absolute Error, Root Mean Square Error and R^2as metrics; furthermore, MLHN efficiency is proved through comparison with a state-of-art approach.

Keywords: MLHN, network traffic prediction

Procedia PDF Downloads 89
2829 Effect of Curing Temperature on Mechanical Properties of Jute Fiber Reinforced Polylactic Acid Based Green Composite

Authors: Sehijpal Singh Khangura, Jai Inder Preet Singh, Vikas Dhawan

Abstract:

Global warming, growing awareness of the environment, waste management issues, dwindling fossil resources, and rising oil prices resulted to increase the research in the materials that are friendly to our health and environment. Due to these reasons, green products are increasingly being promoted for sustainable development. In this work, fully biodegradable green composites have been developed using jute fibers as reinforcement and poly lactic acid as matrix material by film stacking technique. The effect of curing temperature during development of composites ranging from 160 °C, 170 °C, 180 °C and 190 °C was investigated for various mechanical properties. Results obtained from various tests indicate that impact strength decreases with an increase in curing temperature, but tensile and flexural strength increases till 180 °C, thereafter both the properties decrease. This study gives an optimum curing temperature for the development of jute/PLA composites.

Keywords: natural fibers, polymer matrix composites, jute, compression molding, biodegradation

Procedia PDF Downloads 145
2828 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks

Authors: Bahareh Golchin, Nooshin Riahi

Abstract:

One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.

Keywords: emotion classification, sentiment analysis, social networks, deep neural networks

Procedia PDF Downloads 137
2827 Optimization of Submerged Arc Welding Parameters for Joining SS304 and MS1018

Authors: Jasvinder Singh, Manjinder Singh

Abstract:

Welding of dissimilar materials is a complicated process due to the difference in melting point of two materials. Thermal conductivity and coefficient of thermal expansion of dissimilar materials also different; therefore, residual stresses produced in the weldment and base metal are the most critical problem associated with the joining of dissimilar materials. Tensile strength and impact toughness also reduced due to the residual stresses. In the present research work, an attempt has been made to weld SS304 and MS1018 dissimilar materials by submerged arc welding (SAW). By conducting trail, runs most effective parameters welding current, Arc voltage, welding speed and nozzle to plate distance were selected to weld these materials. The fractional factorial technique was used to optimize the welding parameters. Effect on tensile strength (TS), fracture toughness (FT) and microhardness of weldment were studied. It was concluded that by optimizing welding current, voltage and welding speed the properties of weldment can be enhanced.

Keywords: SAW, Tensile Strength (TS), fracture toughness, micro hardness

Procedia PDF Downloads 538
2826 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time

Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma

Abstract:

Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.

Keywords: multiclass classification, convolution neural network, OpenCV

Procedia PDF Downloads 176
2825 Analysis of Surface Hardness, Surface Roughness and near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process

Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.

Abstract:

In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor Hobson Talysurf tester, micro Vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.

Keywords: hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness

Procedia PDF Downloads 422
2824 Robust Barcode Detection with Synthetic-to-Real Data Augmentation

Authors: Xiaoyan Dai, Hsieh Yisan

Abstract:

Barcode processing of captured images is a huge challenge, as different shooting conditions can result in different barcode appearances. This paper proposes a deep learning-based barcode detection using synthetic-to-real data augmentation. We first augment barcodes themselves; we then augment images containing the barcodes to generate a large variety of data that is close to the actual shooting environments. Comparisons with previous works and evaluations with our original data show that this approach achieves state-of-the-art performance in various real images. In addition, the system uses hybrid resolution for barcode “scan” and is applicable to real-time applications.

Keywords: barcode detection, data augmentation, deep learning, image-based processing

Procedia PDF Downloads 169
2823 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models

Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri

Abstract:

Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.

Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation

Procedia PDF Downloads 74
2822 Deployment of Attack Helicopters in Conventional Warfare: The Gulf War

Authors: Mehmet Karabekir

Abstract:

Attack helicopters (AHs) are usually deployed in conventional warfare to destroy armored and mechanized forces of enemy. In addition, AHs are able to perform various tasks in the deep, and close operations – intelligence, surveillance, reconnaissance, air assault operations, and search and rescue operations. Apache helicopters were properly employed in the Gulf Wars and contributed the success of campaign by destroying a large number of armored and mechanized vehicles of Iraq Army. The purpose of this article is to discuss the deployment of AHs in conventional warfare in the light of Gulf Wars. First, the employment of AHs in deep and close operations will be addressed regarding the doctrine. Second, the US armed forces AH-64 doctrinal and tactical usage will be argued in the 1st and 2nd Gulf Wars.

