Search results for: self-regulated Learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7232

Search results for: self-regulated Learning

3392 Biographical Learning and Its Impact on the Democratization Processes of Post War Societies

Authors: Rudolf Egger

Abstract:

This article shows some results of an ongoing project in Kosova. This project deals with the meaning of social transformation processes in the life-courses of Kosova people. One goal is to create an oral history archive in this country. In the last seven years we did some interpretative work (using narrative interviews) concerning the experiences and meanings of social changes from the perspective of life course. We want to reconstruct the individual possibilities in creating one's life in new social structures. After the terrible massacres of ethnical-territorially defined nationalism in former Yugoslavia it is the main focus to find out something about the many small daily steps which must be done, to build up a kind of “normality” in this country. These steps can be very well reconstructed by narrations, by life stories, because personal experiences are naturally linked with social orders. Each individual story is connected with further stories, in which the collective history will be negotiated and reflected. The view on the biographical narration opens the possibility to analyze the concreteness of the “individual case” in the complexity of collective history. Life stories contain thereby a kind of a transition character, that’s why they can be used for the reconstruction of periods of political transformation. For example: In the individual story we can find very clear the national or mythological character of the Albanian people in Kosova. The shown narrations can be read also as narrative lines in relation to the (re-)interpretation of the past, in which lived life is fixed into history in the so-called collective memory in Kosova.

Keywords: biographical learning, adult education, social change, post war societies

Procedia PDF Downloads 421
3391 Smart Disassembly of Waste Printed Circuit Boards: The Role of IoT and Edge Computing

Authors: Muhammad Mohsin, Fawad Ahmad, Fatima Batool, Muhammad Kaab Zarrar

Abstract:

The integration of the Internet of Things (IoT) and edge computing devices offers a transformative approach to electronic waste management, particularly in the dismantling of printed circuit boards (PCBs). This paper explores how these technologies optimize operational efficiency and improve environmental sustainability by addressing challenges such as data security, interoperability, scalability, and real-time data processing. Proposed solutions include advanced machine learning algorithms for predictive maintenance, robust encryption protocols, and scalable architectures that incorporate edge computing. Case studies from leading e-waste management facilities illustrate benefits such as improved material recovery efficiency, reduced environmental impact, improved worker safety, and optimized resource utilization. The findings highlight the potential of IoT and edge computing to revolutionize e-waste dismantling and make the case for a collaborative approach between policymakers, waste management professionals, and technology developers. This research provides important insights into the use of IoT and edge computing to make significant progress in the sustainable management of electronic waste

Keywords: internet of Things, edge computing, waste PCB disassembly, electronic waste management, data security, interoperability, machine learning, predictive maintenance, sustainable development

Procedia PDF Downloads 34
3390 Implementation of an Online-Platform at the University of Freiburg to Help Medical Students Cope with Stress

Authors: Zoltán Höhling, Sarah-Lu Oberschelp, Niklas Gilsdorf, Michael Wirsching, Andrea Kuhnert

Abstract:

A majority of medical students at the University of Freiburg reported stress-related psychosomatic symptoms which are often associated with their studies. International research supports these findings, as medical students worldwide seem to be at special risk for mental health problems. In some countries and institutions, psychologically based interventions that assist medical students in coping with their stressors have been implemented. It turned out that anonymity is an important aspect here. Many students fear a potential damage of reputation when being associated with mental health problems, which may be due to a high level of competitiveness in classes. Therefore, we launched an online-platform where medical students could anonymously seek help and exchange their experiences with fellow students and experts. Medical students of all semesters have access to it through the university’s learning management system (called “ILIAS”). The informative part of the platform consists of exemplary videos showing medical students (actors) who act out scenes that demonstrate the antecedents of stress-related psychosomatic disorders. These videos are linked to different expert comments, describing the exhibited symptoms in an understandable and normalizing way. The (inter-)active part of the platform consists of self-help tools (such as meditation exercises or general tips for stress-coping) and an anonymous interactive forum where students can describe their stress-related problems and seek guidance from experts and/or share their experiences with fellow students. Besides creating an immediate proposal to help affected students, we expect that competitiveness between students might be diminished and bondage improved through mutual support between them. In the initial phase after the platform’s launch, it was accessed by a considerable number of medical students. On a closer look it appeared that platform sections like general information on psychosomatic-symptoms and self-treatment tools were accessed far more often than the online-forum during the first months after the platform launch. Although initial acceptance of the platform was relatively high, students showed a rather passive way of using our platform. While user statistics showed a clear demand for information on stress-related psychosomatic symptoms and its possible remedies, active engagement in the interactive online-forum was rare. We are currently advertising the platform intensively and trying to point out the assured anonymity of the platform and its interactive forum. Our plans, to assure students their anonymity through the use of an e-learning facility and promote active engagement in the online forum, did not (yet) turn out as expected. The reasons behind this may be manifold and based on either e-learning related issues or issues related to students’ individual needs. Students might, for example, question the assured anonymity due to a lack of trust in the technological functioning university’s learning management system. However, one may also conclude that reluctance to discuss stress-related psychosomatic symptoms with peer medical students may not be solely based on anonymity concerns, but could be rooted in more complex issues such as general mistrust between students.

Keywords: e-tutoring, stress-coping, student support, online forum

Procedia PDF Downloads 386
3389 Educational Leadership and Artificial Intelligence

Authors: Sultan Ghaleb Aldaihani

Abstract:

- The environment in which educational leadership takes place is becoming increasingly complex due to factors like globalization and rapid technological change. - This is creating a "leadership gap" where the complexity of the environment outpaces the ability of leaders to effectively respond. - Educational leadership involves guiding teachers and the broader school system towards improved student learning and achievement. 2. Implications of Artificial Intelligence (AI) in Educational Leadership: - AI has great potential to enhance education, such as through intelligent tutoring systems and automating routine tasks to free up teachers. - AI can also have significant implications for educational leadership by providing better information and data-driven decision-making capabilities. - Computer-adaptive testing can provide detailed, individualized data on student learning that leaders can use for instructional decisions and accountability. 3. Enhancing Decision-Making Processes: - Statistical models and data mining techniques can help identify at-risk students earlier, allowing for targeted interventions. - Probability-based models can diagnose students likely to drop out, enabling proactive support. - These data-driven approaches can make resource allocation and decision-making more effective. 4. Improving Efficiency and Productivity: - AI systems can automate tasks and change processes to improve the efficiency of educational leadership and administration. - Integrating AI can free up leaders to focus more on their role's human, interactive elements.

