Search results for: steel hydraulic structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9479

Search results for: steel hydraulic structure

5639 Preparation and Sealing of Polymer Microchannels Using EB Lithography and Laser Welding

Authors: Ian Jones, Jonathan Griffiths

Abstract:

Laser welding offers the potential for making very precise joints in plastics products, both in terms of the joint location and the amount of heating applied. These methods have allowed the production of complex products such as microfluidic devices where channels and structure resolution below 100 µm is regularly used. However, to date, the dimension of welds made using lasers has been limited by the focus spot size that is achievable from the laser source. Theoretically, the minimum spot size possible from a laser is comparable to the wavelength of the radiation emitted. Practically, with reasonable focal length optics the spot size achievable is a few factors larger than this, and the melt zone in a plastics weld is larger again than this. The narrowest welds feasible to date have therefore been 10-20 µm wide using a near-infrared laser source. The aim of this work was to prepare laser absorber tracks and channels less than 10 µm wide in PMMA thermoplastic using EB lithography followed by sealing of channels using laser welding to carry out welds with widths of the order of 1 µm, below the resolution limit of the near-infrared laser used. Welded joints with a width of 1 µm have been achieved as well as channels with a width of 5 µm. The procedure was based on the principle of transmission laser welding using a thin coating of infrared absorbent material at the joint interface. The coating was patterned using electron-beam lithography to obtain the required resolution in a reproducible manner and that resolution was retained after the transmission laser welding process. The joint strength was ratified using larger scale samples. The results demonstrate that plastics products could be made with a high density of structure with resolution below 1 um, and that welding can be applied without excessively heating regions beyond the weld lines. This may be applied to smaller scale sensor and analysis chips, micro-bio and chemical reactors and to microelectronic packaging.

Keywords: microchannels, polymer, EB lithography, laser welding

Procedia PDF Downloads 387
5638 Analysis of the Evolution of Landscape Spatial Patterns in Banan District, Chongqing, China

Authors: Wenyang Wan

Abstract:

The study of urban land use and landscape pattern is the current hotspot in the fields of planning and design, ecology, etc., which is of great significance for the construction of the overall humanistic ecosystem of the city and optimization of the urban spatial structure. Banan District, as the main part of the eastern eco-city planning of Chongqing Municipality, is a high ground for highlighting the ecological characteristics of Chongqing, realizing effective transformation of ecological value, and promoting the integrated development of urban and rural areas. The analytical methods of land use transfer matrix (GIS) and landscape pattern index (Fragstats) were used to study the characteristics and laws of the evolution of land use landscape pattern in Banan District from 2000 to 2020, which provide some reference value for Banan District to alleviate the ecological contradiction of landscape. The results of the study show that ① Banan District is rich in land use types, of which the area of cultivated land will still account for 57.15% of the total area of the landscape until 2020, accounting for an absolute advantage in land use structure of Banan District; ② From 2000 to 2020, land use conversion in Banan District is characterized as Cropland > woodland > grassland > shrubland > built-up land > water bodies > wetlands, with cropland converted to built-up land being the largest; ③ From 2000 to 2020, the landscape elements of Banan District were distributed in a balanced way, and the landscape types were rich and diversified, but due to the influence of human interference, it also presented the characteristics that the shape of the landscape elements tended to be irregular, and the dominant patches were distributed in a scattered manner, and the patches had poor connectivity. It is recommended that in future regional ecological construction, the layout should be rationally optimized, the relationship between landscape components should be coordinated, the connectivity between landscape patches should be strengthened, and the degree of landscape fragmentation should be reduced.

Keywords: land use transfer, landscape pattern evolution, GIS and Fragstats, Banan district

Procedia PDF Downloads 55
5637 Natural Fibre Composite Structural Sections for Residential Stud Wall Applications

Authors: Mike R. Bambach

Abstract:

Increasing awareness of environmental concerns is leading a drive towards more sustainable structural products for the built environment. Natural fibres such as flax, jute and hemp have recently been considered for fibre-resin composites, with a major motivation for their implementation being their notable sustainability attributes. While recent decades have seen substantial interest in the use of such natural fibres in composite materials, much of this research has focused on the materials aspects, including fibre processing techniques, composite fabrication methodologies, matrix materials and their effects on the mechanical properties. The present study experimentally investigates the compression strength of structural channel sections of flax, jute and hemp, with a particular focus on their suitability for residential stud wall applications. The section geometry is optimised for maximum strength via the introduction of complex stiffeners in the webs and flanges. Experimental results on both natural fibre composite channel sections and typical steel and timber residential wall studs are compared. The geometrically optimised natural fibre composite channels are shown to have compression capacities suitable for residential wall stud applications, identifying them as a potentially viable alternative to traditional building materials in such application, and potentially other light structural applications.

Keywords: channel sections, natural fibre composites, residential stud walls, structural composites

Procedia PDF Downloads 298
5636 The Effects of Placement and Cross-Section Shape of Shear Walls in Multi-Story RC Buildings with Plan Irregularity on Their Seismic Behavior by Using Nonlinear Time History Analyses

Authors: Mohammad Aminnia, Mahmood Hosseini

Abstract:

Environmental and functional conditions sometimes necessitate the architectural plan of the building to be asymmetric, and this result in an asymmetric structure. In such cases, finding an optimal pattern for locating the components of the lateral load bearing system, including shear walls, in the building’s plan is desired. In case of shear walls, in addition to the location, the shape of the wall cross-section is also an effective factor. Various types of shear wall and their proper layout might come effective in better stiffness distribution and more appropriate seismic response of the building. Several studies have been conducted in the context of analysis and design of shear walls; however, few studies have been performed on making decisions for the location and form of shear walls in multi-story buildings, especially those with irregular plan. In this study, an attempt has been made to obtain the most reliable seismic behavior of multi-story reinforced concrete vertically chamfered buildings by using more appropriate shear walls form and arrangement in 7-, 10-, 12-, and 15-story buildings. The considered forms and arrangements include common rectangular walls and L-, T-, U- and Z-shaped plan, located as the core or in the outer frames of the building structure. Comparison of seismic behaviors of the buildings, including maximum roof displacement, and particularly the formation of plastic hinges and their distribution in the buildings’ structures, have been done based on the results of a series of nonlinear time history analyses by using a set of selected earthquake records. Results show that shear walls with U-shaped cross-section, placed as the building central core, and also walls with Z-shaped cross-section, placed at the corners give the building more reliable seismic behavior.

