Search results for: mode prediction
368 Stability Indicating RP – HPLC Method Development, Validation and Kinetic Study for Amiloride Hydrochloride and Furosemide in Pharmaceutical Dosage Form
Authors: Jignasha Derasari, Patel Krishna M, Modi Jignasa G.
Abstract:
Chemical stability of pharmaceutical molecules is a matter of great concern as it affects the safety and efficacy of the drug product.Stability testing data provides the basis to understand how the quality of a drug substance and drug product changes with time under the influence of various environmental factors. Besides this, it also helps in selecting proper formulation and package as well as providing proper storage conditions and shelf life, which is essential for regulatory documentation. The ICH guideline states that stress testing is intended to identify the likely degradation products which further help in determination of the intrinsic stability of the molecule and establishing degradation pathways, and to validate the stability indicating procedures. A simple, accurate and precise stability indicating RP- HPLC method was developed and validated for simultaneous estimation of Amiloride Hydrochloride and Furosemide in tablet dosage form. Separation was achieved on an Phenomenexluna ODS C18 (250 mm × 4.6 mm i.d., 5 µm particle size) by using a mobile phase consisting of Ortho phosphoric acid: Acetonitrile (50:50 %v/v) at a flow rate of 1.0 ml/min (pH 3.5 adjusted with 0.1 % TEA in Water) isocratic pump mode, Injection volume 20 µl and wavelength of detection was kept at 283 nm. Retention time for Amiloride Hydrochloride and Furosemide was 1.810 min and 4.269 min respectively. Linearity of the proposed method was obtained in the range of 40-60 µg/ml and 320-480 µg/ml and Correlation coefficient was 0.999 and 0.998 for Amiloride hydrochloride and Furosemide, respectively. Forced degradation study was carried out on combined dosage form with various stress conditions like hydrolysis (acid and base hydrolysis), oxidative and thermal conditions as per ICH guideline Q2 (R1). The RP- HPLC method has shown an adequate separation for Amiloride hydrochloride and Furosemide from its degradation products. Proposed method was validated as per ICH guidelines for specificity, linearity, accuracy; precision and robustness for estimation of Amiloride hydrochloride and Furosemide in commercially available tablet dosage form and results were found to be satisfactory and significant. The developed and validated stability indicating RP-HPLC method can be used successfully for marketed formulations. Forced degradation studies help in generating degradants in much shorter span of time, mostly a few weeks can be used to develop the stability indicating method which can be applied later for the analysis of samples generated from accelerated and long term stability studies. Further, kinetic study was also performed for different forced degradation parameters of the same combination, which help in determining order of reaction.Keywords: amiloride hydrochloride, furosemide, kinetic study, stability indicating RP-HPLC method validation
Procedia PDF Downloads 464367 Assessing Online Learning Paths in an Learning Management Systems Using a Data Mining and Machine Learning Approach
Authors: Alvaro Figueira, Bruno Cabral
Abstract:
Nowadays, students are used to be assessed through an online platform. Educators have stepped up from a period in which they endured the transition from paper to digital. The use of a diversified set of question types that range from quizzes to open questions is currently common in most university courses. In many courses, today, the evaluation methodology also fosters the students’ online participation in forums, the download, and upload of modified files, or even the participation in group activities. At the same time, new pedagogy theories that promote the active participation of students in the learning process, and the systematic use of problem-based learning, are being adopted using an eLearning system for that purpose. However, although there can be a lot of feedback from these activities to student’s, usually it is restricted to the assessments of online well-defined tasks. In this article, we propose an automatic system that informs students of abnormal deviations of a 'correct' learning path in the course. Our approach is based on the fact that by obtaining this information earlier in the semester, may provide students and educators an opportunity to resolve an eventual problem regarding the student’s current online actions towards the course. Our goal is to prevent situations that have a significant probability to lead to a poor grade and, eventually, to failing. In the major learning management systems (LMS) currently available, the interaction between the students and the system itself is registered in log files in the form of registers that mark beginning of actions performed by the user. Our proposed system uses that logged information to derive new one: the time each student spends on each activity, the time and order of