Keywords: Education, Leadership, Technology, Artificial Intelligence

Procedia PDF Downloads 45
3388 A Conundrum of Teachability and Learnability of Deaf Adult English as Second Language Learners in Pakistani Mainstream Classrooms: Integration or Elimination

Authors: Amnah Moghees, Saima Abbas Dar, Muniba Saeed

Abstract:

Teaching a second language to deaf learners has always been a challenge in Pakistan. Different approaches and strategies have been followed, but they have been resulted into partial or complete failure. The study aims to investigate the language problems faced by adult deaf learners of English as second language in mainstream classrooms. Moreover, the study also determines the factors which are very much involved in language teaching and learning in mainstream classes. To investigate the language problems, data will be collected through writing samples of ten deaf adult learners and ten normal ESL learners of the same class; whereas, observation in inclusive language teaching classrooms and interviews from five ESL teachers in inclusive classes will be conducted to know the factors which are directly or indirectly involved in inclusive language education. Keeping in view this study, qualitative research paradigm will be applied to analyse the corpus. The study figures out that deaf ESL learners face severe language issues such as; odd sentence structures, subject and verb agreement violation, misappropriation of verb forms and tenses as compared to normal ESL learners. The study also predicts that in mainstream classrooms there are multiple factors which are affecting the smoothness of teaching and learning procedure; role of mediator, level of deaf learners, empathy of normal learners towards deaf learners and language teacher’s training.

Keywords: deaf English language learner, empathy, mainstream classrooms, previous language knowledge of learners, role of mediator, language teachers' training

Procedia PDF Downloads 166
3387 A Socio-Cultural Approach to Implementing Inclusive Education in South Africa

Authors: Louis Botha

Abstract:

Since the presentation of South Africa’s inclusive education strategy in Education White Paper 6 in 2001, very little has been accomplished in terms of its implementation. The failure to achieve the goals set by this policy document is related to teachers lacking confidence and knowledge about how to enact inclusive education, as well as challenges of inflexible curricula, limited resources in overcrowded classrooms, and so forth. This paper presents a socio-cultural approach to addressing these challenges of implementing inclusive education in the South African context. It takes its departure from the view that inclusive education has been adequately theorized and conceptualized in terms of its philosophical and ethical principles, especially in South African policy and debates. What is missing, however, are carefully theorized, practically implementable research interventions which can address the concerns mentioned above. Drawing on socio-cultural principles of learning and development and on cultural-historical activity theory (CHAT) in particular, this paper argues for the use of formative interventions which introduce appropriately constructed mediational artifacts that have the potential to initiate inclusive practices and pedagogies within South African schools and classrooms. It makes use of Vygotsky’s concept of double stimulation to show how the proposed artifacts could instigate forms of transformative agency which promote the adoption of inclusive cultures of learning and teaching.

Keywords: cultural-historical activity theory, double stimulation, formative interventions, transformative agency

Procedia PDF Downloads 237
3386 Maker-Based Learning in Secondary Mathematics: Investigating Students’ Proportional Reasoning Understanding through Digital Making

Authors: Juan Torralba

Abstract:

Student digital artifacts were investigated, utilizing a qualitative exploratory research design to understand the ways in which students represented their knowledge of seventh-grade proportionality concepts as they participated in maker-based activities that culminated in the creation of digital 3-dimensional models of their dream homes. Representations of the geometric and numeric dimensions of proportionality were analyzed in the written, verbal, and visual data collected from the students. A directed content analysis approach was utilized in the data analysis, as this work aimed to build upon existing research in the field of maker-based STEAM Education. The results from this work show that students can represent their understanding of proportional reasoning through open-ended written responses more accurately than through verbal descriptions or digital artifacts. The geometric and numeric dimensions of proportionality and their respective components of attributes of similarity representation and percents, rates, and ratios representations were the most represented by the students than any other across the data, suggesting a maker-based instructional approach to teaching proportionality in the middle grades may be promising in helping students gain a solid foundation in those components. Recommendations for practice and research are discussed.

Keywords: learning through making, maker-based education, maker education in the middle grades, making in mathematics, the maker movement

Procedia PDF Downloads 75
3385 Learning English from Movies: An Exploratory Study

Authors: Yasamiyan Alolaywi

Abstract:

The sources of second language acquisition vary and depend on a learner’s preferences and choices; however, undoubtedly, the most effective methods provide authentic language input. This current study explores the effectiveness of watching movies as a means of English language acquisition. It explores university students’ views on the impact of this method in improving English language skills. The participants in this study were 74 students (25 males and 49 females) from the Department of English Language and Translation at Qassim University, Saudi Arabia. Data for this research were collected from questionnaires and individual interviews with several selected students. The findings of this study showed that many students watch movies frequently and for various purposes, the most important of which is entertainment. The students also admitted that movies help them acquire a great deal of vocabulary and develop their listening and writing skills. Also, the participants believed that exposure to a target language by native speakers helps enhance language fluency and proficiency. The students learn not only linguistic aspects from films but also other aspects, such as culture, lifestyle, and ways of thinking, in addition to learning other languages such as Spanish. In light of these results, some recommendations are proposed, such as verifying the feasibility of integrating media into a foreign language classroom. While this study covers aspects of the relationship between watching movies and English language acquisition, knowledge gaps remain that need to be filled by further research, such as on incorporating media into the educational process and how movie subtitles can improve learners’ language skills.