Keywords: vertically chamfered buildings, non-linear time history analyses, l-, t-, u- and z-shaped plan walls

Procedia PDF Downloads 242
5635 Development of an Advanced Power Ultrasonic-Assisted Drilling System

Authors: M. A. Moghaddas, M. Short, N. Wiley, A. Y. Yi, K. F. Graff

Abstract:

The application of ultrasonic vibrations to machining processes has a long history, ranging from slurry-based systems able to drill brittle materials, to more recent developments involving low power ultrasonics for high precision machining, with many of these at the research and laboratory stages. The focus of this development is the application of high levels of ultrasonic power (1,000’s of watts) to standard, heavy duty machine tools – drilling being the immediate focus, with developments in milling in progress – with the objective of dramatically increasing system productivity through faster feed rates, this benefit arising from the thrust force reductions obtained by power ultrasonic vibrations. The presentation will describe development of an advanced drilling system based on a special, acoustically designed, rugged drill module capable of functioning under heavy duty production conditions, and making use of standard tool holder means, and able to obtain thrust force reductions while maintaining or improving surface finish and drilling accuracy. The characterization of the system performance will be described, and results obtained in drilling several materials (Aluminum, Stainless steel, Titanium) presented.

Keywords: dimensional accuracy, machine tool, productivity, surface roughness, thrust force, ultrasonic vibrations, ultrasonic-assisted drilling

Procedia PDF Downloads 260
5634 Influence of Concrete Cracking in the Tensile Strength of Cast-in Headed Anchors

Authors: W. Nataniel, B. Lima, J. Manoel, M. P. Filho, H. Marcos, Oliveira Mauricio, P. Ferreira

Abstract:

Headed reinforcement bars are increasingly used for anchorage in concrete structures. Applications include connections in composite steel-concrete structures, such as beam-column joints, in several strengthening situations as well as in more traditional uses in cast-in-place and precast structural systems. This paper investigates the reduction in the ultimate tensile capacity of embedded cast-in headed anchors due to concrete cracking. A series of nine laboratory tests are carried out to evaluate the influence of cracking on the concrete breakout strength in tension. The experimental results show that cracking affects both the resistance and load-slip response of the headed bar anchors. The strengths measured in these tests are compared to theoretical resistances calculated following the recommendations presented by fib Bulletin no. 58 (2011), ETAG 001 (2010) and ACI 318 (2014). The influences of parameters such as the effective embedment depth (hef), bar diameter (ds), and the concrete compressive strength (fc) are analysed and discussed. The theoretical recommendations are shown to be over-conservative for both embedment depths and were, in general, inaccurate in comparison to the experimental trends. The ACI 318 (2014) was the design code which presented the best performance regarding to the predictions of the ultimate load, with an average of 1.42 for the ratio between the experimental and estimated strengths, standard deviation of 0.36, and coefficient of variation equal to 0.25.

Keywords: cast-in headed anchors, concrete cone failure, uncracked concrete, cracked concrete

Procedia PDF Downloads 192
5633 Size Effects on Structural Performance of Concrete Gravity Dams

Authors: Mehmet Akköse

Abstract:

Concern about seismic safety of concrete dams have been growing around the world, partly because the population at risk in locations downstream of major dams continues to expand and also because it is increasingly evident that the seismic design concepts in use at the time most existing dams were built were inadequate. Most of the investigations in the past have been conducted on large dams, typically above 100m high. A large number of concrete dams in our country and in other parts of the world are less than 50m high. Most of these dams were usually designed using pseudo-static methods, ignoring the dynamic characteristics of the structure as well as the characteristics of the ground motion. Therefore, it is important to carry out investigations on seismic behavior this category of dam in order to assess and evaluate the safety of existing dams and improve the knowledge for different high dams to be constructed in the future. In this study, size effects on structural performance of concrete gravity dams subjected to near and far-fault ground motions are investigated including dam-water-foundation interaction. For this purpose, a benchmark problem proposed by ICOLD (International Committee on Large Dams) is chosen as a numerical application. Structural performance of the dam having five different heights is evaluated according to damage criterions in USACE (U.S. Army Corps of Engineers). It is decided according to their structural performance if non-linear analysis of the dams requires or not. The linear elastic dynamic analyses of the dams to near and far-fault ground motions are performed using the step-by-step integration technique. The integration time step is 0.0025 sec. The Rayleigh damping constants are calculated assuming 5% damping ratio. The program NONSAP modified for fluid-structure systems with the Lagrangian fluid finite element is employed in the response calculations.

Keywords: concrete gravity dams, Lagrangian approach, near and far-fault ground motion, USACE damage criterions

Procedia PDF Downloads 256
5632 Energy Efficient Retrofitting and Optimization of Dual Mixed Refrigerant Natural Gas Liquefaction Process

Authors: Muhammad Abdul Qyyum, Kinza Qadeer, Moonyong Lee

Abstract:

Globally, liquefied natural gas (LNG) has drawn interest as a green energy source in comparison with other fossil fuels, mainly because of its ease of transport and low carbon dioxide emissions. It is expected that demand for LNG will grow steadily over the next few decades. In addition, because the demand for clean energy is increasing, LNG production facilities are expanding into new natural gas reserves across the globe. However, LNG production is an energy and cost intensive process because of the huge power requirements for compression and refrigeration. Therefore, one of the major challenges in the LNG industry is to improve the energy efficiency of existing LNG processes through economic and ecological strategies. The advancement in expansion devices such as two-phase cryogenic expander (TPE) and cryogenic hydraulic turbine (HT) were exploited for energy and cost benefits in natural gas liquefaction. Retrofitting the conventional Joule–Thompson (JT) valve with TPE and HT have the potential to improve the energy efficiency of LNG processes. This research investigated the potential feasibility of the retrofitting of a dual mixed refrigerant (DMR) process by replacing the isenthalpic expansion with isentropic expansion corresponding to energy efficient LNG production. To fully take the potential benefit of the proposed process retrofitting, the proposed DMR schemes were optimized by using a Coggins optimization approach, which was implemented in Microsoft Visual Studio (MVS) environment and linked to the rigorous HYSYS® model. The results showed that the required energy of the proposed isentropic expansion based DMR process could be saved up to 26.5% in comparison with the conventional isenthalpic based DMR process using the JT valves. Utilization of the recovered energy into boosting the natural gas feed pressure could further improve the energy efficiency of the LNG process up to 34% as compared to the base case. This work will help the process engineers to overcome the challenges relating to energy efficiency and safety concerns of LNG processes. Furthermore, the proposed retrofitting scheme can also be implemented to improve the energy efficiency of other isenthalpic expansion based energy intensive cryogenic processes.

