Search results for: thermal network
4303 Lightweight and Seamless Distributed Scheme for the Smart Home
Authors: Muhammad Mehran Arshad Khan, Chengliang Wang, Zou Minhui, Danyal Badar Soomro
Abstract:
Security of the smart home in terms of behavior activity pattern recognition is a totally dissimilar and unique issue as compared to the security issues of other scenarios. Sensor devices (low capacity and high capacity) interact and negotiate each other by detecting the daily behavior activity of individuals to execute common tasks. Once a device (e.g., surveillance camera, smart phone and light detection sensor etc.) is compromised, an adversary can then get access to a specific device and can damage daily behavior activity by altering the data and commands. In this scenario, a group of common instruction processes may get involved to generate deadlock. Therefore, an effective suitable security solution is required for smart home architecture. This paper proposes seamless distributed Scheme which fortifies low computational wireless devices for secure communication. Proposed scheme is based on lightweight key-session process to upheld cryptic-link for trajectory by recognizing of individual’s behavior activities pattern. Every device and service provider unit (low capacity sensors (LCS) and high capacity sensors (HCS)) uses an authentication token and originates a secure trajectory connection in network. Analysis of experiments is revealed that proposed scheme strengthens the devices against device seizure attack by recognizing daily behavior activities, minimum utilization memory space of LCS and avoids network from deadlock. Additionally, the results of a comparison with other schemes indicate that scheme manages efficiency in term of computation and communication.Keywords: authentication, key-session, security, wireless sensors
Procedia PDF Downloads 3184302 The Creep Analysis of a Varying Thickness on a Rotating Composite Disk with Different Particle Size by Using Sherby’s Law
Authors: Rupinder Kaur, Harjot Kaur
Abstract:
The objective of this paper is to present the study of the effect of varying thickness on rotating composite disks made from Al-SiC_P having different particle sizes. Mathematical modeling is used to calculate the effect of varying thickness with different particle sizes on rotating composite disks in radial as well as tangential directions with thermal gradients. In comparison to various particle sizes with varied thicknesses, long-term deformation occurs. The results are displayed visually, demonstrating how creep deformation decreases with changing particle size and thickness.Keywords: creep, varying thickness, particle size, stresses and strain rates
Procedia PDF Downloads 874301 Soil Salinity Mapping using Electromagnetic Induction Measurements
Authors: Fethi Bouksila, Nessrine Zemni, Fairouz Slama, Magnus Persson, Ronny Berndasson, Akissa Bahri
Abstract:
Electromagnetic sensor EM 38 was used to predict and map soil salinity (ECe) in arid oasis. Despite the high spatial variation of soil moisture and shallow watertable, significant ECe-EM relationships were developed. The low drainage network efficiency is the main factor of soil salinizationKeywords: soil salinity map, electromagnetic induction, EM38, oasis, shallow watertable
Procedia PDF Downloads 1874300 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis
Authors: Syed Asif Hassan, Syed Atif Hassan
Abstract:
Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction
Procedia PDF Downloads 3914299 Non-Cytotoxic Natural Sourced Inorganic Hydroxyapatite (HAp) Scaffold Facilitate Bone-like Mechanical Support and Cell Proliferation
Authors: Sudip Mondal, Biswanath Mondal, Sudit S. Mukhopadhyay, Apurba Dey
Abstract:
Bioactive materials improve devices for a long lifespan but have mechanical limitations. Mechanical characterization is one of the very important characteristics to evaluate the life span and functionality of the scaffold material. After implantation of scaffold material the primary stage rejection of scaffold occurs due to non biocompatible effect of host body system. The second major problems occur due to the effect of mechanical failure. The mechanical and biocompatibility failure of the scaffold materials can be overcome by the prior evaluation of the scaffold materials. In this study chemically treated Labeo rohita scale is used for synthesizing hydroxyapatite (HAp) biomaterial. Thermo-gravimetric and differential thermal analysis (TG-DTA) is carried out to ensure thermal stability. The chemical composition and bond structures of wet ball-milled calcined HAp powder is characterized by Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) analysis. Fish scale derived apatite materials consists of nano-sized particles with Ca/P ratio of 1.71. The biocompatibility through cytotoxicity evaluation and MTT assay are carried out in MG63 osteoblast cell lines. In the cell attachment study, the cells are tightly attached with HAp scaffolds developed in the laboratory. The result clearly suggests that HAp material synthesized in this study do not have any cytotoxic effect, as well as it has a