the resources used by the student and, finally, the online resource usage pattern. Then, using the grades assigned to the students in previous years, we built a learning dataset that is used to feed a machine learning meta classifier. The produced classification model is then used to predict the grades a learning path is heading to, in the current year. Not only this approach serves the teacher, but also the student to receive automatic feedback on her current situation, having past years as a perspective. Our system can be applied to online courses that integrate the use of an online platform that stores user actions in a log file, and that has access to other student’s evaluations. The system is based on a data mining process on the log files and on a self-feedback machine learning algorithm that works paired with the Moodle LMS.Keywords: data mining, e-learning, grade prediction, machine learning, student learning path
Procedia PDF Downloads 122366 Root Cause Analysis of a Catastrophically Failed Output Pin Bush Coupling of a Raw Material Conveyor Belt
Authors: Kaushal Kishore, Suman Mukhopadhyay, Susovan Das, Manashi Adhikary, Sandip Bhattacharyya
Abstract:
In integrated steel plants, conveyor belts are widely used for transferring raw materials from one location to another. An output pin bush coupling attached with a conveyor transferring iron ore fines and fluxes failed after two years of service life. This led to an operational delay of approximately 15 hours. This study is focused on failure analysis of the coupling and recommending counter-measures to prevent any such failures in the future. Investigation consisted of careful visual observation, checking of operating parameters, stress calculation and analysis, macro and micro-fractography, material characterizations like chemical and metallurgical analysis and tensile and impact testings. The fracture occurred from an unusually sharp double step. There were multiple corrosion pits near the step that aggravated the situation. Inner contact surface of the coupling revealed differential abrasion that created a macroscopic difference in the height of the component. This pointed towards misalignment of the coupling beyond a threshold limit. In addition to these design and installation issues, material of the coupling did not meet the quality standards. These were made up of grey cast iron having graphite morphology intermediate between random distribution (Type A) and rosette pattern (Type B). This manifested as a marked reduction in impact toughness and tensile strength of the component. These findings corroborated well with the brittle mode of fracture that might have occurred during minor impact loading while loading of conveyor belt with raw materials from height. Simulated study was conducted to examine the effect of corrosion pits on tensile and impact toughness of grey cast iron. It was observed that pitting marginally reduced tensile strength and ductility. However, there was marked (up to 45%) reduction in impact toughness due to pitting. Thus, it became evident that failure of the coupling occurred due to combination of factors like inferior material, misalignment, poor step design and corrosion pitting. Recommendation for life enhancement of coupling included the use of tougher SG 500/7 grade, incorporation of proper fillet radius for the step, correction of alignment and application of corrosion resistant organic coating to prevent pitting.Keywords: brittle fracture, cast iron, coupling, double step, pitting, simulated impact tests
Procedia PDF Downloads 132365 Suspected Odyssean Malaria Outbreak in Gauteng Province, September 2014
Authors: Patience Manjengwa-Hungwe, Carmen White
Abstract:
Background: Odyssean malaria refers to malaria acquired by infected mosquito bites from malaria endemic to non-endemic regions by mechanical modes of transport, such as airplanes, water vessels, trains and vehicles. Odyssean Malaria is rare and is characterised by absence of travel history to malaria endemic areas. As not anticipated in non-endemic areas, late diagnosis and treatment lead to a high case fatality rate. On 26 September 2014, the Outbreak Response Unit at the National Institute of Communicable Diseases was notified of a suspected death from Odyssean Malaria in Johannesburg, Gauteng Province, a non-endemic area. The main objective of this investigation was to identify the etiological agent's mode and source of transmission. Methods: Epidemiological surveys were conducted with the deceased’s family and clinical details were obtained from doctors who treated the victim in Southrand, Johannesburg. Blood samples were collected prior to death and sent to the National Health Laboratory Services, Johannesburg laboratory for a full blood count, urea electrolytes, creatinine, and C-reactive protein. Environmental assessments and entomological investigations, including collection of mosquito and larvae, were conducted at the deceased’s home and surrounding areas and sent to the laboratory for analysis. Results: Epidemiological surveys revealed