Keywords: language acquisition, English movies, EFL learners, perceptions

Procedia PDF Downloads 102
3384 Learning from Dendrites: Improving the Point Neuron Model

Authors: Alexander Vandesompele, Joni Dambre

Abstract:

The diversity in dendritic arborization, as first illustrated by Santiago Ramon y Cajal, has always suggested a role for dendrites in the functionality of neurons. In the past decades, thanks to new recording techniques and optical stimulation methods, it has become clear that dendrites are not merely passive electrical components. They are observed to integrate inputs in a non-linear fashion and actively participate in computations. Regardless, in simulations of neural networks dendritic structure and functionality are often overlooked. Especially in a machine learning context, when designing artificial neural networks, point neuron models such as the leaky-integrate-and-fire (LIF) model are dominant. These models mimic the integration of inputs at the neuron soma, and ignore the existence of dendrites. In this work, the LIF point neuron model is extended with a simple form of dendritic computation. This gives the LIF neuron increased capacity to discriminate spatiotemporal input sequences, a dendritic functionality as observed in another study. Simulations of the spiking neurons are performed using the Bindsnet framework. In the common LIF model, incoming synapses are independent. Here, we introduce a dependency between incoming synapses such that the post-synaptic impact of a spike is not only determined by the weight of the synapse, but also by the activity of other synapses. This is a form of short term plasticity where synapses are potentiated or depressed by the preceding activity of neighbouring synapses. This is a straightforward way to prevent inputs from simply summing linearly at the soma. To implement this, each pair of synapses on a neuron is assigned a variable,representing the synaptic relation. This variable determines the magnitude ofthe short term plasticity. These variables can be chosen randomly or, more interestingly, can be learned using a form of Hebbian learning. We use Spike-Time-Dependent-Plasticity (STDP), commonly used to learn synaptic strength magnitudes. If all neurons in a layer receive the same input, they tend to learn the same through STDP. Adding inhibitory connections between the neurons creates a winner-take-all (WTA) network. This causes the different neurons to learn different input sequences. To illustrate the impact of the proposed dendritic mechanism, even without learning, we attach five input neurons to two output neurons. One output neuron isa regular LIF neuron, the other output neuron is a LIF neuron with dendritic relationships. Then, the five input neurons are allowed to fire in a particular order. The membrane potentials are reset and subsequently the five input neurons are fired in the reversed order. As the regular LIF neuron linearly integrates its inputs at the soma, the membrane potential response to both sequences is similar in magnitude. In the other output neuron, due to the dendritic mechanism, the membrane potential response is different for both sequences. Hence, the dendritic mechanism improves the neuron’s capacity for discriminating spa-tiotemporal sequences. Dendritic computations improve LIF neurons even if the relationships between synapses are established randomly. Ideally however, a learning rule is used to improve the dendritic relationships based on input data. It is possible to learn synaptic strength with STDP, to make a neuron more sensitive to its input. Similarly, it is possible to learn dendritic relationships with STDP, to make the neuron more sensitive to spatiotemporal input sequences. Feeding structured data to a WTA network with dendritic computation leads to a significantly higher number of discriminated input patterns. Without the dendritic computation, output neurons are less specific and may, for instance, be activated by a sequence in reverse order.

Keywords: dendritic computation, spiking neural networks, point neuron model

Procedia PDF Downloads 134
3383 Accurate Mass Segmentation Using U-Net Deep Learning Architecture for Improved Cancer Detection

Authors: Ali Hamza

Abstract:

Accurate segmentation of breast ultrasound images is of paramount importance in enhancing the diagnostic capabilities of breast cancer detection. This study presents an approach utilizing the U-Net architecture for segmenting breast ultrasound images aimed at improving the accuracy and reliability of mass identification within the breast tissue. The proposed method encompasses a multi-stage process. Initially, preprocessing techniques are employed to refine image quality and diminish noise interference. Subsequently, the U-Net architecture, a deep learning convolutional neural network (CNN), is employed for pixel-wise segmentation of regions of interest corresponding to potential breast masses. The U-Net's distinctive architecture, characterized by a contracting and expansive pathway, enables accurate boundary delineation and detailed feature extraction. To evaluate the effectiveness of the proposed approach, an extensive dataset of breast ultrasound images is employed, encompassing diverse cases. Quantitative performance metrics such as the Dice coefficient, Jaccard index, sensitivity, specificity, and Hausdorff distance are employed to comprehensively assess the segmentation accuracy. Comparative analyses against traditional segmentation methods showcase the superiority of the U-Net architecture in capturing intricate details and accurately segmenting breast masses. The outcomes of this study emphasize the potential of the U-Net-based segmentation approach in bolstering breast ultrasound image analysis. The method's ability to reliably pinpoint mass boundaries holds promise for aiding radiologists in precise diagnosis and treatment planning. However, further validation and integration within clinical workflows are necessary to ascertain their practical clinical utility and facilitate seamless adoption by healthcare professionals. In conclusion, leveraging the U-Net architecture for breast ultrasound image segmentation showcases a robust framework that can significantly enhance diagnostic accuracy and advance the field of breast cancer detection. This approach represents a pivotal step towards empowering medical professionals with a more potent tool for early and accurate breast cancer diagnosis.

Keywords: mage segmentation, U-Net, deep learning, breast cancer detection, diagnostic accuracy, mass identification, convolutional neural network

Procedia PDF Downloads 85
3382 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity

Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Saifur Rahman Sabuj

Abstract:

This paper examines relationships between solar activity and earthquakes; it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to affect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth.