natural binding affinity for mammalian cell lines. The synthesized HAp powder further successfully used to develop porous scaffold material with suitable mechanical property of ~0.8GPa compressive stress, ~1.10 GPa a hardness and ~ 30-35% porosity which is acceptable for implantation in trauma region for animal model. The histological analysis also supports the bio-affinity of processed HAp biomaterials in Wistar rat model for investigating the contact reaction and stability at the artificial or natural prosthesis interface for biomedical function. This study suggests the natural sourced fish scale-derived HAp material could be used as a suitable alternative biomaterial for tissue engineering application in near future.Keywords: biomaterials, hydroxyapatite, scaffold, mechanical property, tissue engineering
Procedia PDF Downloads 4554298 Port Miami in the Caribbean and Mesoamerica: Data, Spatial Networks and Trends
Authors: Richard Grant, Landolf Rhode-Barbarigos, Shouraseni Sen Roy, Lucas Brittan, Change Li, Aiden Rowe
Abstract:
Ports are critical for the US economy, connecting farmers, manufacturers, retailers, consumers and an array of transport and storage operators. Port facilities vary widely in terms of their productivity, footprint, specializations, and governance. In this context, Port Miami is considered as one of the busiest ports providing both cargo and cruise services in connecting the wider region of the Caribbean and Mesoamerica to the global networks. It is considered as the “Cruise Capital of the World and Global Gateway of the Americas” and “leading container port in Florida.” Furthermore, it has also been ranked as one of the top container ports in the world and the second most efficient port in North America. In this regard, Port Miami has made significant investments in the strategic and capital infrastructure of about US$1 billion, including increasing the channel depth and other onshore infrastructural enhancements. Therefore, this study involves a detailed analysis of Port Miami’s network, using publicly available multiple years of data about marine vessel traffic, cargo, and connectivity and performance indices from 2015-2021. Through the analysis of cargo and cruise vessels to and from Port Miami and its relative performance at the global scale from 2015 to 2021, this study examines the port’s long-term resilience and future growth potential. The main results of the analyses indicate that the top category for both inbound and outbound cargo is manufactured products and textiles. In addition, there are a lot of fresh fruits, vegetables, and produce for inbound and processed food for outbound cargo. Furthermore, the top ten port connections for Port Miami are all located in the Caribbean region, the Gulf of Mexico, and the Southeast USA. About half of the inbound cargo comes from Savannah, Saint Thomas, and Puerto Plata, while outbound cargo is from Puerto Corte, Freeport, and Kingston. Additionally, for cruise vessels, a significantly large number of vessels originate from Nassau, followed by Freeport. The number of passenger's vessels pre-COVID was almost 1,000 per year, which dropped substantially in 2020 and 2021 to around 300 vessels. Finally, the resilience and competitiveness of Port Miami were also assessed in terms of its network connectivity by examining the inbound and outbound maritime vessel traffic. It is noteworthy that the most frequent port connections for Port Miami were Freeport and Savannah, followed by Kingston, Nassau, and New Orleans. However, several of these ports, Puerto Corte, Veracruz, Puerto Plata, and Santo Thomas, have low resilience and are highly vulnerable, which needs to be taken into consideration for the long-term resilience of Port Miami in the future.Keywords: port, Miami, network, cargo, cruise
Procedia PDF Downloads 794297 Conversion of Tropical Wood to Bio-oil and Charcoal by Using the Process of Pyrolysis
Authors: Kittiphop Promdee, Somruedee Satitkune, Chakkrich Boonmee, Tharapong Vitidsant
Abstract:
Conversion of tropical wood using the process of pyrolysis, which converts tropical wood into fuel products, i.e. bio-oil and charcoal. The results showed the high thermal in the reactor core was thermally controlled between 0-600°C within 60 minutes. The products yield calculation showed that the liquid yield obtained from tropical wood was at its highest at 39.42 %, at 600°C, indicating that the tropical wood had received good yields because of a low gas yield average and high solid and liquid yield average. This research is not only concerned with the controlled temperatures, but also with the controlled screw rotating and feeding rate of biomass.Keywords: pyrolysis, tropical wood, bio-oil, charcoal, heating value, SEM
Procedia PDF Downloads 4804296 Influence of Acceptor Dopant on the Physicochemical and Transport Properties of Textured BaCe0.5Zr0.3ln0.2O3−Δ Materials (Ln = Yb, Y, Cd, Sm, Nd)
Authors: J. Lyagaeva, D. Medvedev, A. Brouzgou, A. Demin, P. Tsiakaras
Abstract:
The investigation of highly conductive and chemically stable electrolytes for solid oxide fuel cells (SOFC) is a necessity. The aim of the present work is to study the influence of acceptor dopant on the functional properties of textured BaCe0.5Zr0.3Ln0.2O3−δ (Ln = Yb, Y, Gd, Sm, Nd) ceramics. The X-Ray diffraction analysis, scanning electron microscopy, dilatometry and 4-probe dc method of conductivity measurements were used. It was found that the mean grain size of ceramics increases (from 1.4 to 3.2 μm), thermal expansion coefficient grows (from 7.6•10–6 to 10.7•10–6 К–1), but ionic conductivity decreases (from 14 to 3 mS cm–1 at 900°С), when ionic radii of impurity acceptor increases from 0.868 Å (Yb3+) to 0.983 Å (Nd3+).Keywords: acceptor dopant, crystal structure, proton-conducting, SOFC
Procedia PDF Downloads 3714295 Activated Carbons Prepared from Date Pits for Hydrogen Storage
Authors: M. Belhachemi, M. Monteiro de Castro, M. Casco, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso
Abstract:
In this study, activated carbons were prepared from Algerian date pits using thermal activation with CO2 or steam. The prepared activated carbons were doped by vanadium oxide in order to increase the H2 adsorption capacity. The adsorbents were characterized by N2 and CO2 adsorption at 77 K and 273K, respectively. The hydrogen adsorption experiments were carried at 298K in the 0–100 bar pressure range using a volumetric equipment. The results show that the H2 adsorption capacity is influenced by the size and volume of micropores in the activated carbon adsorbent. Furthermore, vanadium doping of activated carbons has a slight positive effect on H2 storage.Keywords: hydrogen storage, activated carbon, vanadium doping, adsorption
Procedia PDF Downloads 5704294 The Effect of the Crystal Field Interaction on the Critical Temperatures and the Sublattice Magnetizations of a Mixedspin-3/2 and Spin-5/2 Ferromagnetic System
Authors: Fathi Abubrig, Mohamed Delfag, Suad Abuzariba
Abstract:
The influence of the crystal field interactions on the mixed spin-3/2 and spin-5/2 ferromagnetic Ising system is considered by using the mean field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram is constructed, the phase diagrams of the second-order critical temperatures are obtained, and the thermal variation of the sublattice magnetizations is investigated in detail. We find some interesting phenomena for the sublattice magnetizations at particular values of the crystal field interactions.Keywords: crystal field, Ising system, ferromagnetic, magnetization, phase diagrams
Procedia PDF Downloads 4864293 Developing a Cloud Intelligence-Based Energy Management Architecture Facilitated with Embedded Edge Analytics for Energy Conservation in Demand-Side Management
Authors: Yu-Hsiu Lin, Wen-Chun Lin, Yen-Chang Cheng, Chia-Ju Yeh, Yu-Chuan Chen, Tai-You Li
Abstract:
Demand-Side Management (DSM) has the potential to reduce electricity costs and carbon emission, which are associated with electricity used in the modern society. A home Energy Management System (EMS) commonly used by residential consumers in a down-stream sector of a smart grid to monitor, control, and optimize energy efficiency to domestic appliances is a system of computer-aided functionalities as an energy audit for residential DSM. Implementing fault detection and classification to domestic appliances monitored, controlled, and optimized is one of the most important steps to realize preventive maintenance, such as residential air conditioning and heating preventative maintenance in residential/industrial DSM. In this study, a cloud intelligence-based green EMS that comes up with an Internet of Things (IoT) technology stack for residential DSM is developed. In the EMS, Arduino MEGA Ethernet communication-based smart sockets that module a Real Time Clock chip to keep track of current time as timestamps via Network Time Protocol are designed and implemented for readings of load phenomena reflecting on voltage and current signals sensed. Also, a Network-Attached Storage providing data access to a heterogeneous group of IoT clients via Hypertext Transfer Protocol (HTTP) methods is configured to data stores of parsed sensor readings. Lastly, a desktop computer with a WAMP software bundle (the Microsoft® Windows operating system, Apache HTTP Server, MySQL relational database management system, and PHP programming language) serves as a data science analytics engine for dynamic Web APP/REpresentational State Transfer-ful web service of the residential DSM having globally-Advanced Internet of Artificial Intelligence (AI)/Computational Intelligence. Where, an abstract computing machine, Java Virtual Machine, enables the desktop computer to run Java programs, and a mash-up of Java, R language, and Python is well-suited and -configured for AI in this study. Having the ability of sending real-time push notifications to IoT clients, the desktop computer implements Google-maintained Firebase Cloud Messaging to engage IoT clients across Android/iOS devices and provide mobile notification service to residential/industrial DSM. In this study, in order to realize edge intelligence that edge devices avoiding network latency and much-needed connectivity of Internet connections for Internet of