no travel history, no mechanical transmission through blood transfusion and no previous possible exposure of the victim to malaria mosquitoes. Laboratory findings indicated that the platelet count was low. A further smear revealed that the malaria parasite was present and malaria antigen for P. falciparum was positive. Entomological findings revealed that none of the six adult or larval mosquitoes collected on site were malaria vectors. Dumping sites found at the back of the house were identified as possible sites where mosquitoes from endemic places could possibly breed. Conclusion: Given that there was no travel history or the possibility of mechanical transmission (blood transfusion or needle), the research team concluded that it is highly probable that the infection was acquired through an infective Anopheles mosquito inadvertently translocated from a Malaria endemic area by mechanical modes of transport. We recommend that clinicians in non-endemic malaria areas be aware of this type of malaria and test for malaria in patients showing malaria-like symptoms.Keywords: Odyssean Malaria, vector Bourne, malaria, epidemiological surveys
Procedia PDF Downloads 338364 Integrating Data Mining with Case-Based Reasoning for Diagnosing Sorghum Anthracnose
Authors: Mariamawit T. Belete
Abstract:
Cereal production and marketing are the means of livelihood for millions of households in Ethiopia. However, cereal production is constrained by technical and socio-economic factors. Among the technical factors, cereal crop diseases are the major contributing factors to the low yield. The aim of this research is to develop an integration of data mining and knowledge based system for sorghum anthracnose disease diagnosis that assists agriculture experts and development agents to make timely decisions. Anthracnose diagnosing systems gather information from Melkassa agricultural research center and attempt to score anthracnose severity scale. Empirical research is designed for data exploration, modeling, and confirmatory procedures for testing hypothesis and prediction to draw a sound conclusion. WEKA (Waikato Environment for Knowledge Analysis) was employed for the modeling. Knowledge based system has come across a variety of approaches based on the knowledge representation method; case-based reasoning (CBR) is one of the popular approaches used in knowledge-based system. CBR is a problem solving strategy that uses previous cases to solve new problems. The system utilizes hidden knowledge extracted by employing clustering algorithms, specifically K-means clustering from sampled anthracnose dataset. Clustered cases with centroid value are mapped to jCOLIBRI, and then the integrator application is created using NetBeans with JDK 8.0.2. The important part of a case based reasoning model includes case retrieval; the similarity measuring stage, reuse; which allows domain expert to transfer retrieval case solution to suit for the current case, revise; to test the solution, and retain to store the confirmed solution to the case base for future use. Evaluation of the system was done for both system performance and user acceptance. For testing the prototype, seven test cases were used. Experimental result shows that the system achieves an average precision and recall values of 70% and 83%, respectively. User acceptance testing also performed by involving five domain experts, and an average of 83% acceptance is achieved. Although the result of this study is promising, however, further study should be done an investigation on hybrid approach such as rule based reasoning, and pictorial retrieval process are recommended.Keywords: sorghum anthracnose, data mining, case based reasoning, integration
Procedia PDF Downloads 81363 Effects of Foreign-language Learning on Bilinguals' Production in Both Their Languages
Authors: Natalia Kartushina
Abstract:
Foreign (second) language (L2) learning is highly promoted in modern society. Students are encouraged to study abroad (SA) to achieve the most effective learning outcomes. However, L2 learning has side effects for native language (L1) production, as L1 sounds might show a drift from the L1 norms towards those of the L2, and this, even after a short period of L2 learning. L1 assimilatory drift has been attributed to a strong perceptual association between similar L1 and L2 sounds in the mind of L2 leaners; thus, a change in the production of an L2 target leads to the change in the production of the related L1 sound. However, nowadays, it is quite common that speakers acquire two languages from birth, as, for example, it is the case for many bilingual communities (e.g., Basque and Spanish in the Basque Country). Yet, it remains to be established how FL learning affects native production in individuals who have two native languages, i.e., in simultaneous or very early bilinguals. Does FL learning (here a third language, L3) affect bilinguals’ both languages or only one? What factors determine which of the bilinguals’ languages is more susceptible to change? The current study examines the