Keywords: k-nearest neighbour, support vector regression, random forest regression, long short-term memory network, earthquakes, solar activity, sunspot number, solar wind, solar flares

Procedia PDF Downloads 75
3381 Determining Variables in Mathematics Performance According to Gender in Mexican Elementary School

Authors: Nora Gavira Duron, Cinthya Moreda Gonzalez-Ortega, Reyna Susana Garcia Ruiz

Abstract:

This paper objective is to analyze the mathematics performance in the Learning Evaluation National Plan (PLANEA for its Spanish initials: Plan Nacional para la Evaluación de los Aprendizajes), applied to Mexican students who are enrolled in the last elementary-school year over the 2017-2018 academic year. Such test was conducted nationwide in 3,573 schools, using a sample of 108,083 students, whose average in mathematics, on a scale of 0 to 100, was 45.6 points. 75% of the sample analyzed did not reach the sufficiency level (60 points). It should be noted that only 2% got a 90 or higher score result. The performance is analyzed while considering whether there are differences in gender, marginalization level, public or private school enrollment, parents’ academic background, and living-with-parents situation. Likewise, this variable impact (among other variables) on school performance by gender is evaluated, considering multivariate logistic (Logit) regression analysis. The results show there are no significant differences in mathematics performance regarding gender in elementary school; nevertheless, the impact exerted by mothers who studied at least high school is of great relevance for students, particularly for girls. Other determining variables are students’ resilience, their parents’ economic status, and the fact they attend private schools, strengthened by the mother's education.

Keywords: multivariate regression analysis, academic performance, learning evaluation, mathematics result per gender

Procedia PDF Downloads 149
3380 Encephalon-An Implementation of a Handwritten Mathematical Expression Solver

Authors: Shreeyam, Ranjan Kumar Sah, Shivangi

Abstract:

Recognizing and solving handwritten mathematical expressions can be a challenging task, particularly when certain characters are segmented and classified. This project proposes a solution that uses Convolutional Neural Network (CNN) and image processing techniques to accurately solve various types of equations, including arithmetic, quadratic, and trigonometric equations, as well as logical operations like logical AND, OR, NOT, NAND, XOR, and NOR. The proposed solution also provides a graphical solution, allowing users to visualize equations and their solutions. In addition to equation solving, the platform, called CNNCalc, offers a comprehensive learning experience for students. It provides educational content, a quiz platform, and a coding platform for practicing programming skills in different languages like C, Python, and Java. This all-in-one solution makes the learning process engaging and enjoyable for students. The proposed methodology includes horizontal compact projection analysis and survey for segmentation and binarization, as well as connected component analysis and integrated connected component analysis for character classification. The compact projection algorithm compresses the horizontal projections to remove noise and obtain a clearer image, contributing to the accuracy of character segmentation. Experimental results demonstrate the effectiveness of the proposed solution in solving a wide range of mathematical equations. CNNCalc provides a powerful and user-friendly platform for solving equations, learning, and practicing programming skills. With its comprehensive features and accurate results, CNNCalc is poised to revolutionize the way students learn and solve mathematical equations. The platform utilizes a custom-designed Convolutional Neural Network (CNN) with image processing techniques to accurately recognize and classify symbols within handwritten equations. The compact projection algorithm effectively removes noise from horizontal projections, leading to clearer images and improved character segmentation. Experimental results demonstrate the accuracy and effectiveness of the proposed solution in solving a wide range of equations, including arithmetic, quadratic, trigonometric, and logical operations. CNNCalc features a user-friendly interface with a graphical representation of equations being solved, making it an interactive and engaging learning experience for users. The platform also includes tutorials, testing capabilities, and programming features in languages such as C, Python, and Java. Users can track their progress and work towards improving their skills. CNNCalc is poised to revolutionize the way students learn and solve mathematical equations with its comprehensive features and accurate results.

Keywords: AL, ML, hand written equation solver, maths, computer, CNNCalc, convolutional neural networks

Procedia PDF Downloads 124
3379 Reconstructability Analysis for Landslide Prediction

Authors: David Percy

Abstract:

Landslides are a geologic phenomenon that affects a large number of inhabited places and are constantly being monitored and studied for the prediction of future occurrences. Reconstructability analysis (RA) is a methodology for extracting informative models from large volumes of data that work exclusively with discrete data. While RA has been used in medical applications and social science extensively, we are introducing it to the spatial sciences through applications like landslide prediction. Since RA works exclusively with discrete data, such as soil classification or bedrock type, working with continuous data, such as porosity, requires that these data are binned for inclusion in the model. RA constructs models of the data which pick out the most informative elements, independent variables (IVs), from each layer that predict the dependent variable (DV), landslide occurrence. Each layer included in the model retains its classification data as a primary encoding of the data. Unlike other machine learning algorithms that force the data into one-hot encoding type of schemes, RA works directly with the data as it is encoded, with the exception of continuous data, which must be binned. The usual physical and derived layers are included in the model, and testing our results against other published methodologies, such as neural networks, yields accuracy that is similar but with the advantage of a completely transparent model. The results of an RA session with a data set are a report on every combination of variables and their probability of landslide events occurring. In this way, every combination of informative state combinations can be examined.

Keywords: reconstructability analysis, machine learning, landslides, raster analysis

Procedia PDF Downloads 69
3378 Development of Advanced Virtual Radiation Detection and Measurement Laboratory (AVR-DML) for Nuclear Science and Engineering Students

Authors: Lily Ranjbar, Haori Yang

Abstract:

Online education has been around for several decades, but the importance of online education became evident after the COVID-19 pandemic. Eventhough the online delivery approach works well for knowledge building through delivering content and oversight processes, it has limitations in developing hands-on laboratory skills, especially in the STEM field. During the pandemic, many education institutions faced numerous challenges in delivering lab-based courses, especially in the STEM field. Also, many students worldwide were unable to practice working with lab equipment due to social distancing or the significant cost of highly specialized equipment. The laboratory plays a crucial role in nuclear science and engineering education. It can engage students and improve their learning outcomes. In addition, online education and virtual labs have gained substantial popularity in engineering and science education. Therefore, developing virtual labs is vital for institutions to deliver high-class education to their students, including their online students. The School of Nuclear Science and Engineering (NSE) at Oregon State University, in partnership with SpectralLabs company, has developed an Advanced Virtual Radiation Detection and Measurement Lab (AVR-DML) to offer a fully online Master of Health Physics program. It was essential for us to use a system that could simulate nuclear modules that accurately replicate the underlying physics, the nature of radiation and radiation transport, and the mechanics of the instrumentations used in the real radiation detection lab. It was all accomplished using a Realistic, Adaptive, Interactive Learning System (RAILS). RAILS is a comprehensive software simulation-based learning system for use in training. It is comprised of a web-based learning management system that is located on a central server, as well as a 3D-simulation package that is downloaded locally to user machines. Users will find that the graphics, animations, and sounds in RAILS create a realistic, immersive environment to practice detecting different radiation sources. These features allow students to coexist, interact and engage with a real STEM lab in all its dimensions. It enables them to feel like they are in a real lab environment and to see the same system they would in a lab. Unique interactive interfaces were designed and developed by integrating all the tools and equipment needed to run each lab. These interfaces provide students full functionality for data collection, changing the experimental setup, and live data collection with real-time updates for each experiment. Students can manually do all experimental setups and parameter changes in this lab. Experimental results can then be tracked and analyzed in an oscilloscope, a multi-channel analyzer, or a single-channel analyzer (SCA). The advanced virtual radiation detection and measurement laboratory developed in this study enabled the NSE school to offer a fully online MHP program. This flexibility of course modality helped us to attract more non-traditional students, including international students. It is a valuable educational tool as students can walk around the virtual lab, make mistakes, and learn from them. They have an unlimited amount of time to repeat and engage in experiments. This lab will also help us speed up training in nuclear science and engineering.

Keywords: advanced radiation detection and measurement, virtual laboratory, realistic adaptive interactive learning system (rails), online education in stem fields, student engagement, stem online education, stem laboratory, online engineering education

Procedia PDF Downloads 93
3377 Glaucoma Detection in Retinal Tomography Using the Vision Transformer

Authors: Sushish Baral, Pratibha Joshi, Yaman Maharjan

Abstract:

Glaucoma is a chronic eye condition that causes vision loss that is irreversible. Early detection and treatment are critical to prevent vision loss because it can be asymptomatic. For the identification of glaucoma, multiple deep learning algorithms are used. Transformer-based architectures, which use the self-attention mechanism to encode long-range dependencies and acquire extremely expressive representations, have recently become popular. Convolutional architectures, on the other hand, lack knowledge of long-range dependencies in the image due to their intrinsic inductive biases. The aforementioned statements inspire this thesis to look at transformer-based solutions and investigate the viability of adopting transformer-based network designs for glaucoma detection. Using retinal fundus images of the optic nerve head to develop a viable algorithm to assess the severity of glaucoma necessitates a large number of well-curated images. Initially, data is generated by augmenting ocular pictures. After that, the ocular images are pre-processed to make them ready for further processing. The system is trained using pre-processed images, and it classifies the input images as normal or glaucoma based on the features retrieved during training. The Vision Transformer (ViT) architecture is well suited to this situation, as it allows the self-attention mechanism to utilise structural modeling. Extensive experiments are run on the common dataset, and the results are thoroughly validated and visualized.

Keywords: glaucoma, vision transformer, convolutional architectures, retinal fundus images, self-attention, deep learning

Procedia PDF Downloads 194
3376 Optimal Pricing Based on Real Estate Demand Data

Authors: Vanessa Kummer, Maik Meusel

Abstract:

Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.

Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning

Procedia PDF Downloads 290
3375 Impact of Integrated Signals for Doing Human Activity Recognition Using Deep Learning Models

Authors: Milagros Jaén-Vargas, Javier García Martínez, Karla Miriam Reyes Leiva, María Fernanda Trujillo-Guerrero, Francisco Fernandes, Sérgio Barroso Gonçalves, Miguel Tavares Silva, Daniel Simões Lopes, José Javier Serrano Olmedo

Abstract:

Human Activity Recognition (HAR) is having a growing impact in creating new applications and is responsible for emerging new technologies. Also, the use of wearable sensors is an important key to exploring the human body's behavior when performing activities. Hence, the use of these dispositive is less invasive and the person is more comfortable. In this study, a database that includes three activities is used. The activities were acquired from inertial measurement unit sensors (IMU) and motion capture systems (MOCAP). The main objective is differentiating the performance from four Deep Learning (DL) models: Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and hybrid model Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), when considering acceleration, velocity and position and evaluate if integrating the IMU acceleration to obtain velocity and position represent an increment in performance when it works as input to the DL models. Moreover, compared with the same type of data provided by the MOCAP system. Despite the acceleration data is cleaned when integrating, results show a minimal increase in accuracy for the integrated signals.

Keywords: HAR, IMU, MOCAP, acceleration, velocity, position, feature maps

Procedia PDF Downloads 101
3374 Education Delivery in Youth Justice Centres: Inside-Out Prison Exchange Program Pedagogy in an Australian Context

Authors: Tarmi A'Vard

Abstract:

This paper discusses the transformative learning experience for students participating in the Inside-Out Prison Exchange Program (Inside-out) and explores the value this pedagogical approach may have in youth justice centers. Inside-Out is a semester-long university course which is unique as it takes 15 university students, with their textbook and theory-based knowledge, behind the walls to study alongside 15 incarcerated students, who have the lived experience of the criminal justice system. Inside-out is currently offered in three Victorian prisons, expanding to five in 2020. The Inside-out pedagogy which is based on transformative dialogic learning is reliant upon the participants sharing knowledge and experiences to develop an understanding and appreciation of the diversity and uniqueness of one another. Inside-out offers the class an opportunity to create its own guidelines for dialogue, which can lead to the student’s sense of equality, which is fundamental in the success of this program. Dialogue allows active participation by all parties in reconciling differences, collaborating ideas, critiquing and developing hypotheses and public policies, and encouraging self-reflection and exploration. The structure of the program incorporates the implementation of circular seating (where the students alternate between inside and outside), activities, individual reflective tasks, group work, and theory analysis. In this circle everyone is equal, this includes the educator, who serves as a facilitator more so than the traditional teacher role. A significant function of the circle is to develop a group consciousness, allowing the whole class to see itself as a collective, and no one person holds a superior role. This also encourages participants to be responsible and accountable for their behavior and contributions. Research indicates completing academic courses, like Inside-Out, contributes positively to reducing recidivism. Inside-Out’s benefits and success in many adult correctional institutions have been outlined in evaluation reports and scholarly articles. The key findings incorporate the learning experiences for the students in both an academic capability and professional practice and development. Furthermore, stereotypes and pre-determined ideas are challenged, and there is a promotion of critical thinking and evidence of self-discovery and growth. There is empirical data supporting positive outcomes of education in youth justice centers in reducing recidivism and increasing the likelihood of returning to education upon release. Hence, this research could provide the opportunity to increase young people’s engagement in education which is a known protective factor for assisting young people to move away from criminal behavior. In 2016, Tarmi completed the Inside-Out educator training in Philadelphia, Pennsylvania, and has developed an interest in exploring the pedagogy of Inside-Out, specifically targeting young offenders in a Youth Justice Centre.