Keywords: cryogenic liquid turbine, Coggins optimization, dual mixed refrigerant, energy efficient LNG process, two-phase expander

Procedia PDF Downloads 133
5631 Keying Effect During Fracture of Stainless Steel

Authors: Farej Ahmed Emhmmed

Abstract:

Fracture of duplex stainless steels (DSS) was investigated in air and in 3.5 wt % NaCl solution. Tow sets of fatigued specimens were heat treated at 475ºC for different times and pulled to failure either in air or after kept in 3.5% NaCl with polarization of -900 mV/ SCE. Fracture took place in general by ferrite cleavage and austenite ductile fracture in transgranular mode. Specimens measured stiffness (Ms) was affected by the aging time, with higher values measured for specimens aged for longer times. Microstructural features played a role in "blocking" the crack propagation process leading to lower the CTOD values specially for specimens aged for short times. Unbroken ligaments/ austenite were observed at the crack wake. These features may exerted a bridging stress, blocking effect, at the crack tip giving resistance to the crack propagation process i.e the crack mouth opening was reduced. Higher stress intensity factor Kıc values were observed with increased amounts of crack growth suggesting longer zone of unbroken ligaments in the crack wake. The bridging zone was typically several mm in length. Attempt to model the bridge stress was suggested to understand the role of ligaments/unbroken austenite in increasing the fracture toughness factor.

Keywords: stainless steels, fracture toughness, crack keying effect, ligaments

Procedia PDF Downloads 343
5630 A Fundamental Study on the Anchor Performance of Non-Surface Treated Multi CFRP Tendons

Authors: Woo-tai Jung, Jong-sup Park, Jae-yoon Kang, Moon-seoung Keum

Abstract:

CFRP (Carbon Fiber Reinforced Polymer) is mainly used as reinforcing material for degraded structures owing to its advantages including its non-corrodibility, high strength, and lightweight properties. Recently, dedicated studies focused not only on its simple bonding but also on its tensioning. The tension necessary for prestressing requires the anchoring of multi-CFRP tendons with high capacity and the surface treatment of the CFRP tendons may also constitute an important issue according to the type of anchor. The wedge type, swage type or bonded type anchor can be used to anchor the CFRP tendon. The bonded type anchor presents the disadvantage to lengthen the length of the anchor due to the low bond strength of the CFRP tendon without surface treatment. This study intends to overcome this drawback through the application of a method enlarging the bond area at the end of the CFRP tendon. This method enlarges the bond area by splitting the end of the CFRP tendon along its length and can be applied when CFRP is produced by pultrusion. The application of this method shows that the mono-CFRP tendon and 3-multi CFRP tendon secured the anchor performance corresponding to the tensile performance of the CFRP tendon and that the 7-multi tendon secured anchor performance corresponding to 90% of the tensile strength due to the occurrence of buckling in the steel tube anchorage.

Keywords: carbon fiber reinforced polymer (CFRP), tendon, anchor, tensile property, bond strength

Procedia PDF Downloads 231
5629 Impact of Welding Distortion on the Design of Fabricated T-Girders Using Finite Element Modeling

Authors: Ahmed Hammad, Yehia Abdel-Nasser, Mohamed Shamma

Abstract:

The main configuration of ship construction consists of standard and fabricated stiffening members which are commonly used in shipbuilding such as fabricated T-sections. During the welding process, the non-uniform heating and rapid cooling lead to the inevitable presence of out-of-plane distortion and welding induced residual stresses. Because of these imperfections, the fabricated structural members may not attain their design load to be carried. The removal of these imperfections will require extra man-hours. In the present work, controlling these imperfections has been investigated at both design and fabrication stages. A typical fabricated T-girder is selected to investigate the problem of these imperfections using double-side welding. A numerical simulation based on finite element (FE) modeling has been used to investigate the effect of different parameters of the selected fabricated T-girder such as geometrical properties and welding sequences on the magnitude of welding imperfections. FE results were compared with the results of experimental model of a double-side fillet weld. The present work concludes that: Firstly, in the design stage, the optimum geometry of the fabricated T- girder is determined based on minimum steel weight and out- of- plane distortion. Secondly, in the fabrication stage, the best welding sequence is determined on the basis of minimum welding out- of- plane distortion.

Keywords: fabricated T-girder, FEM, out-of-plane distortion, section modulus, welding residual stresses

Procedia PDF Downloads 105
5628 Effect of Concrete Strength and Aspect Ratio on Strength and Ductility of Concrete Columns

Authors: Mohamed A. Shanan, Ashraf H. El-Zanaty, Kamal G. Metwally

Abstract:

This paper presents the effect of concrete compressive strength and rectangularity ratio on strength and ductility of normal and high strength reinforced concrete columns confined with transverse steel under axial compressive loading. Nineteen normal strength concrete rectangular columns with different variables tested in this research were used to study the effect of concrete compressive strength and rectangularity ratio on strength and ductility of columns. The paper also presents a nonlinear finite element analysis for these specimens and another twenty high strength concrete square columns tested by other researchers using ANSYS 15 finite element software. The results indicate that the axial force – axial strain relationship obtained from the analytical model using ANSYS are in good agreement with the experimental data. The comparison shows that the ANSYS is capable of modeling and predicting the actual nonlinear behavior of confined normal and high-strength concrete columns under concentric loading. The maximum applied load and the maximum strain have also been confirmed to be satisfactory. Depending on this agreement between the experimental and analytical results, a parametric numerical study was conducted by ANSYS 15 to clarify and evaluate the effect of each variable on strength and ductility of the columns.

Keywords: ANSYS, concrete compressive strength effect, ductility, rectangularity ratio, strength

Procedia PDF Downloads 490
5627 The Response of Soil Biodiversity to Agriculture Practice in Rhizosphere

Authors: Yan Wang, Guowei Chen, Gang Wang

Abstract:

Soil microbial diversity is one of the important parameters to assess the soil fertility and soil health, even stability of the ecosystem. In this paper, we aim to reveal the soil microbial difference in rhizosphere and root zone, even to pick the special biomarkers influenced by the long term tillage practices, which included four treatments of no-tillage, ridge tillage, continuous cropping with corn and crop rotation with corn and soybean. Here, high-throughput sequencing was performed to investigate the difference of bacteria in rhizosphere and root zone. The results showed a very significant difference of species richness between rhizosphere and root zone soil at the same crop rotation system (p < 0.01), and also significant difference of species richness was found between continuous cropping with corn and corn-soybean rotation treatment in the rhizosphere statement, no-tillage and ridge tillage in root zone soils. Implied by further beta diversity analysis, both tillage methods and crop rotation systems influence the soil microbial diversity and community structure in varying degree. The composition and community structure of microbes in rhizosphere and root zone soils were clustered distinctly by the beta diversity (p < 0.05). Linear discriminant analysis coupled with effect size (LEfSe) analysis of total taxa in rhizosphere picked more than 100 bacterial taxa, which were significantly more abundant than that in root zone soils, whereas the number of biomarkers was lower between the continuous cropping with corn and crop rotation treatment, the same pattern was found at no-tillage and ridge tillage treatment. Bacterial communities were greatly influenced by main environmental factors in large scale, which is the result of biological adaptation and acclimation, hence it is beneficial for optimizing agricultural practices.