effects of L3 (English) learning on the production of vowels in the two native languages of simultaneous Spanish-Basque bilingual adolescents enrolled into the Erasmus SA English program. Ten bilingual speakers read five Spanish and Basque consonant-vowel-consonant-vowel words two months before their SA and the next day after their arrival back to Spain. Each word contained the target vowel in the stressed syllable and was repeated five times. Acoustic analyses measuring vowel openness (F1) and backness (F2) were performed. Two possible outcomes were considered. First, we predicted that L3 learning would affect the production of only one language and this would be the language that would be used the most in contact with English during the SA period. This prediction stems from the results of recent studies showing that early bilinguals have separate phonological systems for each of their languages; and that late FL learner (as it is the case of our participants), who tend to use their L1 in language-mixing contexts, have more L2-accented L1 speech. The second possibility stated that L3 learning would affect both of the bilinguals’ languages in line with the studies showing that bilinguals’ L1 and L2 phonologies interact and constantly co-influence each other. The results revealed that speakers who used both languages equally often (balanced users) showed an F1 drift in both languages toward the F1 of the English vowel space. Unbalanced speakers, however, showed a drift only in the less used language. The results are discussed in light of recent studies suggesting that the amount of language use is a strong predictor of the authenticity in speech production with less language use leading to more foreign-accented speech and, eventually, to language attrition.Keywords: language-contact, multilingualism, phonetic drift, bilinguals' production
Procedia PDF Downloads 109362 “Teacher, You’re on Mute!”: Teachers as Cultivators of Trans-Literacies
Authors: Efleda Preclaro Tolentino
Abstract:
Research indicates that an educator’s belief system is reflected in the way they structure the learning environment. Their values and belief system have the potential to positively impact school readiness through an understanding of children’s development and the creation of a stable, motivating environment. Based on the premise that the social environment influences the development of social skills, knowledge construct, and shared values of young children, this study examined verbal and nonverbal exchanges between early childhood teachers and their preschool students within the context of remote learning. Using the qualitative method of data collection, the study determined the nature of interactions between preschoolers and their teachers within a remote learning environment at a preschool in Southeast Asia that utilized the Mother Tongue-based Multilingual Education (MTBMLE) Approach. From the lens of sociocultural theory, the study investigated preschoolers’ use of literacies to convey meaning and to interact within a remote learning environment. Using a Strengths Perspective, the study revealed the creativity and resourcefulness of preschoolers in expressing themselves through trans-literacies that were made possible by the use of online mode of learning within cultural and subcultural norms. The study likewise examined how social skills acquired by young children were transmitted (verbally or nonverbally) in their interactions with peers during Zoom meetings. By examining the dynamics of social exchanges between teachers and children, the findings of the study underscore the importance of providing support for preschool students as they apply acquired values and shared practices within a remote learning environment. The potential of distance learning in the early years will be explored, specifically in supporting young children’s language and literacy development. At the same time, the study examines the role of teachers as cultivators of trans-literacies. The teachers’ skillful use of technology in facilitating young children’s learning, as well as in supporting interactions with families, will be examined. The findings of this study will explore the potential of distance learning in early childhood education to establish continuity in learning, supporting young children’s social and emotional transitions, and nurturing trans-literacies that transcend prevailing definitions of learning contexts. The implications of teachers and parents working collaboratively to support student learning will be examined. The importance of preparing teachers to be resourceful, adaptable, and innovative to ensure that learning takes place across a variety of modes and settings will be discussed.Keywords: transliteracy, preschoolers, remote learning, strengths perspective
Procedia PDF Downloads 91361 Study of COVID-19 Intensity Correlated with Specific Biomarkers and Environmental Factors
Authors: Satendra Pal Singh, Dalip Kr. Kakru, Jyoti Mishra, Rajesh Thakur, Tarana Sarwat
Abstract:
COVID-19 is still an intrigue as far as morbidity or mortality is concerned. The rate of recovery varies from person to person, & it depends upon the accessibility of the healthcare system and the roles played by the physicians and caregivers. It is envisaged that with the passage of time, people would become immune to this virus, and those who are vulnerable would sustain themselves with the help of vaccines. The proposed study deals with the severeness of COVID-19 is associated with some specific biomarkers linked to correlate age and gender. We will be assessing the overall homeostasis of the persons who were affected by the coronavirus infection and also of those who recovered from it. Some people show more severe effects, while others show very mild symptoms, however, they show low CT values. Thus far, it is unclear why the new strain of Covid has different effects on different people in terms of age, gender, and ABO blood typing. According to data, the fatality rate with heart disease was 10.5 percent, 7.3 percent were diabetic, and 6 percent who are already infected from other comorbidities. However, some COVID-19 cases are worse than others & it is not fully explainable as of date. Overall data show that the ABO blood group is effective or prone to the risk of SARS-COV2 infection, while another study also shows the phenotypic effects of the blood group related to covid. It is an accepted fact that females have more strong immune systems than males, which may be related to the fact that females have two ‘X’ chromosomes, which might contain a more effective immunity booster gene on the X chromosome, and are capable to protect the female. Also specific sex hormones also induce a better immune response in a specific gender. This calls for in-depth analysis to be able to gain insight into this dilemma. COVID-19 is still not fully characterized, and thus we are not very familiar with its biology, mode of infection, susceptibility, and overall viral load in the human body. How many virus particles are needed to infect a person? How, then, comorbidity contribute to coronavirus infection? Since the emergence of this virus in 2020, a large number of papers have been published, and seemingly, vaccines have been prepared. But still, a large number of questions remain unanswered. The proneness of humans for infection by covid-19 needs to be established to be able to develop a better strategy to fight this virus. Our study will be on the Impact of demography on the Severity of covid-19 infection & at the same time, will look into gender-specific sensitivity of Covid-19 and the Operational variation of different biochemical markers in Covid-19 positive patients. Besides, we will be studying the co-relation, if any, of COVID severity & ABO Blood group type and the occurrence of the most common blood group type amongst positive patience.Keywords: coronavirus, ABO blood group, age, gender
Procedia PDF Downloads 98360 The Principle of a Thought Formation: The Biological Base for a Thought
Authors: Ludmila Vucolova
Abstract:
The thought is a process that underlies consciousness and cognition and understanding its origin and processes is a longstanding goal of many academic disciplines. By integrating over twenty novel ideas and hypotheses of this theoretical proposal, we can speculate that thought is an emergent property of coded neural events, translating the electro-chemical interactions of the body with its environment—the objects of sensory stimulation, X, and Y. The latter is a self- generated feedback entity, resulting from the arbitrary pattern of the motion of a body’s motor repertory (M). A culmination of these neural events gives rise to a thought: a state of identity between an observed object X and a symbol Y. It manifests as a “state of awareness” or “state of knowing” and forms our perception of the physical world. The values of the variables of a construct—X (object), S1 (sense for the perception of X), Y (object), S2 (sense for perception of Y), and M (motor repertory that produces Y)—will specify the particular conscious percept at any given time. The proposed principle of interaction between the elements of a construct (X, Y, S1, S2, M) is universal and applies for all modes of communication (normal, deaf, blind, deaf and blind people) and for various language systems (Chinese, Italian, English, etc.). The particular arrangement of modalities of each of the three modules S1 (5 of 5), S2 (1 of 3), and M (3 of 3) defines a specific mode of communication. This multifaceted paradigm demonstrates a predetermined pattern of relationships between X, Y, and M that passes from generation to generation. The presented analysis of a cognitive experience encompasses the key elements of embodied cognition theories and unequivocally accords with the scientific interpretation of cognition as the mental action or process of acquiring knowledge and understanding through thought, experience, and the senses, and cognition means thinking and awareness. By assembling the novel ideas presented in twelve sections, we can reveal that in the invisible “chaos”, there is an order, a structure with landmarks and principles of operations and mental processes (thoughts) are physical and have a biological basis. This innovative proposal explains the phenomenon of mental imagery; give the first insight into the relationship between mental states and brain states, and support the notion that mind and body are inseparably connected. The findings of this theoretical proposal are supported by the current scientific data and are substantiated by the records of the evolution of language and human intelligence.Keywords: agent, awareness, cognitive, element, experience, feedback, first person, imagery, language, mental, motor, object, sensory, symbol, thought