Keywords: dialogic transformative learning, inside-out prison exchange program, prison education, youth justice

Procedia PDF Downloads 128
3373 Health Trajectory Clustering Using Deep Belief Networks

Authors: Farshid Hajati, Federico Girosi, Shima Ghassempour

Abstract:

We present a Deep Belief Network (DBN) method for clustering health trajectories. Deep Belief Network (DBN) is a deep architecture that consists of a stack of Restricted Boltzmann Machines (RBM). In a deep architecture, each layer learns more complex features than the past layers. The proposed method depends on DBN in clustering without using back propagation learning algorithm. The proposed DBN has a better a performance compared to the deep neural network due the initialization of the connecting weights. We use Contrastive Divergence (CD) method for training the RBMs which increases the performance of the network. The performance of the proposed method is evaluated extensively on the Health and Retirement Study (HRS) database. The University of Michigan Health and Retirement Study (HRS) is a nationally representative longitudinal study that has surveyed more than 27,000 elderly and near-elderly Americans since its inception in 1992. Participants are interviewed every two years and they collect data on physical and mental health, insurance coverage, financial status, family support systems, labor market status, and retirement planning. The dataset is publicly available and we use the RAND HRS version L, which is easy to use and cleaned up version of the data. The size of sample data set is 268 and the length of the trajectories is equal to 10. The trajectories do not stop when the patient dies and represent 10 different interviews of live patients. Compared to the state-of-the-art benchmarks, the experimental results show the effectiveness and superiority of the proposed method in clustering health trajectories.

Keywords: health trajectory, clustering, deep learning, DBN

Procedia PDF Downloads 373
3372 Cyber Violence Behaviors Among Social Media Users in Ghana: An Application of Self-Control Theory and Social Learning Theory

Authors: Aisha Iddrisu

Abstract:

The proliferation of cyberviolence in the wave of increased social media consumption calls for immediate attention both at the local and global levels. With over 4.70 billion social media users worldwide and 8.8 social media users in Ghana, various forms of violence have become the order of the day in most countries and communities. Cyber violence is defined as producing, retrieving, and sharing of hurtful or dangerous online content to cause emotional, psychological, or physical harm. The urgency and severity of cyber violence have led to the enactment of laws in various countries though lots still need to be done, especially in Ghana. In Ghana, studies on cyber violence have not been extensively dealt with. Existing studies concentrate only on one form or the other form of cyber violence, thus cybercrime and cyber bullying. Also, most studies in Africa have not explored cyber violence forms using empirical theories and the few that existed were qualitatively researched, whereas others examine the effect of cyber violence rather than examining why those who involve in it behave the way they behave. It is against this backdrop that this study aims to examine various cyber violence behaviour among social media users in Ghana by applying the theory of Self-control and Social control theory. This study is important for the following reasons. The outcome of this research will help at both national and international level of policymaking by adding to the knowledge of understanding cyberviolence and why people engage in various forms of cyberviolence. It will also help expose other ways by which such behaviours are enforced thereby serving as a guide in the enactment of the rightful rules and laws to curb such behaviours. It will add to literature on consequences of new media. This study seeks to confirm or reject to the following research hypotheses. H1 Social media usage has direct significant effect of cyberviolence behaviours. H2 Ineffective parental management has direct significant positive relation to Low self-control. H3 Low self-control has direct significant positive effect on cyber violence behaviours among social, H4 Differential association has significant positive effect on cyberviolence behaviour among social media users in Ghana. H5 Definitions have a significant positive effect on cyberviolence behaviour among social media users in Ghana. H6 Imitation has a significant positive effect on cyberviolence behaviour among social media users in Ghana. H7 Differential reinforcement has a significant positive effect on cyberviolence behaviour among social media users in Ghana. H8 Differential association has a significant positive effect on definitions. H9 Differential association has a significant positive effect on imitation. H10 Differential association has a significant positive effect on differential reinforcement. H11 Differential association has significant indirect positive effects on cyberviolence through the learning process.

Keywords: cyberviolence, social media users, self-control theory, social learning theory

Procedia PDF Downloads 88
3371 Fostering Resilience in Early Adolescents: A Canadian Evaluation of the HEROES Program

Authors: Patricia L. Fontanilla, David Nordstokke

Abstract:

Introduction: Today’s children and youth face increasing social and behavioural challenges, leading to delays in social development and greater mental health needs. Early adolescents (aged 9 to 14) are experiencing a rise in mental health symptoms and diagnoses. This study examines the impact of HEROES, a social-emotional learning (SEL) program, on resilience and academic outcomes in early adolescents. The HEROES program is designed to enhance resilience the ability to adapt and thrive in the face of adversity, equipping youth to navigate developmental transitions and challenges. This study’s objective was to evaluate the program’s long-term effectiveness by measuring changes in resilience and academic resilience across 10 months. Methodology: This study collected data from 21 middle school students (grades 7 to 9) in a rural Canadian school. Quantitative data were gathered at four intervals: pre-intervention, post-intervention, and at 2- and 4-month follow-ups. Data were analyzed with linear mixed models (LMM). Results: Findings showed statistically significant increases in academic resilience over time and significant increases in resilience from pre-intervention to 2 and 4 months later. Limitations included a small sample size, which may affect generalizability. Conclusion: The HEROES program demonstrates promise in increasing resilience and academic resilience among early adolescents through SEL skill development.