Keywords: attack helicopter, conventional warfare, gulf wars

Procedia PDF Downloads 473
2821 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms

Authors: Selim M. Khan

Abstract:

Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.

Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America

Procedia PDF Downloads 96
2820 Deepfake Detection for Compressed Media

Authors: Sushil Kumar Gupta, Atharva Joshi, Ayush Sonawale, Sachin Naik, Rajshree Khande

Abstract:

The usage of artificially created videos and audio by deep learning is a major problem of the current media landscape, as it pursues the goal of misinformation and distrust. In conclusion, the objective of this work targets generating a reliable deepfake detection model using deep learning that will help detect forged videos accurately. In this work, CelebDF v1, one of the largest deepfake benchmark datasets in the literature, is adopted to train and test the proposed models. The data includes authentic and synthetic videos of high quality, therefore allowing an assessment of the model’s performance against realistic distortions.

Keywords: deepfake detection, CelebDF v1, convolutional neural network (CNN), xception model, data augmentation, media manipulation

Procedia PDF Downloads 9
2819 Optimizing Bridge Deck Construction: A Deep Neural Network Approach for Limiting Exterior Grider Rotation

Authors: Li Hui, Riyadh Hindi

Abstract:

In the United States, bridge construction often employs overhang brackets to support the deck overhang, the weight of fresh concrete, and loads from construction equipment. This approach, however, can lead to significant torsional moments on the exterior girders, potentially causing excessive girder rotation. Such rotations can result in various safety and maintenance issues, including thinning of the deck, reduced concrete cover, and cracking during service. Traditionally, these issues are addressed by installing temporary lateral bracing systems and conducting comprehensive torsional analysis through detailed finite element analysis for the construction of bridge deck overhang. However, this process is often intricate and time-intensive, with the spacing between temporary lateral bracing systems usually relying on the field engineers’ expertise. In this study, a deep neural network model is introduced to limit exterior girder rotation during bridge deck construction. The model predicts the optimal spacing between temporary bracing systems. To train this model, over 10,000 finite element models were generated in SAP2000, incorporating varying parameters such as girder dimensions, span length, and types and spacing of lateral bracing systems. The findings demonstrate that the deep neural network provides an effective and efficient alternative for limiting the exterior girder rotation for bridge deck construction. By reducing dependence on extensive finite element analyses, this approach stands out as a significant advancement in improving safety and maintenance effectiveness in the construction of bridge decks.

Keywords: bridge deck construction, exterior girder rotation, deep learning, finite element analysis

Procedia PDF Downloads 62
2818 Phytoplankton Community Structure in the Moroccan Coast of the Mediterranean Sea: Case Study of Saiidia, Three Forks Cape

Authors: H. Idmoussi, L. Somoue, O. Ettahiri, A. Makaoui, S. Charib, A. Agouzouk, A. Ben Mhamed, K. Hilmi, A. Errhif

Abstract:

The study on the composition, abundance, and distribution of phytoplankton was conducted along the Moroccan coast of the Mediterranean Sea (Saiidia - Three Forks Cape) in April 2018. Samples were collected at thirteen stations using Niskin bottles within two layers (surface and deep layers). The identification and enumeration of phytoplankton were carried out according to the Utermöhl method (1958). A total number of 54 phytoplankton species were identified over the entire survey area. Thirty-six species could be found both in the surface and the deep layers while eleven species were observed only in the surface layer and seven in the deep layer. The phytoplankton throughout the study area was dominated by diatoms represented mainly by Nitzschia sp., Pseudonitzschia sp., Chaetoceros sp., Cylindrotheca closterium, Leptocylindrus minimus, Leptocylindrus danicus, Dactyliosolen fragilissimus. Dinoflagellates were dominated by Gymnodinium sp., Scrippsiella sp., Gyrodinium spirale, Noctulica sp, Prorocentrum micans. Euglenophyceae, Silicoflagellates and Raphidophyceae were present in low numbers. Most of the phytoplankton were concentrated in the surface layer, particularly towards the Three Forks Cape (25200 cells·l⁻¹). Shannon species diversity (ranging from 2 and 4 Bits) and evenness index (broadly > 0.7) suggested that phytoplankton community is generally diversified and structured in the studied area.