Services can support secure access to data stores and provide immediate analytical and real-time actionable insights at the edge of the network, we upgrade the designed and implemented smart sockets to be embedded AI Arduino ones (called embedded AIduino). With the realization of edge analytics by the proposed embedded AIduino for data analytics, an Arduino Ethernet shield WizNet W5100 having a micro SD card connector is conducted and used. The SD library is included for reading parsed data from and writing parsed data to an SD card. And, an Artificial Neural Network library, ArduinoANN, for Arduino MEGA is imported and used for locally-embedded AI implementation. The embedded AIduino in this study can be developed for further applications in manufacturing industry energy management and sustainable energy management, wherein in sustainable energy management rotating machinery diagnostics works to identify energy loss from gross misalignment and unbalance of rotating machines in power plants as an example.Keywords: demand-side management, edge intelligence, energy management system, fault detection and classification
Procedia PDF Downloads 2514292 Design and Development of an 'Optimisation Controller' and a SCADA Based Monitoring System for Renewable Energy Management in Telecom Towers
Authors: M. Sundaram, H. R. Sanath Kumar, A. Ramprakash
Abstract:
Energy saving is a key sustainability focus area for the Indian telecom industry today. This is especially true in rural India where energy consumption contributes to 70 % of the total network operating cost. In urban areas, the energy cost for network operation ranges between 15-30 %. This expenditure on energy as a result of the lack of grid power availability highlights a potential barrier to telecom industry growth. As a result of this, telecom tower companies switch to diesel generators, making them the second largest consumer of diesel in India, consuming over 2.5 billion litres per annum. The growing cost of energy due to increasing diesel prices and concerns over rising greenhouse emissions have caused these companies to look at other renewable energy options. Even the TRAI (Telecom Regulation Authority of India) has issued a number of guidelines to implement Renewable Energy Technologies (RETs) in the telecom towers as part of its ‘Implementation of Green Technologies in Telecom Sector’ initiative. Our proposal suggests the implementation of a Programmable Logic Controller (PLC) based ‘optimisation controller’ that can not only efficiently utilize the energy from RETs but also help to conserve the power used in the telecom towers. When there are multiple RETs available to supply energy, this controller will pick the optimum amount of energy from each RET based on the availability and feasibility at that point of time, reducing the dependence on diesel generators. For effective maintenance of the towers, we are planing to implement a SCADA based monitoring system along with the ‘optimization controller’.Keywords: operation costs, consumption of fuel and carbon footprint, implementation of a programmable logic controller (PLC) based ‘optimisation controller’, efficient SCADA based monitoring system
Procedia PDF Downloads 4204291 Poly (N-Isopropyl Acrylamide-Co-Acrylic Acid)-Graft-Polyaspartate Coated Magnetic Nanoparticles for Molecular Imaging and Therapy
Authors: Van Tran Thi Thuy, Dukjoon Kim
Abstract:
A series of pH- and thermosensitive poly(N-isopropyl acrylamide-co-acrylic acid) were synthesized by radical polymerization and grafted on poly succinimide backbones. The poly succinimide derivatives synthesized were coated on iron oxide magnetic nanoparticles for potential applications in drug delivery systems with theranostic and molecular imaging. The structure of polymer shell was confirmed by FT-IR, H-NMR spectroscopies. Its thermal behavior was tested by UV-Vis spectroscopy. The particle size and its distribution are measured by dynamic light scattering (DLS) and transmission electron microscope (TEM). The mean diameter of the core-shell structure is from 20 to 80 nm.Keywords: magnetic, nano, PNIPAM, polysuccinimide
Procedia PDF Downloads 4154290 Optimization of Heat Insulation Structure and Heat Flux Calculation Method of Slug Calorimeter
Authors: Zhu Xinxin, Wang Hui, Yang Kai
Abstract:
Heat flux is one of the most important test parameters in the ground thermal protection test. Slug calorimeter is selected as the main sensor measuring heat flux in arc wind tunnel test due to the convenience and low cost. However, because of excessive lateral heat transfer and the disadvantage of the calculation method, the heat flux measurement error of the slug calorimeter is large. In order to enhance measurement accuracy, the heat insulation structure and heat flux calculation method of slug calorimeter were improved. The heat transfer model of the slug calorimeter was built according to the energy conservation principle. Based on the heat transfer model, the insulating sleeve of the hollow structure was designed, which helped to greatly decrease lateral heat transfer. And the slug with insulating sleeve of hollow structure was