Keywords: tillage methods, biomarker, biodiversity, rhizosphere

Procedia PDF Downloads 144
5626 Between the Pen and the Dish Towel: Paradox of Globalization

Authors: Sandra Maria Cerqueira Da Silva

Abstract:

In Brazil, women are the majority of the country's population. They have advanced in terms of years of education and professional training. However, this has not prevented the differences in the labor market from being sustained, particularly the wage gap and inequalities concerning the access to command positions and promotions, i.e., in the gender relations and treatment. One of the conditions which constitute a barrier to career advancement is the necessary support chain to support women when they are in the labor market. Therefore, the purpose of this research is to demonstrate, describe, and criticize some of the current conformations of support chains and how these compete to promote the phenomenon known as glass ceiling in the country. However, this support may come even from inside a woman's own home, with a fairer division of household activities between men and women. Such behavior can free an entire network of women within the same family. In addition, it can serve as pressure to structure better conditions for women as a whole, improving the living conditions of the poor population. This can occur through programs and projects for qualification and retraining of adult women. In answer to the question that guides this study, it is concluded that a family support system is critical to the success of women in management positions. To meet this demand, one of the ways could be the development of specific gender policies by the public authorities, in accordance with the emerging global economic policies, in order to provide and structure the necessary support. This would respond to feminist manifestations - which should go on pointing needs – although the legislative assembly should also propose ideas to change this picture. This is a qualitative research, with a poststructuralist approach, featuring a cutout corpus of three interviews carried out with women holding leadership positions in the academia. Questions related to this very discussion are many. New studies could address points as the promotion of qualification and expansion of skills of women in subaltern condition. There is also need to investigate possible support systems, considering the inequalities and local economic conditions.

Keywords: gender and labor market, glass ceiling, post-structuralism, support chain

Procedia PDF Downloads 218
5625 Simulation Research of the Aerodynamic Drag of 3D Structures for Individual Transport Vehicle

Authors: Pawel Magryta, Mateusz Paszko

Abstract:

In today's world, a big problem of individual mobility, especially in large urban areas, occurs. Commonly used grand way of transport such as buses, trains or cars do not fulfill their tasks, i.e. they are not able to meet the increasing mobility needs of the growing urban population. Additional to that, the limitations of civil infrastructure construction in the cities exist. Nowadays the most common idea is to transfer the part of urban transport on the level of air transport. However to do this, there is a need to develop an individual flying transport vehicle. The biggest problem occurring in this concept is the type of the propulsion system from which the vehicle will obtain a lifting force. Standard propeller drives appear to be too noisy. One of the ideas is to provide the required take-off and flight power by the machine using the innovative ejector system. This kind of the system will be designed through a suitable choice of the three-dimensional geometric structure with special shape of nozzle in order to generate overpressure. The authors idea is to make a device that would allow to cumulate the overpressure using the a five-sided geometrical structure that will be limited on the one side by the blowing flow of air jet. In order to test this hypothesis a computer simulation study of aerodynamic drag of such 3D structures have been made. Based on the results of these studies, the tests on real model were also performed. The final stage of work was a comparative analysis of the results of simulation and real tests. The CFD simulation studies of air flow was conducted using the Star CD - Star Pro 3.2 software. The design of virtual model was made using the Catia v5 software. Apart from the objective to obtain advanced aviation propulsion system, all of the tests and modifications of 3D structures were also aimed at achieving high efficiency of this device while maintaining the ability to generate high value of overpressures. This was possible only in case of a large mass flow rate of air. All these aspects have been possible to verify using CFD methods for observing the flow of the working medium in the tested model. During the simulation tests, the distribution and size of pressure and velocity vectors were analyzed. Simulations were made with different boundary conditions (supply air pressure), but with a fixed external conditions (ambient temp., ambient pressure, etc.). The maximum value of obtained overpressure is 2 kPa. This value is too low to exploit the power of this device for the individual transport vehicle. Both the simulation model and real object shows a linear dependence of the overpressure values obtained from the different geometrical parameters of three-dimensional structures. Application of computational software greatly simplifies and streamlines the design and simulation capabilities. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: aviation propulsion, CFD, 3d structure, aerodynamic drag

Procedia PDF Downloads 290
5624 Production of Nanocomposite Electrical Contact Materials Ag-SnO2, W-Cu and Cu-C in Thermal Plasma

Authors: A. V. Samokhin, A. A. Fadeev, M. A. Sinaiskii, N. V. Alekseev, A. V. Kolesnikov

Abstract:

Composite materials where metal matrix is reinforced by ceramic or metal particles are of great interest for use in the manufacturing of electrical contacts. Significant improvement of the composite physical and mechanical properties as well as increase of the performance parameters of composite-based products can be achieved if the nanoscale structure in the composite materials is obtained by using nanosized powders as starting components. The results of nanosized composite powders synthesis (Ag-SnO2, W-Cu and Cu-C) in the DC thermal plasma flows are presented in this paper. The investigations included the following processes: - Recondensation of micron powder mixture Ag + SnO2 in a nitrogen plasma; - The reduction of the oxide powders mixture (WO3 + CuO) in a hydrogen-nitrogen plasma; - Decomposition of the copper formate and copper acetate powders in nitrogen plasma. The calculations of equilibrium compositions of multicomponent systems Ag-Sn-O-N, W-Cu-O-H-N and Cu-O-C-H-N in the temperature range of 400-5000 K were carried to estimate basic process characteristics. Experimental studies of the processes were performed using a plasma reactor with a confined jet flow. The plasma jet net power was in the range of 2 - 13 kW, and the feedstock flow rate was up to 0.35 kg/h. The obtained powders were characterized by TEM, HR-TEM, SEM, EDS, ED-XRF, XRD, BET and QEA methods. Nanocomposite Ag-SnO2 (12 wt. %). Processing of the initial powder mixture (Ag-SnO2) in nitrogen thermal plasma stream allowed to produce nanopowders with a specific surface area up to 24 m2/g, consisting predominantly of particles with size less than 100 nm. According to XRD results, tin was present in the obtained products as SnO2 phase, and also as intermetallic phases AgxSn. Nanocomposite W-Cu (20 wt .%). Reduction of (WO3+CuO) mixture in the hydrogen-nitrogen plasma provides W-Cu nanopowder with particle sizes in the range of 10-150 nm. The particles have mainly spherical shape and structure tungsten core - copper shell. The thickness of the shell is about several nanometers, the shell is composed of copper and its oxides (Cu2O, CuO). The nanopowders had 1.5 wt. % oxygen impurity. Heat treatment in a hydrogen atmosphere allows to reduce the oxygen content to less than 0.1 wt. %. Nanocomposite Cu-C. Copper nanopowders were found as products of the starting copper compounds decomposition. The nanopowders primarily had a spherical shape with a particle size of less than 100 nm. The main phase was copper, with small amount of Cu2O and CuO oxides. Copper formate decomposition products had a specific surface area 2.5-7 m2/g and contained 0.15 - 4 wt. % carbon; and copper acetate decomposition products had the specific surface area 5-35 m2/g, and carbon content of 0.3 - 5 wt. %. Compacting of nanocomposites (sintering in hydrogen for Ag-SnO2 and electric spark sintering (SPS) for W-Cu) showed that the samples having a relative density of 97-98 % can be obtained with a submicron structure. The studies indicate the possibility of using high-intensity plasma processes to create new technologies to produce nanocomposite materials for electric contacts.