Keywords: academic resilience, early adolescence, resilience, SEL, social-emotional learning program

Procedia PDF Downloads 16
3370 Nursing Education in the Pandemic Time: Case Study

Authors: Jaana Sepp, Ulvi Kõrgemaa, Kristi Puusepp, Õie Tähtla

Abstract:

COVID-19 was officially recognized as a pandemic in late 2019 by the WHO, and it has led to changes in the education sector. Educational institutions were closed, and most schools adopted distance learning. Estonia is known as a digitally well-developed country. Based on that, in the pandemic time, nursing education continued, and new technological solutions were implemented. To provide nursing education, special focus was paid on quality and flexibility. The aim of this paper is to present administrative, digital, and technological solutions which support Estonian nursing educators to continue the study process in the pandemic time and to develop a sustainable solution for nursing education for the future. This paper includes the authors’ analysis of the documents and decisions implemented in the institutions through the pandemic time. It is a case study of Estonian nursing educators. Results of the analysis show that the implementation of distance learning principles challenges the development of innovative strategies and technics for the assessment of student performance and educational outcomes and implement new strategies to encourage student engagement in the virtual classroom. Additionally, hospital internships were canceled, and the simulation approach was deeply implemented as a new opportunity to develop and assess students’ practical skills. There are many other technical and administrative changes that have also been carried out, such as students’ support and assessment systems, the designing and conducting of hybrid and blended studies, etc. All services were redesigned and made more available, individual, and flexible. Hence, the feedback system was changed, the information was collected in parallel with educational activities. Experiences of nursing education during the pandemic time are widely presented in scientific literature. However, to conclude our study, authors have found evidence that solutions implemented in Estonian nursing education allowed the students to graduate within the nominal study period without any decline in education quality. Operative information system and flexibility provided the minimum distance between the students, support, and academic staff, and likewise, the changes were implemented quickly and efficiently. Institution memberships were updated with the appropriate information, and it positively affected their satisfaction, motivation, and commitment. We recommend that the feedback process and the system should be permanently changed in the future to place all members in the same information area, redefine the hospital internship process, implement hybrid learning, as well as to improve the communication system between stakeholders inside and outside the organization. The main limitation of this study relates to the size of Estonia. Nursing education is provided by two institutions only, and similarly, the number of students is low. The result could be generated to the institutions with a similar size and administrative system. In the future, the relationship between nurses’ performance and organizational outcomes should be deeply investigated and influences of the pandemic time education analyzed at workplaces.

Keywords: hybrid learning, nursing education, nursing, COVID-19

Procedia PDF Downloads 122
3369 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 131
3368 Working within the Zone of Proximal Development: Does It Help for Reading Strategy?

Authors: Mahmood Dehqan, Peyman Peyvasteh

Abstract:

In recent years there has been a growing interest in issues concerning the impact of sociocultural theory (SCT) of learning on different aspects of second/foreign language learning. This study aimed to find the possible effects of sociocultural teaching techniques on reading strategy of EFL learners. Indeed, the present research compared the impact of peer and teacher scaffolding on EFL learners’ reading strategy use across two proficiency levels. To this end, a pre-test post-test quasi-experimental research design was used and two instruments were utilized to collect the data: Nelson English language test and reading strategy questionnaire. Ninety five university students participated in this study were divided into two groups of teacher and peer scaffolding. Teacher scaffolding group received scaffolded help from the teacher based on three mechanisms of effective help within ZPD: graduated, contingent, dialogic. In contrast, learners of peer scaffolding group were unleashed from the teacher-fronted classroom as they were asked to carry out the reading comprehension tasks with the feedback they provided for each other. Results obtained from ANOVA revealed that teacher scaffolding group outperformed the peer scaffolding group in terms of reading strategy use. It means teacher’s scaffolded help provided within the learners’ ZPD led to better reading strategy improvement compared with the peer scaffolded help. However, the interaction effect between proficiency factor and teaching technique was non-significant, leading to the conclusion that strategy use of the learners was not affected by their proficiency level in either teacher or peer scaffolding groups.

Keywords: peer scaffolding, proficiency level, reading strategy, sociocultural theory, teacher scaffolding

Procedia PDF Downloads 383
3367 Research and Development of Methodology, Tools, Techniques and Methods to Analyze and Design Interface, Media, Pedagogy for Educational Topics to be Delivered via Mobile Technology

Authors: Shimaa Nagro, Russell Campion

Abstract:

Mobile devices are becoming ever more widely available, with growing functionality, and they are increasingly used as enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material's user interfaces for mobile devices is beset by many unresolved research problems such as those arising from constraints associated with mobile devices or from issues linked to effective learning. The proposed research aims to produce: (i) a method framework for the design and evaluation of educational material’s interfaces to be delivered on mobile devices, in multimedia form based on Human Computer Interaction strategies; and (ii) a software tool implemented as a fast-track alternative to use the method framework in full. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the method framework. The method framework is a framework to enable an educational designer to effectively and efficiently create educational multimedia interfaces to be used on mobile devices by following a particular methodology that contains practical and usable tools and techniques. It is a method framework that accepts any educational material in its final lesson plan and deals with this plan as a static element, it will not suggest any changes in any information given in the lesson plan but it will help the instructor to design his final lesson plan in a multimedia format to be presented in mobile devices.