encapsulated using a package shell. The improved insulation structure reduced heat loss and ensured that the heat transfer characteristics were almost the same when calibrated and tested. The heat flux calibration test was carried out in arc lamp system for heat flux sensor calibration, and the results show that test accuracy and precision of slug calorimeter are improved greatly. In the meantime, the simulation model of the slug calorimeter was built. The heat flux values in different temperature rise time periods were calculated by the simulation model. The results show that extracting the data of the temperature rise rate as soon as possible can result in a smaller heat flux calculation error. Then the different thermal contact resistance affecting calculation error was analyzed by the simulation model. The contact resistance between the slug and the insulating sleeve was identified as the main influencing factor. The direct comparison calibration correction method was proposed based on only heat flux calibration. The numerical calculation correction method was proposed based on the heat flux calibration and simulation model of slug calorimeter after the simulation model was solved by solving the contact resistance between the slug and the insulating sleeve. The simulation and test results show that two methods can greatly reduce the heat flux measurement error. Finally, the improved slug calorimeter was tested in the arc wind tunnel. And test results show that the repeatability accuracy of improved slug calorimeter is less than 3%. The deviation of measurement value from different slug calorimeters is less than 3% in the same fluid field. The deviation of measurement value between slug calorimeter and Gordon Gage is less than 4% in the same fluid field.Keywords: correction method, heat flux calculation, heat insulation structure, heat transfer model, slug calorimeter
Procedia PDF Downloads 1184289 Roadmap to a Bottom-Up Approach Creating Meaningful Contributions to Surgery in Low-Income Settings
Authors: Eva Degraeuwe, Margo Vandenheede, Nicholas Rennie, Jolien Braem, Miryam Serry, Frederik Berrevoet, Piet Pattyn, Wouter Willaert, InciSioN Belgium Consortium
Abstract:
Background: Worldwide, five billion people lack access to safe and affordable surgical care. An added 1.27 million surgeons, anesthesiologists, and obstetricians (SAO) are needed by 2030 to meet the target of 20 per 100,000 population and to reach the goal of the Lancet Commission on Global Surgery. A well-informed future generation exposed early on to the current challenges in global surgery (GS) is necessary to ensure a sustainable future. Methods: InciSioN, the International Student Surgical Network, is a non-profit organization by and for students, residents, and fellows in over 80 countries. InciSioN Belgium, one of the prominent national working groups, has made a vast progression and collaborated with other networks to fill the educational gap, stimulate advocacy efforts and increase interactions with the international network. This report describes a roadmap to achieve sustainable development and education within GS, with the example of InciSioN Belgium. Results: Since the establishment of the organization’s branch in 2019, it has hosted an educational workshop for first-year residents in surgery, engaging over 2500 participants, and established a recurring directing board of 15 members. In the year 2020-2021, InciSioN Ghent has organized three workshops combining educational and interactive sessions for future prime advocates and surgical candidates. InciSioN Belgium has set up a strong formal coalition with the Belgian Medical Students’ Association (BeMSA), with its own standing committee, reaching over 3000+ medical students annually. In 2021-2022, InciSioN Belgium broadened to a multidisciplinary approach, including dentistry and nursing students and graduates within workshops and research projects, leading to a member and exposure increase of 450%. This roadmap sets strategic goals and mechanisms for the GS community to achieve nationwide sustained improvements in the research and education of GS focused on future SAOs, in order to achieve the GS sustainable development goals. In the coming year, expansion is directed to a formal integration of GS into the medical curriculum and increased international advocacy whilst inspiring SAOs to integrate into GS in Belgium. Conclusion: The development and implementation of durable change for GS are necessary. The student organization InciSioN Belgium is growing and hopes to close the colossal gap in GS and inspire the growth of other branches while sharing the know-how of a student organization.Keywords: advocacy, education, global surgery, InciSioN, student network
Procedia PDF Downloads 1744288 Effect of Aryl Imidazolium Ionic Liquids as Asphaltene Dispersants
Authors: Raghda Ahmed El-Nagar
Abstract:
Oil spills are one of the most serious environmental issues that have occurred during the production and transportation of petroleum crude oil. Chemical asphaltene dispersants are hazardous to the marine environment, so Ionic liquids (ILs) as asphaltene dispersants are a critical area of study. In this work, different aryl imidazolium ionic liquids were synthesized with high yield and elucidated via tools of analysis (Elemental analysis, FT-IR, and 1H-NMR). Thermogravimetric analysis confirmed that the prepared ILs posses high thermal stability. The critical micelle concentration (CMC), surface tension, and emulsification index were investigated. Evaluation of synthesized ILs as asphaltene dispersants were assessed at various concentrations, and data reveals high dispersion efficiency.Keywords: ionic liquids, oil spill, asphaltene dispersants, CMC, efficiency
Procedia PDF Downloads 1944287 Gender Bias in Natural Language Processing: Machines Reflect Misogyny in Society
Authors: Irene Yi
Abstract:
Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.Keywords: gendered grammar, misogynistic language, natural language processing, neural networks
Procedia PDF Downloads 1204286 Introduction of Mass Rapid Transit System and Its Impact on Para-Transit
Authors: Khalil Ahmad Kakar
Abstract:
In developing countries increasing the automobile and low capacity public transport (para-transit) which are creating congestion, pollution, noise, and traffic accident are the most critical quandary. These issues are under the analysis of assessors to break down the puzzle and propose sustainable urban public transport system. Kabul city is one of those urban areas that the inhabitants are suffering from lack of tolerable and friendly public transport system. The city is the most-populous and overcrowded with around 4.5 million population. The para-transit is the only dominant public transit system with a very poor level of services and low capacity vehicles (6-20 passengers). Therefore, this study after detailed investigations suggests bus rapid transit (BRT) system in Kabul City. It is aimed to mitigate the role of informal transport and decreases congestion. The research covers three parts. In the first part, aggregated travel demand modelling (four-step) is applied to determine the number of users for para-transit and assesses BRT network based on higher passenger demand for public transport mode. In the second part, state preference (SP) survey and binary logit model are exerted to figure out the utility of existing para-transit mode and planned BRT system. Finally, the impact of predicted BRT system on para-transit is evaluated. The extracted outcome based on high travel demand suggests 10 km network for the proposed BRT system, which is originated from the district tenth and it is ended at Kabul International Airport. As well as, the result from the disaggregate travel mode-choice model, based on SP and logit model indicates that the predicted mass rapid transit system has higher utility with the significant impact regarding the reduction of para-transit.Keywords: BRT, para-transit, travel demand modelling, Kabul City, logit model
Procedia PDF Downloads 1834285 Maximization of Lifetime for Wireless Sensor Networks Based on Energy Efficient Clustering Algorithm
Authors: Frodouard Minani
Abstract:
Since last decade, wireless sensor networks (WSNs) have been used in many areas like health care, agriculture, defense, military, disaster hit areas and so on. Wireless Sensor Networks consist of a Base Station (BS) and more number of wireless sensors in order to monitor temperature, pressure, motion in different environment conditions. The key parameter that plays a major role in designing a protocol for Wireless Sensor Networks is energy efficiency which is a scarcest resource of sensor nodes and it determines the lifetime of sensor nodes. Maximizing sensor node’s lifetime is an important issue in the design of applications and protocols for Wireless Sensor Networks. Clustering sensor nodes mechanism is an effective topology control approach for helping to achieve the goal of this research. In this paper, the researcher presents an energy efficiency protocol to prolong the network lifetime based on Energy efficient clustering algorithm. The Low Energy Adaptive Clustering Hierarchy (LEACH) is a routing protocol for clusters which is used to lower the energy consumption and also to improve the lifetime of the Wireless Sensor Networks. Maximizing energy dissipation and network lifetime are important matters in the design of applications and protocols for wireless sensor networks. Proposed system is to maximize the lifetime of the Wireless Sensor Networks by choosing the farthest cluster head (CH) instead of the closest CH and forming the cluster by considering the following parameter metrics such as Node’s density, residual-energy and distance between clusters (inter-cluster distance). In this paper, comparisons between the proposed protocol and comparative protocols in different scenarios have been done and the simulation results showed that the proposed protocol performs well over other comparative protocols in various scenarios.Keywords: base station, clustering algorithm, energy efficient, sensors, wireless sensor networks
Procedia PDF Downloads 1444284 CFD Simulation for Development of Cooling System in a Cooking Oven
Authors: V. Jagadish, Mathiyalagan V.