Keywords: electrical contact, material, nanocomposite, plasma, synthesis

Procedia PDF Downloads 222
5623 Biomechanical Perspectives on the Urinary Bladder: Insights from the Hydrostatic Skeleton Concept

Authors: Igor Vishnevskyi

Abstract:

Introduction: The urinary bladder undergoes repeated strain during its working cycle, suggesting the presence of an efficient support system, force transmission, and mechanical amplification. The concept of a "hydrostatic skeleton" (HS) could contribute to our understanding of the functional relationships among bladder constituents. Methods: A multidisciplinary literature review was conducted to identify key features of the HS and to gather evidence supporting its applicability in urinary bladder biomechanics. The collected evidence was synthesized to propose a framework for understanding the potential hydrostatic properties of the urinary bladder based on existing knowledge and HS principles. Results: Our analysis revealed similarities in biomechanical features between living fluid-filled structures and the urinary bladder. These similarities include the geodesic arrangement of fibres, the role of enclosed fluid (urine) in force transmission, prestress as a determinant of stiffness, and the ability to maintain shape integrity during various activities. From a biomechanical perspective, urine may be considered an essential component of the bladder. The hydrostatic skeleton, with its autonomy and flexibility, may provide insights for researchers involved in bladder engineering. Discussion: The concept of a hydrostatic skeleton offers a holistic perspective for understanding bladder function by considering multiple mechanical factors as a single structure with emergent properties. Incorporating viewpoints from various fields on HS can help identify how this concept applies to live fluid-filled structures or organs and reveal its broader relevance to biological systems, both natural and artificial. Conclusion: The hydrostatic skeleton (HS) design principle can be applied to the urinary bladder. Understanding the bladder as a structure with HS can be instrumental in biomechanical modelling and engineering. Further research is required to fully elucidate the cellular and molecular mechanisms underlying HS in the bladder.

Keywords: hydrostatic skeleton, urinary bladder morphology, shape integrity, prestress, biomechanical modelling

Procedia PDF Downloads 61
5622 Dissimilar Welding Of New High Oxidation Material – Thor™ 115 With Vm-12 Shc

Authors: Michal Urzynicok, Krzysztof Kwiecinski

Abstract:

The development of materials used in the power generation industry for the production of boilers and their parts is characterized by high steam parameters, which present new challenges. Implementation of new combinations of alloying elements that lead to the best possible mechanical properties, including creep resistance, greatly affects new steels' weldability. All new grades have to undergo many different examinations, in regards to bending and welding, in order to enable the development of fabrication technologies, ensuring failure-free production and assembly of boiler components. 12% Cr martensitic steels like THOR™ 115 or VM-12 SHC are characterized by high oxidation resistance in high-temperature environments. At the moment, VM-12 SHC can be found in many boilers where both headers and superheater coils were produced. As this material is very difficult to obtain, a search for a proper replacement has begun. A new creep strength-enhanced ferritic steel for service in supercritical and ultra-supercritical boiler applications was developed by Tenaris in Italy and it is designated as Thor™115 (Tenaris High Oxidation Resistance). As high demand in power plants occurred to replace some parts of existing installations fabricated from VM12-SHC with other alternatives, a new development of welding procedures has begun to prepare fabricators for the challenges of joining old components with new THOR™ 115 material. This paper covers the first research of welding of dissimilar joints made out of VM12-SHC and THOR™ 115.

Keywords: thor, vm12, dissimilar welding, weldability

Procedia PDF Downloads 137
5621 Producing and Mechanical Testing of Urea-Formaldehyde Resin Foams Reinforced by Waste Phosphogypsum

Authors: Krasimira Georgieva, Yordan Denev

Abstract:

Many of thermosetting resins have application only in filled state, reinforced with different mineral fillers. The co-filling of polymers with mineral filler and gases creates a possibility for production of polymer composites materials with low density. This processing leads to forming of new materials – gas-filled plastics (polymer foams). The properties of these materials are determined mainly by the shape and size of internal structural elements (pores). The interactions on the phase boundaries have influence on the materials properties too. In the present work, the gas-filled urea-formaldehyde resins were reinforced by waste phosphogypsum. The waste phosphogypsum (CaSO4.2H2O) is a solid by-product in wet phosphoric acid production processes. The values of the interactions polymer-filler were increased by using two modifying agents: polyvinyl acetate for polymer matrix and sodium metasilicate for filler. Technological methods for gas-filling and recipes of urea-formaldehyde based materials with apparent density 20-120 kg/m3 were developed. The heat conductivity of the samples is between 0.024 and 0.029 W/moK. Tensile analyses were carried out at 10 and 50% deformation and show values 0.01-0.14 MPa and 0.01-0.09 MPa, respectively. The apparent density of obtained materials is between 20 and 92 kg/m3. The changes in the tensile properties and density of these materials according to sodium metasilicate content were studied too. The mechanism of phosphogypsum adsorption modification was studied using methods of FT-IR spectroscopy. The structure of the gas-filled urea-formaldehyde resins was described by results of electron scanning microscopy at three different magnification ratios – x50, x150 and x 500. The aim of present work is to study the possibility of the usage of phosphogypsum as mineral filler for urea-formaldehyde resins and development of a technology for the production of gas-filled reinforced polymer composite materials. The structure and the properties of obtained composite materials are suitable for thermal and sound insulation applications.

Keywords: urea formaldehyde resins, gas-filled thermostes, phosphogypsum, mechanical properties

Procedia PDF Downloads 91
5620 Stability Assessment of Underground Power House Encountering Shear Zone: Sunni Dam Hydroelectric Project (382 MW), India

Authors: Sanjeev Gupta, Ankit Prabhakar, K. Rajkumar Singh

Abstract:

Sunni Dam Hydroelectric Project (382 MW) is a run of river type development with an underground powerhouse, proposed to harness the hydel potential of river Satluj in Himachal Pradesh, India. The project is located in the inner lesser Himalaya between Dhauladhar Range in the south and the higher Himalaya in the north. The project comprises two large underground caverns, a Powerhouse cavern (171m long, 22.5m wide and 51.2m high) and another transformer hall cavern (175m long, 18.7m wide and 27m high) and the rock pillar between the two caverns is 50m. The highly jointed, fractured, anisotropic rock mass is a key challenge in Himalayan geology for an underground structure. The concern for the stability of rock mass increases when weak/shear zones are encountered in the underground structure. In the Sunni Dam project, 1.7m to 2m thick weak/shear zone comprising of deformed, weak material with gauge has been encountered in powerhouse cavern at 70m having dip direction 325 degree and dip amount 38 degree which also intersects transformer hall at initial reach. The rock encountered in the powerhouse area is moderate to highly jointed, pink quartz arenite belonging to the Khaira Formation, a transition zone comprising of alternate grey, pink & white quartz arenite and shale sequence and dolomite at higher reaches. The rock mass is intersected by mainly 3 joint sets excluding bedding joints and a few random joints. The rock class in powerhouse mainly varies from poor class (class IV) to lower order fair class (class III) and in some reaches, very poor rock mass has also been encountered. To study the stability of the underground structure in weak/shear rock mass, a 3D numerical model analysis has been carried out using RS3 software. Field studies have been interpreted and analysed to derive Bieniawski’s RMR, Barton’s “Q” class and Geological Strength Index (GSI). The various material parameters, in-situ characteristics have been determined based on tests conducted by Central Soil and Materials Research Station, New Delhi. The behaviour of the cavern has been studied by assessing the displacement contours, major and minor principal stresses and plastic zones for different stage excavation sequences. For optimisation of the support system, the stability of the powerhouse cavern with different powerhouse orientations has also been studied. The numerical modeling results indicate that cavern will not likely face stress governed by structural instability with the support system to be applied to the crown and side walls.

Keywords: 3D analysis, Himalayan geology, shear zone, underground power house

Procedia PDF Downloads 68
5619 Role of Calcination Treatment on the Structural Properties and Photocatalytic Activity of Nanorice N-Doped TiO₂ Catalyst

Authors: Totsaporn Suwannaruang, Kitirote Wantala

Abstract:

The purposes of this research were to synthesize titanium dioxide photocatalyst doped with nitrogen (N-doped TiO₂) by hydrothermal method and to test the photocatalytic degradation of paraquat under UV and visible light illumination. The effect of calcination treatment temperature on their physical and chemical properties and photocatalytic efficiencies were also investigated. The characterizations of calcined N-doped TiO₂ photocatalysts such as specific surface area, textural properties, bandgap energy, surface morphology, crystallinity, phase structure, elements and state of charges were investigated by Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) equations, UV-Visible diffuse reflectance spectroscopy (UV-Vis-DRS) by using the Kubelka-Munk theory, Wide-angle X-ray scattering (WAXS), Focussed ion beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS), respectively. The results showed that the effect of calcination temperature was significant on surface morphology, crystallinity, specific surface area, pore size diameter, bandgap energy and nitrogen content level, but insignificant on phase structure and oxidation state of titanium (Ti) atom. The N-doped TiO₂ samples illustrated only anatase crystalline phase due to nitrogen dopant in TiO₂ restrained the phase transformation from anatase to rutile. The samples presented the nanorice-like morphology. The expansion on the particle was found at 650 and 700°C of calcination temperature, resulting in increased pore size diameter. The bandgap energy was determined by Kubelka-Munk theory to be in the range 3.07-3.18 eV, which appeared slightly lower than anatase standard (3.20 eV), resulting in the nitrogen dopant could modify the optical absorption edge of TiO₂ from UV to visible light region. The nitrogen content was observed at 100, 300 and 400°C only. Also, the nitrogen element disappeared at 500°C onwards. The nitrogen (N) atom can be incorporated in TiO₂ structure with the interstitial site. The uncalcined (100°C) sample displayed the highest percent paraquat degradation under UV and visible light irradiation due to this sample revealed both the highest specific surface area and nitrogen content level. Moreover, percent paraquat removal significantly decreased with increasing calcination treatment temperature. The nitrogen content level in TiO₂ accelerated the rate of reaction with combining the effect of the specific surface area that generated the electrons and holes during illuminated with light. Therefore, the specific surface area and nitrogen content level demonstrated the important roles in the photocatalytic activity of paraquat under UV and visible light illumination.

Keywords: restraining phase transformation, interstitial site, chemical charge state, photocatalysis, paraquat degradation

Procedia PDF Downloads 135
5618 Formulation of the N-Acylethanolamine, Linoleoylethanolamide into Cubosomes for Delivery across the Blood-Brain Barrier

Authors: Younus Mohammad, Anita B. Fallah, Ben J. Boyd, Shakila B. Rizwan

Abstract:

N-acylethanolamines (NAEs) are endogenous lipids, which have neuromodulatory properties. NAEs have shown neuroprotective properties in various neurodegenerative diseases including Alzheimer's disease, Parkinson's disease and ischemic stroke. However, NAEs are eliminated rapidly in vivo by enzymatic hydrolysis. We propose to encapsulate NAEs in liquid crystalline nanoparticles (cubosomes) to increase their biological half-life and explore their therapeutic potential. Recently, we have reported the co-formulation and nanostructural characterization of cubosomes containing the NAE, oleoylethanolamide and a synthetic cubosome forming lipid phytantriol. Here, we report on the formulation of cubosomes with the NAE, linoleoylethanolamide (LEA) as the core cubosome forming lipid. LEA-cubosomes were formulated in the presence of three different steric stabilisers: two brain targeting ligands, Tween 80 and Pluronic P188 and a control, Pluronic F127. Size, morphology and internal structure of formulations were characterized by dynamic light scattering (DLS), cryogenic transmission electron microscopy (Cryo–TEM) and small angle X–ray scattering (SAXS), respectively. Chemical stability of LEA in formulations was investigated using high-performance liquid chromatography (HPLC). Cytotoxicity of formulations towards human cerebral microvascular endothelial cell line (hCMEC/D3) was also investigated using an MTT (3-[4, 5- dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide) assay. All cubosome formulations had mean particle size of less than 250 nm and were uniformly distributed with polydispersity indices less than 0.2. Cubosomes produced had a bicontinuous cubic internal structure with an Im3m space group but different lattice parameters, indicating the different modes of interaction between the stabilisers and LEA. LEA in formulations was found to be chemically stable. At concentrations of up to 20 µg/mL LEA in the presence of all the stabilisers, greater than 80% cell viability was observed.