Keywords: abundance, diversity, Mediterranean Sea, phytoplankton

Procedia PDF Downloads 158
2817 Forward Conditional Restricted Boltzmann Machines for the Generation of Music

Authors: Johan Loeckx, Joeri Bultheel

Abstract:

Recently, the application of deep learning to music has gained popularity. Its true potential, however, has been largely unexplored. In this paper, a new idea for representing the dynamic behavior of music is proposed. A ”forward” conditional RBM takes into account not only preceding but also future samples during training. Though this may sound controversial at first sight, it will be shown that it makes sense from a musical and neuro-cognitive perspective. The model is applied to reconstruct music based upon the first notes and to improvise in the musical style of a composer. Different to expectations, reconstruction accuracy with respect to a regular CRBM with the same order, was not significantly improved. More research is needed to test the performance on unseen data.

Keywords: deep learning, restricted boltzmann machine, music generation, conditional restricted boltzmann machine (CRBM)

Procedia PDF Downloads 522
2816 Reflective Thinking and Experiential Learning – A Quasi-Experimental Quanti-Quali Response to Greater Diversification of Activities, Greater Integration of Student Profiles

Authors: Paulo Sérgio Ribeiro de Araújo Bogas

Abstract:

Although several studies have assumed (at least implicitly) that learners' approaches to learning develop into deeper approaches to higher education, there appears to be no clear theoretical basis for this assumption and no empirical evidence. As a scientific contribution to this discussion, a pedagogical intervention of a quasi-experimental nature was developed, with a mixed methodology, evaluating the intervention within a single curricular unit of Marketing, using cases based on real challenges of brands, business simulation, and customer projects. Primary and secondary experiences were incorporated in the intervention: the primary experiences are the experiential activities themselves; the secondary experiences result from the primary experience, such as reflection and discussion in work teams. A diversified learning relationship was encouraged through the various connections between the different members of the learning community. The present study concludes that in the same context, the student's responses can be described as students who reinforce the initial deep approach, students who maintain the initial deep approach level, and others who change from an emphasis on the deep approach to one closer to superficial. This typology did not always confirm studies reported in the literature, namely, whether the initial level of deep processing would influence the superficial and the opposite. The result of this investigation points to the inclusion of pedagogical and didactic activities that integrate different motivations and initial strategies, leading to the possible adoption of deep approaches to learning since it revealed statistically significant differences in the difference in the scores of the deep/superficial approach and the experiential level. In the case of real challenges, the categories of “attribution of meaning and meaning of studied” and the possibility of “contact with an aspirational context” for their future professional stand out. In this category, the dimensions of autonomy that will be required of them were also revealed when comparing the classroom context of real cases and the future professional context and the impact they may have on the world. Regarding the simulated practice, two categories of response stand out: on the one hand, the motivation associated with the possibility of measuring the results of the decisions taken, an awareness of oneself, and, on the other hand, the additional effort that this practice required for some of the students.

Keywords: experiential learning, higher education, mixed methods, reflective learning, marketing

Procedia PDF Downloads 83
2815 Wear Performance of Stellite 21 Cladded Overlay on Aisi 304L

Authors: Sandeep Singh Sandhua, Karanvir Singh Ghuman, Arun Kumar

Abstract:

Stellite 21 is cobalt based super alloy used in improving the wear performance of stainless steel engineering components subjected to harsh environmental conditions. This piece of research focuses on the wear analysis of satellite 21 cladded on AISI 304 L substrate using SMAW process. Bead on plate experiments were carried out by varying current and electrode manipulation techniques to optimize the dilution and microhardness. 80 Amp current and weaving technique was found to be optimum set of parameters for overlaying which were further used for multipass multilayer cladding of AISI 304 L substrate. The wear performance was examined on pin on dics wear testing machine under room temperature conditions. The results from this study show that Stellite 21 overlays show a significant improvement in the frictional wear resistance after TIG remelting. It is also established that low dilution procedures are important in controlling the metallurgical composition of these overlays which has a consequent effect in enhancing hardness and wear resistance of these overlays.