Procedia PDF Downloads 384359 Predicting Photovoltaic Energy Profile of Birzeit University Campus Based on Weather Forecast
Authors: Muhammad Abu-Khaizaran, Ahmad Faza’, Tariq Othman, Yahia Yousef
Abstract:
This paper presents a study to provide sufficient and reliable information about constructing a Photovoltaic energy profile of the Birzeit University campus (BZU) based on the weather forecast. The developed Photovoltaic energy profile helps to predict the energy yield of the Photovoltaic systems based on the weather forecast and hence helps planning energy production and consumption. Two models will be developed in this paper; a Clear Sky Irradiance model and a Cloud-Cover Radiation model to predict the irradiance for a clear sky day and a cloudy day, respectively. The adopted procedure for developing such models takes into consideration two levels of abstraction. First, irradiance and weather data were acquired by a sensory (measurement) system installed on the rooftop of the Information Technology College building at Birzeit University campus. Second, power readings of a fully operational 51kW commercial Photovoltaic system installed in the University at the rooftop of the adjacent College of Pharmacy-Nursing and Health Professions building are used to validate the output of a simulation model and to help refine its structure. Based on a comparison between a mathematical model, which calculates Clear Sky Irradiance for the University location and two sets of accumulated measured data, it is found that the simulation system offers an accurate resemblance to the installed PV power station on clear sky days. However, these comparisons show a divergence between the expected energy yield and actual energy yield in extreme weather conditions, including clouding and soiling effects. Therefore, a more accurate prediction model for irradiance that takes into consideration weather factors, such as relative humidity and cloudiness, which affect irradiance, was developed; Cloud-Cover Radiation Model (CRM). The equivalent mathematical formulas implement corrections to provide more accurate inputs to the simulation system. The results of the CRM show a very good match with the actual measured irradiance during a cloudy day. The developed Photovoltaic profile helps in predicting the output energy yield of the Photovoltaic system installed at the University campus based on the predicted weather conditions. The simulation and practical results for both models are in a very good match.Keywords: clear-sky irradiance model, cloud-cover radiation model, photovoltaic, weather forecast
Procedia PDF Downloads 132358 Nurse-Reported Perceptions of Medication Safety in Private Hospitals in Gauteng Province.
Authors: Madre Paarlber, Alwiena Blignaut
Abstract:
Background: Medication administration errors remains a global patient safety problem targeted by the WHO (World Health Organization), yet research on this matter is sparce within the South African context. Objective: The aim was to explore and describe nurses’ (medication administrators) perceptions regarding medication administration safety-related culture, incidence, causes, and reporting in the Gauteng Province of South Africa, and to determine any relationships between perceived variables concerned with medication safety (safety culture, incidences, causes, reporting of incidences, and reasons for non-reporting). Method: A quantitative research design was used through which self-administered online surveys were sent to 768 nurses (medication administrators) (n=217). The response rate was 28.26%. The survey instrument was synthesised from the Agency of Healthcare Research and Quality (AHRQ) Hospital Survey on Patient Safety Culture, the Registered Nurse Forecasting (RN4CAST) survey, a survey list prepared from a systematic review aimed at generating a comprehensive list of medication administration error causes and the Medication Administration Error Reporting Survey from Wakefield. Exploratory and confirmatory factor analyses were used to determine the validity and reliability of the survey. Descriptive and inferential statistical data analysis were used to analyse quantitative data. Relationships and correlations were identified between items, subscales and biographic data by using Spearmans’ Rank correlations, T-Tests and ANOVAs (Analysis of Variance). Nurses reported on their