Keywords: blood-brain barrier, cubosomes, linoleoyl ethanolamide, N-acylethanolamines (NAEs)

Procedia PDF Downloads 191
5617 The Influence of Microsilica on the Cluster Cracks' Geometry of Cement Paste

Authors: Maciej Szeląg

Abstract:

The changing nature of environmental impacts, in which cement composites are operating, are causing in the structure of the material a number of phenomena, which result in volume deformation of the composite. These strains can cause composite cracking. Cracks are merging by propagation or intersect to form a characteristic structure of cracks known as the cluster cracks. This characteristic mesh of cracks is crucial to almost all building materials, which are working in service loads conditions. Particularly dangerous for a cement matrix is a sudden load of elevated temperature – the thermal shock. Resulting in a relatively short period of time a large value of a temperature gradient between the outer surface and the material’s interior can result in cracks formation on the surface and in the volume of the material. In the paper, in order to analyze the geometry of the cluster cracks of the cement pastes, the image analysis tools were used. Tested were 4 series of specimens made of two different Portland cement. In addition, two series include microsilica as a substitute for the 10% of the cement. Within each series, specimens were performed in three w/b indicators (water/binder): 0.4; 0.5; 0.6. The cluster cracks were created by sudden loading the samples by elevated temperature of 250°C. Images of the cracked surfaces were obtained via scanning at 2400 DPI. Digital processing and measurements were performed using ImageJ v. 1.46r software. To describe the structure of the cluster cracks three stereological parameters were proposed: the average cluster area - A ̅, the average length of cluster perimeter - L ̅, and the average opening width of a crack between clusters - I ̅. The aim of the study was to identify and evaluate the relationships between measured stereological parameters, and the compressive strength and the bulk density of the modified cement pastes. The tests of the mechanical and physical feature have been carried out in accordance with EN standards. The curves describing the relationships have been developed using the least squares method, and the quality of the curve fitting to the empirical data was evaluated using three diagnostic statistics: the coefficient of determination – R2, the standard error of estimation - Se, and the coefficient of random variation – W. The use of image analysis allowed for a quantitative description of the cluster cracks’ geometry. Based on the obtained results, it was found a strong correlation between the A ̅ and L ̅ – reflecting the fractal nature of the cluster cracks formation process. It was noted that the compressive strength and the bulk density of cement pastes decrease with an increase in the values of the stereological parameters. It was also found that the main factors, which impact on the cluster cracks’ geometry are the cement particles’ size and the general content of the binder in a volume of the material. The microsilica caused the reduction in the A ̅, L ̅ and I ̅ values compared to the values obtained by the classical cement paste’s samples, which is caused by the pozzolanic properties of the microsilica.

Keywords: cement paste, cluster cracks, elevated temperature, image analysis, microsilica, stereological parameters

Procedia PDF Downloads 232
5616 Enhancement of Aircraft Longitudinal Stability Using Tubercles

Authors: Muhammad Umer, Aishwariya Giri, Umaiyma Rakha

Abstract:

Mimicked from the humpback whale flippers, the application of tubercle technology is seen to be particularly advantageous at high angles of attack. This particular advantage is of paramount importance when it comes to structures producing lift at high angles of attack. This characteristic of the technology makes it ideal for horizontal stabilizers and selecting the same as the subject of study to identify and exploit the advantage highlighted by researchers on airfoils, this project aims in establishing a foundation for the application of the bio-mimicked technology on an existing aircraft. Using a baseline and 2 tubercle configuration integrated models, the project targets to achieve the twin aim of highlighting the possibility and merits over the base model and also choosing the right configuration in providing the best characteristic suitable for high angles of attack. To facilitate this study, the required models are generated using Solidworks followed by trials in a virtual aerodynamic environment using Fluent in Ansys for resolving the project objectives. Following a structured plan, the aim is to initially identify the advantages mathematically and then selecting the optimal configuration, simulate the end configuration at angles mimicking the actual operation envelope for the particular structure. Upon simulating the baseline configuration at various angles of attack, the stall angle was determined to be 22 degrees. Thus, the tubercle configurations will be simulated and compared at 4 different angles of attacks: 0, 10, 20, and 24. Further, after providing the optimum configuration of horizontal stabilizers, this study aims at the integration of aircraft structure so that the results better imply the end deliverables of real life application. This draws the project scope closer at this point into longitudinal static stability considerations and improvements in the manoeuvrability characteristics. The objective of the study is to achieve a complete overview ready for real life application with marked benefits obtainable from bio morphing of the tubercle technology.

Keywords: flow simulation, horizontal stabilizer, stability enhancement, tubercle

Procedia PDF Downloads 304
5615 Liquidity Risk of Banks in Light of a Dominant Share of Foreign Capital in the Polish Banking Sector

Authors: Karolina Patora

Abstract:

This article investigates liquidity risk management by banks, which has gained significant importance since the global financial crisis of 2008. The issue is of particular interest for countries like Poland, in which foreign capital plays a dominant role. Such an ownership structure poses certain risks to the local banking sector, which faces an increased probability of the withdrawal of funding or assets’ transfers abroad in case of a crisis. Both these factors can have a detrimental influence on the liquidity position of foreign-owned banks and hence negatively affect the financial stability of the whole banking sector. The aim of this study is to evaluate the impact of a dominating share of foreign investors in the Polish banking sector on the liquidity position of commercial banks. The study hypothesizes that the ownership structure of the Polish banking sector, in which there are banks predominantly controlled by foreign investors, does not pose a threat to the liquidity position of Polish banks. A supplementary research hypothesis is that the liquidity risk profile of foreign-owned banks differs from that of domestic banks. The sample consists of 14 foreign-owned banks and 5 domestic banks owned by local investors, which together constitute approximately 87% of the banking sector’s assets. The data covers the period of 2004–2014. The results of the regression models show no evidence of significant differences in terms of the dynamics of changes of the liquidity buffers between the foreign-owned and domestic banks, although the signs of the coefficients might suggest that the foreign-owned banks were decreasing the holdings of liquid assets at a slower pace over the examined period, compared to the domestic banks. However, no proof of the statistical significance of these findings has been found. The supplementary research hypothesis that the liquidity risk profile of foreign-controlled banks differs from that of domestic banks was rejected.

Keywords: foreign-owned banks, liquidity position, liquidity risk, financial stability

Procedia PDF Downloads 275
5614 CoFe₂O₄ as Anode for Enhanced Energy Recovery in Microbial Fuel Cell

Authors: Mehak Munjal, Raj Kishore Sharma, Gurmeet Singh

Abstract:

Microbial Fuel Cells (MFCs) are an alternative sustainable approach that utilize bacteria present in waste water as a bio-catalyst for the production of energy. It is a promising growing technology with minimal requirement for chemical supplements. Here electrode material plays a vital role in its performance. The present study represents CoFe2O4 spinel as a novel anode material in the MFC. It not only improve the bacterial metabolics but also enhance the power output. Generally, biocompatible conductive carbon paper/cloth, graphite and stainless steel are utilised as anode in MFCs. However, these materials lack electrochemical activity for anodic microbial reaction. Therefore, we developed CoFe2O4 on graphite sheet which enhanced the anodic charge transfer process. Redox pair in CoFe2O4 helped in improvement of extracellular electron transfer, thereby enhancing the performance. The physical characterizations (FT-IR, XRD, Raman) and electrochemical measurements demonstrate the strong interaction with E.coli bacteria and thus providing an excellent power density i.e. 1850 mW/m2 .The maximum anode half -cell potential is measured to be 0.65V. Therefore, use of noble metal free anodic material further decrease the cost and the long term cell stability makes it an effective material for practical applications.