Abstract:
Prediction of Door Touch temperature of a Cooking Oven using CFD Simulation. Self-Clean cycle is carried out in Cooking ovens to convert food spilling into ashes which makes cleaning easy. During this cycle cavity of oven is exposed to high temperature around 460 C. At this operating point the user may prone to touch the Door surfaces, Side Shield, Control Panel. To prevent heat experienced by user, cooling system is built in oven. The most effective cooling system is developed with existing design constraints through CFD Simulations. Cross Flow fan is used for Cooling system due to its cost effectiveness and it can give more air flow with low pressure drop.Keywords: CFD, MRF, RBM, RANS, new product development, simulation, thermal analysis
Procedia PDF Downloads 1604283 Development of Sb/MWCNT Free Standing Anode for Li-Ion Batteries
Authors: Indu Elizabeth
Abstract:
Antimony/Multi Walled Carbon nano tube nanocomposite (Sb/MWCNT) is synthesized using ethylene glycol mediated reduction process. Binder free, self-supporting and flexible Sb/MWCNT nanocomposite paper has been prepared by employing the vacuum filtration technique. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy (RS), and thermal gravimetric analysis (TGA) to evaluate the structure of anode and tested for its performance in a Lithium rechargeable cell. Electrochemical measurements demonstrate that the Sb/MWCNT composite paper anode delivers a specific discharge capacity of ~400 mAh g-1 up to a current density of 100 mA g-1.Keywords: antimony, lithium ion battery, multiwalled carbon nanotube, specific capacity
Procedia PDF Downloads 4024282 In silico Analysis towards Identification of Host-Microbe Interactions for Inflammatory Bowel Disease Linked to Reactive Arthritis
Authors: Anukriti Verma, Bhawna Rathi, Shivani Sharda
Abstract:
Reactive Arthritis (ReA) is a disorder that causes inflammation in joints due to certain infections at distant sites in the body. ReA begins with stiffness, pain, and inflammation in these areas especially the ankles, knees, and hips. It gradually causes several complications such as conjunctivitis in the eyes, skin lesions in hand, feet and nails and ulcers in the mouth. Nowadays the diagnosis of ReA is based upon a differential diagnosis pattern. The parameters for differentiating ReA from other similar disorders include physical examination, history of the patient and a high index of suspicion. There are no standard lab tests or markers available for ReA hence the early diagnosis of ReA becomes difficult and the chronicity of disease increases with time. It is reported that enteric disorders such as Inflammatory Bowel Disease (IBD) that is inflammation in gastrointestinal tract namely Crohn’s Disease (CD) and Ulcerative Colitis (UC) are reported to be linked with ReA. Several microorganisms are found such as Campylobacter, Salmonella, Shigella and Yersinia causing IBD leading to ReA. The aim of our study was to perform the in-silico analysis in order to find interactions between microorganisms and human host causing IBD leading to ReA. A systems biology approach for metabolic network reconstruction and simulation was used to find the essential genes of the reported microorganisms. Interactomics study was used to find the interactions between the pathogen genes and human host. Genes such as nhaA (pathogen), dpyD (human), nagK (human) and kynU (human) were obtained that were analysed further using the functional, pathway and network analysis. These genes can be used as putative drug targets and biomarkers in future for early diagnosis, prevention, and treatment of IBD leading to ReA.Keywords: drug targets, inflammatory bowel disease, reactive arthritis, systems biology
Procedia PDF Downloads 2754281 Preparation and Characterizations of Natural Material Based Ceramic Membranes
Authors: In-Hyuck Song, Jang-Hoon Ha
Abstract:
Recently, porous ceramic membranes have attracted great interest due to their outstanding thermal and chemical stability. In this paper, we report the results of our efforts to determine whether we could prepare a diatomite-kaolin composite coating to be deposited over a sintered diatomite support layer that could reduce the largest pore size of the sintered diatomite membrane while retaining an acceptable level of permeability. We determined under what conditions such a composite coating over a support layer could be prepared without the generation of micro-cracks during drying and sintering. The pore characteristics of the sintered diatomite membranes were studied by scanning electron microscopy and capillary flow porosimetry.Keywords: ceramic membrane, diatomite, water treatment, sintering
Procedia PDF Downloads 5154280 Machine Learning Techniques in Seismic Risk Assessment of Structures
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine
Procedia PDF Downloads 1064279 Research and Development of Lightweight Repair Mortars with Focus on Their Resistance to High Temperatures
Authors: Tomáš Melichar, Jiří Bydžovský, Vít Černý
Abstract:
In this article our research focused on study of basic physical and mechanical parameters of polymer-cement repair materials is presented. Namely the influence of applied aggregates in combination with active admixture is specially considered. New formulas which were exposed in ambient with temperature even to 1000°C were suggested. Subsequently densities and strength characteristics including their changes were evaluated. Selected samples were analyzed using electron microscope. The positive influence of porous aggregates based on sintered ash was definitely demonstrated. Further it was found than in terms of thermal resistance the effective micro silica amount represents 5% to 7.5% of cement weight.Keywords: aggregate, ash, high, lightweight, microsilica, mortar, polymer-cement, repair, temperature
Procedia PDF Downloads 4274278 Necessary Condition to Utilize Adaptive Control in Wind Turbine Systems to Improve Power System Stability
Authors: Javad Taherahmadi, Mohammad Jafarian, Mohammad Naser Asefi
Abstract:
The global capacity of wind power has dramatically increased in recent years. Therefore, improving the technology of wind turbines to take different advantages of this enormous potential in the power grid, could be interesting subject for scientists. The doubly-fed induction generator (DFIG) wind turbine is a popular system due to its many advantages such as the improved power quality, high energy efficiency and controllability, etc. With an increase in wind power penetration in the network and with regard to the flexible control of wind turbines, the use of wind turbine systems to improve the dynamic stability of power systems has been of significance importance for researchers. Subsynchronous oscillations are one of the important issues in the stability of power systems. Damping subsynchronous oscillations by using wind turbines has been studied in various research efforts, mainly by adding an auxiliary control loop to the control structure of the wind turbine. In most of the studies, this control loop is composed of linear blocks. In this paper, simple adaptive control is used for this purpose. In order to use an adaptive controller, the convergence of the controller should be verified. Since adaptive control parameters tend to optimum values in order to obtain optimum control performance, using this controller will help the wind turbines to have positive contribution in damping the network subsynchronous oscillations at different wind speeds and system operating points. In this paper, the application of simple adaptive control in DFIG wind turbine systems to improve the dynamic stability of power systems is studied and the essential condition for using this controller is considered. It is also shown that this controller has an insignificant effect on the dynamic stability of the wind turbine, itself.Keywords: almost strictly positive real (ASPR), doubly-fed induction generator (DIFG), simple adaptive control (SAC), subsynchronous oscillations, wind turbine
Procedia PDF Downloads 3774277 Modified Weibull Approach for Bridge Deterioration Modelling
Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight
Abstract:
State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models
Procedia PDF Downloads 7284276 Towards a Framework for Embedded Weight Comparison Algorithm with Business Intelligence in the Plantation Domain
Authors: M. Pushparani, A. Sagaya
Abstract:
Embedded systems have emerged as important elements in various domains with extensive applications in automotive, commercial, consumer, healthcare and transportation markets, as there is emphasis on intelligent devices. On the other hand, Business Intelligence (BI) has also been extensively used in a range of applications, especially in the agriculture domain which is the area of this research. The aim of this research is to create a framework for Embedded Weight Comparison Algorithm with Business Intelligence (EWCA-BI). The weight comparison algorithm will be embedded within the plantation management system and the weighbridge system. This algorithm will be used to estimate the weight at the site and will be compared with the actual weight at the plantation. The algorithm will be used to build the necessary alerts when there is a discrepancy in the weight, thus enabling better decision making. In the current practice, data are collected from various locations in various forms. It is a challenge to consolidate data to obtain timely and accurate information for effective decision making. Adding to this, the unstable network connection leads to difficulty in getting timely accurate information. To overcome the challenges embedding is done on a portable device that will have the embedded weight comparison algorithm to also assist in data capture and synchronize data at various locations overcoming the network short comings at collection points. The EWCA-BI will provide real-time information at any given point of time, thus enabling non-latent BI reports that will provide crucial information to enable efficient operational decision making. This research has a high potential in bringing embedded system into the agriculture industry. EWCA-BI will provide BI reports with accurate information with uncompromised data using an embedded system and provide alerts, therefore, enabling effective operation management decision-making at the site.Keywords: embedded business intelligence, weight comparison algorithm, oil palm plantation, embedded systems
Procedia PDF Downloads 2864275 Analysis of Syngas Combustion Characteristics in Can-Type Combustor using CFD
Authors: Norhaslina Mat Zian, Hasril Hasini, Nur Irmawati Om
Abstract:
This study focuses on the flow and combustion behavior inside gas turbine combustor used in thermal power plant. The combustion process takes place using synthetic gas and the baseline solution was made on gas turbine combustor firing natural gas (100% Methane) as the main source of fuel. Attention is given to the effect of the H2/CO ratio on the variation of the flame profile, temperature distribution, and emissions. The H2/CO ratio varies in the range of 10-80 % and the CH4 values are fixed 10% for each case. While keeping constant the mass flow rate and operating pressure, the preliminary result shows that the flow inside the can-combustor is highly swirling which indicates good mixing of fuel and air prior to the entrance of the mixture to the main combustion zone.Keywords: cfd, combustion, flame, syngas
Procedia PDF Downloads 2844274 Radiation Effects and Defects in InAs, InP Compounds and Their Solid Solutions InPxAs1-x
Authors: N. Kekelidze, B. Kvirkvelia, E. Khutsishvili, T. Qamushadze, D. Kekelidze, R. Kobaidze, Z. Chubinishvili, N. Qobulashvili, G. Kekelidze
Abstract:
On the basis of InAs, InP and their InPxAs1-x solid solutions, the technologies were developed and materials were created where the electron concentration and optical and thermoelectric properties do not change under the irradiation with Ф = 2∙1018 n/cm2 fluences of fast neutrons high-energy electrons (50 MeV, Ф = 6·1017 e/cm2) and 3 MeV electrons with fluence Ф = 3∙1018 e/cm2. The problem of obtaining such material has been solved, in which under hard irradiation the mobility of the electrons does not decrease, but increases. This material is characterized by high thermal stability up to T = 700 °C. The complex process of defects formation has been analyzed and shown that, despite of hard irradiation, the essential properties of investigated materials are mainly determined by point type defects.Keywords: InAs, InP, solid solutions, irradiation
Procedia PDF Downloads 181