Keywords: mobile learning, M-Learn, HCI, educational multimedia, interface design

Procedia PDF Downloads 375
3366 Desk Graffiti as Art, Archive or Collective Knowledge Sharing: A Case Study of Schools in Addis Ababa, Ethiopia

Authors: Behailu Bezabih Ayele

Abstract:

Illustrative expressions in art education and in overall learning are being given increasing attention in the transmission of knowledge. The objective of this paper, therefore, is to present an analysis of graffiti on school desks-a way of smuggling knowledge on the edge of classroom education and learning. The methodological approach focuses on the systematic collection and selection of desk graffiti. Four schools are chosen to reflect socioeconomic status and gender composition. The analysis focused on the categorization of graffiti by genre. This was followed by an analysis of the style, intensity as well as content of the messages in terms of overall social impacts. The paper grounds the analysis by reviewing the literature on modern education and art education in the Ethiopian context, as well as the place of desk graffiti. The findings generally show that the school desks and the school environment, by and large, have managed to serve as vessels through which formal and informal knowledge is acquired, transmitted, engrained into the students and transformed into messages by the students. The desks have also apparently served as a springboard to maximize the interfaces between several ideas and disciplines and communications. However, the very fact that the desks serve as massive channels of expression and knowledge transmission also points to a lack of breadth availability of channels of expression, perhaps confounding the ability of classrooms as means of outlet of expression and documentation for the students. This points to the need for efforts in education policy and funding of artistic endeavors for young students.

Keywords: artistic expression, desk graffiti, education, school children, Ethiopia

Procedia PDF Downloads 70
3365 Deep Learning-Based Object Detection on Low Quality Images: A Case Study of Real-Time Traffic Monitoring

Authors: Jean-Francois Rajotte, Martin Sotir, Frank Gouineau

Abstract:

The installation and management of traffic monitoring devices can be costly from both a financial and resource point of view. It is therefore important to take advantage of in-place infrastructures to extract the most information. Here we show how low-quality urban road traffic images from cameras already available in many cities (such as Montreal, Vancouver, and Toronto) can be used to estimate traffic flow. To this end, we use a pre-trained neural network, developed for object detection, to count vehicles within images. We then compare the results with human annotations gathered through crowdsourcing campaigns. We use this comparison to assess performance and calibrate the neural network annotations. As a use case, we consider six months of continuous monitoring over hundreds of cameras installed in the city of Montreal. We compare the results with city-provided manual traffic counting performed in similar conditions at the same location. The good performance of our system allows us to consider applications which can monitor the traffic conditions in near real-time, making the counting usable for traffic-related services. Furthermore, the resulting annotations pave the way for building a historical vehicle counting dataset to be used for analysing the impact of road traffic on many city-related issues, such as urban planning, security, and pollution.

Keywords: traffic monitoring, deep learning, image annotation, vehicles, roads, artificial intelligence, real-time systems

Procedia PDF Downloads 201
3364 Innovations and Challenges: Multimodal Learning in Cybersecurity

Authors: Tarek Saadawi, Rosario Gennaro, Jonathan Akeley

Abstract:

There is rapidly growing demand for professionals to fill positions in Cybersecurity. This is recognized as a national priority both by government agencies and the private sector. Cybersecurity is a very wide technical area which encompasses all measures that can be taken in an electronic system to prevent criminal or unauthorized use of data and resources. This requires defending computers, servers, networks, and their users from any kind of malicious attacks. The need to address this challenge has been recognized globally but is particularly acute in the New York metropolitan area, home to some of the largest financial institutions in the world, which are prime targets of cyberattacks. In New York State alone, there are currently around 57,000 jobs in the Cybersecurity industry, with more than 23,000 unfilled positions. The Cybersecurity Program at City College is a collaboration between the Departments of Computer Science and Electrical Engineering. In Fall 2020, The City College of New York matriculated its first students in theCybersecurity Master of Science program. The program was designed to fill gaps in the previous offerings and evolved out ofan established partnership with Facebook on Cybersecurity Education. City College has designed a program where courses, curricula, syllabi, materials, labs, etc., are developed in cooperation and coordination with industry whenever possible, ensuring that students graduating from the program will have the necessary background to seamlessly segue into industry jobs. The Cybersecurity Program has created multiple pathways for prospective students to obtain the necessary prerequisites to apply in order to build a more diverse student population. The program can also be pursued on a part-time basis which makes it available to working professionals. Since City College’s Cybersecurity M.S. program was established to equip students with the advanced technical skills needed to thrive in a high-demand, rapidly-evolving field, it incorporates a range of pedagogical formats. From its outset, the Cybersecurity program has sought to provide both the theoretical foundations necessary for meaningful work in the field along with labs and applied learning projects aligned with skillsets required by industry. The efforts have involved collaboration with outside organizations and with visiting professors designing new courses on topics such as Adversarial AI, Data Privacy, Secure Cloud Computing, and blockchain. Although the program was initially designed with a single asynchronous course in the curriculum with the rest of the classes designed to be offered in-person, the advent of the COVID-19 pandemic necessitated a move to fullyonline learning. The shift to online learning has provided lessons for future development by providing examples of some inherent advantages to the medium in addition to its drawbacks. This talk will address the structure of the newly-implemented Cybersecurity Master’s Program and discuss the innovations, challenges, and possible future directions.

Keywords: cybersecurity, new york, city college, graduate degree, master of science

Procedia PDF Downloads 148
3363 Effect of Formative Evaluation with Feedback on Students Economics Achievement in Secondary Education

Authors: Salihu Abdullahi Galle

Abstract:

Students' performance in Economics in schools and on standardized exams in Nigeria has been worrying throughout the years, owing to some teachers' use of conventional and lecture teaching methods. Other obstacles include a lack of training, standardized testing pressure, and aversion to change, all of which can have an impact on students' cognitive ability in Economics and future careers. The researchers employed formative evaluation with feedback (FEFB) to support the teaching and learning process by providing constant feedback to both teachers and students. The researchers employed a quasi-experimental research design to examine two teaching methods (FEFB and traditional). The pre-test and post-test interaction effects were evaluated between students in the experimental group (FEFB) and those in the conventional group. The interaction effects of pre-test and post-test on male and female in the two groups were also examined, with 90 participants. The findings show that students exposed to a FEFB-based teaching approach outperform pupils taught in a traditional classroom setting, and there is no gender interaction effect between the two groups. In light of these findings, the researchers urge that Economics teachers employ FEFB during teaching and learning to ensure timely feedback, and that policymakers ensure that Economics teachers receive training and re-training on FEFB approaches.

Keywords: formative evaluation with feedback (FEFB), students, economics achievement, secondary education

Procedia PDF Downloads 51