Keywords: microbial fuel cell, cobalt ferrite, E. coli, bioelectricity

Procedia PDF Downloads 120
5613 Application of Modified Vermiculite for Cationic Textile Dyestuffs Removal: Sorption and Regeneration Studies

Authors: W. Stawiński, A. Wegrzyn, O. M. Freitas, S. A. Figueiredo

Abstract:

Water is a life supporting resource, crucial for humanity and essential for natural ecosystems, which have been endangered by developing industry and increasing human population. Dyes are common in effluents discharged by various industries such as paper, plastics, food, cosmetics, and textile. They produce toxic effects on animals and disturb natural biological processes in receiving waters. Having complex molecular structure and resistance to biological decomposition they are problematic and difficult to be treated by conventional methods. In the search of efficient and sustainable method, sorption has been getting more interest in application to wastewaters treatment. Clays are minerals that have a layer structure based on phyllosilicate sheets that may carry a charge, which is balanced by ions located between the sheets. These charge-balancing ions can be exchanged resulting in very good ion-exchange properties of the material. Modifications of clays enhance their properties, producing a good and inexpensive sorbent for the removal of pollutants from wastewaters. The presented work proves that the treatment of a clay, vermiculite, with nitric acid followed by washing in citric acid strongly increases the sorption of two cationic dyes, methylene blue (C.I. 52015) and astrazon red (C.I. 110825). Desorption studies showed that the best eluent for regeneration is a solution of NaCl in ethanol. Cycles of sorption and desorption in column system showed no significant deterioration of sorption capacity and proved that the material shows a very good performance as sorbent, which can be recycled and reused. The results obtained open new possibilities of further modifications on vermiculite and modifications of other materials in order to get very efficient sorbents useful for wastewater treatment.

Keywords: cationic dyestuffs, sorption and regeneration, vermiculite, wastewater treatment

Procedia PDF Downloads 240
5612 The High Quality Colored Wind Chimes by Anodization on Aluminum Alloy

Authors: Chia-Chih Wei, Yun-Qi Li, Ssu-Ying Chen, Hsuan-Jung Chen, Hsi-Wen Yang, Chih-Yuan Chen, Chien-Chon Chen

Abstract:

In this paper we used high quality anodization technique to make colored wind chime with a nano-tube structure anodic film, which controls the length to diameter ratio of an aluminum rod and controls the oxide film structure on the surface of the aluminum rod by anodizing method. The research experiment used hard anodization to grow a controllable thickness of anodic film on aluminum alloy surface. The hard anodization film has high hardness, high insulation, high temperature resistance, good corrosion resistance, colors, and mass production properties can be further applied to transportation, electronic products, biomedical fields, or energy industry applications. This study also in-depth research and detailed discussion in the related process of aluminum alloy surface hard anodizing including pre-anodization, anodization, and post-anodization. The experiment parameters of anodization including using a mixed acid solution of sulfuric acid and oxalic acid as an anodization electrolyte, and control the temperature, time, current density, and final voltage to obtain the anodic film. In the experiments results, the properties of anodic film including thickness, hardness, insulation, and corrosion characteristics, microstructure of the anode film were measured and the hard anodization efficiency was calculated. Thereby obtaining different transmission speeds of sound in the aluminum rod and different audio sounds can be presented on the aluminum rod. Another feature of the present invention is the use of anodizing method dyeing method, laser engraving patterning and electrophoresis method to make colored aluminum wind chimes.

Keywords: anodization, colored, high quality, wind chime, nano-tube

Procedia PDF Downloads 225
5611 Analyzing the Performance of Different Cost-Based Methods for the Corrective Maintenance of a System in Thermal Power Plants

Authors: Demet Ozgur-Unluakin, Busenur Turkali, S. Caglar Aksezer

Abstract:

Since the age of industrialization, maintenance has always been a very crucial element for all kinds of factories and plants. With today’s increasingly developing technology, the system structure of such facilities has become more complicated, and even a small operational disruption may return huge losses in profits for the companies. In order to reduce these costs, effective maintenance planning is crucial, but at the same time, it is a difficult task because of the complexity of systems. The most important aspect of correct maintenance planning is to understand the structure of the system, not to ignore the dependencies among the components and as a result, to model the system correctly. In this way, it will be better to understand which component improves the system more when it is maintained. Undoubtedly, proactive maintenance at a scheduled time reduces costs because the scheduled maintenance prohibits high losses in profits. But the necessity of corrective maintenance, which directly affects the situation of the system and provides direct intervention when the system fails, should not be ignored. When a fault occurs in the system, if the problem is not solved immediately and proactive maintenance time is awaited, this may result in increased costs. This study proposes various maintenance methods with different efficiency measures under corrective maintenance strategy on a subsystem of a thermal power plant. To model the dependencies between the components, dynamic Bayesian Network approach is employed. The proposed maintenance methods aim to minimize the total maintenance cost in a planning horizon, as well as to find the most appropriate component to be attacked on, which improves the system reliability utmost. Performances of the methods are compared under corrective maintenance strategy. Furthermore, sensitivity analysis is also applied under different cost values. Results show that all fault effect methods perform better than the replacement effect methods and this conclusion is also valid under different downtime cost values.

Keywords: dynamic Bayesian networks, maintenance, multi-component systems, reliability

Procedia PDF Downloads 106
5610 Alumina Supported Cu-Mn-Cr Catalysts for CO and VOCs oxidation

Authors: Krasimir Ivanov, Elitsa Kolentsova, Dimitar Dimitrov, Petya Petrova, Tatyana Tabakova

Abstract:

This work studies the effect of chemical composition on the activity and selectivity of γ–alumina supported CuO/ MnO2/Cr2O3 catalysts toward deep oxidation of CO, dimethyl ether (DME) and methanol. The catalysts were prepared by impregnation of the support with an aqueous solution of copper nitrate, manganese nitrate and CrO3 under different conditions. Thermal, XRD and TPR analysis were performed. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor. Flow-line equipment with an adiabatic reactor for simultaneous oxidation of all compounds under the conditions that mimic closely the industrial ones was used. The reactant and product gases were analyzed by means of on-line gas chromatographs. On the basis of XRD analysis it can be concluded that the active component of the mixed Cu-Mn-Cr/γ–alumina catalysts consists of at least six compounds – CuO, Cr2O3, MnO2, Cu1.5Mn1.5O4, Cu1.5Cr1.5O4 and CuCr2O4, depending on the Cu/Mn/Cr molar ratio. Chemical composition strongly influences catalytic properties, this influence being quite variable with regards to the different processes. The rate of CO oxidation rapidly decrease with increasing of chromium content in the active component while for the DME was observed the reverse trend. It was concluded that the best compromise are the catalysts with Cu/(Mn + Cr) molar ratio 1:5 and Mn/Cr molar ratio from 1:3 to 1:4.

Keywords: Cu-Mn-Cr oxide catalysts, volatile organic compounds, deep oxidation, dimethyl ether (DME)

Procedia PDF Downloads 353