Keywords: surfacing, stellite 21, dilution, SMAW, frictional wear, micro-hardness

Procedia PDF Downloads 250
2814 Comparing Numerical Accuracy of Solutions of Ordinary Differential Equations (ODE) Using Taylor's Series Method, Euler's Method and Runge-Kutta (RK) Method

Authors: Palwinder Singh, Munish Sandhir, Tejinder Singh

Abstract:

The ordinary differential equations (ODE) represent a natural framework for mathematical modeling of many real-life situations in the field of engineering, control systems, physics, chemistry and astronomy etc. Such type of differential equations can be solved by analytical methods or by numerical methods. If the solution is calculated using analytical methods, it is done through calculus theories, and thus requires a longer time to solve. In this paper, we compare the numerical accuracy of the solutions given by the three main types of one-step initial value solvers: Taylor’s Series Method, Euler’s Method and Runge-Kutta Fourth Order Method (RK4). The comparison of accuracy is obtained through comparing the solutions of ordinary differential equation given by these three methods. Furthermore, to verify the accuracy; we compare these numerical solutions with the exact solutions.

Keywords: Ordinary differential equations (ODE), Taylor’s Series Method, Euler’s Method, Runge-Kutta Fourth Order Method

Procedia PDF Downloads 358
2813 Quantification and Thermal Behavior of Rice Bran Oil, Sunflower Oil and Their Model Blends

Authors: Harish Kumar Sharma, Garima Sengar

Abstract:

Rice bran oil is considered comparatively nutritionally superior than different fats/oils. Therefore, model blends prepared from pure rice bran oil (RBO) and sunflower oil (SFO) were explored for changes in the different physicochemical parameters. Repeated deep fat frying process was carried out by using dried potato in order to study the thermal behaviour of pure rice bran oil, sunflower oil and their model blends. Pure rice bran oil and sunflower oil had shown good thermal stability during the repeated deep fat frying cycles. Although, the model blends constituting 60% RBO + 40% SFO showed better suitability during repeated deep fat frying than the remaining blended oils. The quantification of pure rice bran oil in the blended oils, physically refined rice bran oil (PRBO): SnF (sunflower oil) was carried by different methods. The study revealed that regression equations based on the oryzanol content, palmitic acid composition and iodine value can be used for the quantification. The rice bran oil can easily be quantified in the blended oils based on the oryzanol content by HPLC even at 1% level. The palmitic acid content in blended oils can also be used as an indicator to quantify rice bran oil at or above 20% level in blended oils whereas the method based on ultrasonic velocity, acoustic impedance and relative association showed initial promise in the quantification.

Keywords: rice bran oil, sunflower oil, frying, quantification

Procedia PDF Downloads 308
2812 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration

Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger

Abstract:

Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.

Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration

Procedia PDF Downloads 48
2811 Gender Recognition with Deep Belief Networks

Authors: Xiaoqi Jia, Qing Zhu, Hao Zhang, Su Yang

Abstract:

A gender recognition system is able to tell the gender of the given person through a few of frontal facial images. An effective gender recognition approach enables to improve the performance of many other applications, including security monitoring, human-computer interaction, image or video retrieval and so on. In this paper, we present an effective method for gender classification task in frontal facial images based on deep belief networks (DBNs), which can pre-train model and improve accuracy a little bit. Our experiments have shown that the pre-training method with DBNs for gender classification task is feasible and achieves a little improvement of accuracy on FERET and CAS-PEAL-R1 facial datasets.

Keywords: gender recognition, beep belief net-works, semi-supervised learning, greedy-layer wise RBMs

Procedia PDF Downloads 453
2810 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification

Authors: Oumaima Khlifati, Khadija Baba

Abstract:

Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.

Keywords: distress pavement, hyperparameters, automatic classification, deep learning

Procedia PDF Downloads 93
2809 Chlorine Pretreatment Effect on Mechanical Properties of Optical Fiber Glass

Authors: Abhinav Srivastava, Hima Harode, Chandan Kumar Saha

Abstract:

The principal ingredient of an optical fiber is quartz glass. The quality of the optical fiber decreases if impure foreign substances are attached to its preform surface. If residual strain inside a preform is significant, it cracks with a small impact during drawing or transporting. Furthermore, damages and unevenness on the surface of an optical fiber base material break the fiber during drawing. The present work signifies that chlorine pre-treatment enhances mechanical properties of the optical fiber glass. FTIR (Fourier-Transform Infrared Spectroscopy) results show that chlorine gas chemically modifies the structure of silica clad; chlorine is known to soften glass. Metallic impurities on the preform surface likely formed volatile metal chlorides due to chlorine pretreatment at elevated temperature. The chlorine also acts as a drying agent, and therefore the preform surface is anticipated to be water deficient and supposedly avoids particle adhesion on the glass surface. The Weibull analysis of long length tensile strength demarcates a substantial shift in its knee. The higher dynamic fatigue n-value also indicated surface crack healing.

Keywords: mechanical strength, optical fiber glass, FTIR, Weibull analysis

Procedia PDF Downloads 176
2808 Performance Evaluation and Plugging Characteristics of Controllable Self-Aggregating Colloidal Particle Profile Control Agent

Authors: Zhiguo Yang, Xiangan Yue, Minglu Shao, Yue Yang, Rongjie Yan

Abstract:

It is difficult to realize deep profile control because of the small pore-throats and easy water channeling in low-permeability heterogeneous reservoir, and the traditional polymer microspheres have the contradiction between injection and plugging. In order to solve this contradiction, the controllable self-aggregating colloidal particles (CSA) containing amide groups on the surface of microspheres was prepared based on emulsion polymerization of styrene and acrylamide. The dispersed solution of CSA colloidal particles, whose particle size is much smaller than the diameter of pore-throats, was injected into the reservoir. When the microspheres migrated to the deep part of reservoir, , these CSA colloidal particles could automatically self-aggregate into large particle clusters under the action of the shielding agent and the control agent, so as to realize the plugging of the water channels. In this paper, the morphology, temperature resistance and self-aggregation properties of CSA microspheres were studied by transmission electron microscopy (TEM) and bottle test. The results showed that CSA microspheres exhibited heterogeneous core-shell structure, good dispersion, and outstanding thermal stability. The microspheres remain regular and uniform spheres at 100℃ after aging for 35 days. With the increase of the concentration of the cations, the self-aggregation time of CSA was gradually shortened, and the influence of bivalent cations was greater than that of monovalent cations. Core flooding experiments showed that CSA polymer microspheres have good injection properties, CSA particle clusters can effective plug the water channels and migrate to the deep part of the reservoir for profile control.

Keywords: heterogeneous reservoir, deep profile control, emulsion polymerization, colloidal particles, plugging characteristic

Procedia PDF Downloads 241
2807 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market

Authors: Taylan Kabbani, Ekrem Duman

Abstract:

The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.

Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent

Procedia PDF Downloads 178
2806 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture

Authors: Thrivikraman Aswathi, S. Advaith

Abstract:

As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.

Keywords: GAN, transformer, classification, multivariate time series

Procedia PDF Downloads 130
2805 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea

Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim

Abstract:

Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.

Keywords: deep learning, algae concentration, remote sensing, satellite

Procedia PDF Downloads 183
2804 An Analysis of Uncoupled Designs in Chicken Egg

Authors: Pratap Sriram Sundar, Chandan Chowdhury, Sagar Kamarthi

Abstract:

Nature has perfected her designs over 3.5 billion years of evolution. Research fields such as biomimicry, biomimetics, bionics, bio-inspired computing, and nature-inspired designs have explored nature-made artifacts and systems to understand nature’s mechanisms and intelligence. Learning from nature, the researchers have generated sustainable designs and innovation in a variety of fields such as energy, architecture, agriculture, transportation, communication, and medicine. Axiomatic design offers a method to judge if a design is good. This paper analyzes design aspects of one of the nature’s amazing object: chicken egg. The functional requirements (FRs) of components of the object are tabulated and mapped on to nature-chosen design parameters (DPs). The ‘independence axiom’ of the axiomatic design methodology is applied to analyze couplings and to evaluate if eggs’ design is good (i.e., uncoupled design) or bad (i.e., coupled design). The analysis revealed that eggs design is a good design, i.e., uncoupled design. This approach can be applied to any nature’s artifacts to judge whether their design is a good or a bad. This methodology is valuable for biomimicry studies. This approach can also be a very useful teaching design consideration of biology and bio-inspired innovation.

Keywords: uncoupled design, axiomatic design, nature design, design evaluation

Procedia PDF Downloads 173