perceptions of medication administration safety-related culture, incidence, causes, and reporting in the Gauteng Province. Results: Units’ teamwork deemed satisfactory, punitive responses to errors accentuated. “Crisis mode” working, concerns regarding mistake recording and long working hours disclosed as impacting patient safety. Overall medication safety graded mostly positively. Work overload, high patient-nurse ratios, and inadequate staffing implicated as error-inducing. Medication administration errors were reported regularly. Fear and administrative response to errors effected non-report. Non-report of errors’ reasons was affected by non-punitive safety culture. Conclusions: Medication administration safety improvement is contingent on fostering a non-punitive safety culture within units. Anonymous medication error reporting systems and auditing nurses’ workload are recommended in the quest of improved medication safety within Gauteng Province private hospitals.Keywords: incidence, medication administration errors, medication safety, reporting, safety culture
Procedia PDF Downloads 54357 The Significance of Urban Space in Death Trilogy of Alejandro González Iñárritu
Authors: Marta Kaprzyk
Abstract:
The cinema of Alejandro González Iñárritu hasn’t been subjected to a lot of detailed analysis yet, what makes it an exceptionally interesting research material. The purpose of this presentation is to discuss the significance of urban space in three films of this Mexican director, that forms Death Trilogy: ‘Amores Perros’ (2000), ‘21 Grams’ (2003) and ‘Babel’ (2006). The fact that in the aforementioned movies the urban space itself becomes an additional protagonist with its own identity, psychology and the ability to transform and affect other characters, in itself warrants for independent research and analysis. Independently, such mode of presenting urban space has another function; it enables the director to complement the rest of characters. The basis for methodology of this description of cinematographic space is to treat its visual layer as a point of departure for a detailed analysis. At the same time, the analysis itself will be supported by recognised academic theories concerning special issues, which are transformed here into essential tools necessary to describe the world (mise-en-scène) created by González Iñárritu. In ‘Amores perros’ the Mexico City serves as a scenery – a place full of contradictions- in the movie depicted as a modern conglomerate and an urban jungle, as well as a labyrinth of poverty and violence. In this work stylistic tropes can be found in an intertextual dialogue of the director with photographies of Nan Goldin and Mary Ellen Mark. The story recounted in ‘21 Grams’, the most tragic piece in the trilogy, is characterised by almost hyperrealistic sadism. It takes place in Memphis, which on the screen turns into an impersonal formation full of heterotopias described by Michel Foucault and non-places, as defined by Marc Augé in his essay. By contrast, the main urban space in ‘Babel’ is Tokio, which seems to perfectly correspond with the image of places discussed by Juhani Pallasmaa in his works concerning the reception of the architecture by ‘pathological senses’ in the modern (or, even more adequately, postmodern) world. It’s portrayed as a city full of buildings that look so surreal, that they seem to be completely unsuitable for the humans to move between them. Ultimately, the aim of this paper is to demonstrate the coherence of the manner in which González Iñárritu designs urban spaces in his Death Trilogy. In particular, the author attempts to examine the imperative role of the cities that form three specific microcosms in which the protagonists of the Mexican director live their overwhelming tragedies.Keywords: cinematographic space, Death Trilogy, film Studies, González Iñárritu Alejandro, urban space
Procedia PDF Downloads 333356 Bayesian Estimation of Hierarchical Models for Genotypic Differentiation of Arabidopsis thaliana
Authors: Gautier Viaud, Paul-Henry Cournède
Abstract:
Plant growth models have been used extensively for the prediction of the phenotypic performance of plants. However, they remain most often calibrated for a given genotype and therefore do not take into account genotype by environment interactions. One way of achieving such an objective is to consider Bayesian hierarchical models. Three levels can be identified in such models: The first level describes how a given growth model describes the phenotype of the plant as a function of individual parameters, the second level describes how these individual parameters are distributed within a plant population, the third level corresponds to the attribution of priors on population parameters. Thanks to the Bayesian framework, choosing appropriate priors for the population parameters permits to derive analytical expressions for the full conditional distributions of these population parameters. As plant growth models are of a nonlinear nature, individual parameters cannot be sampled explicitly, and a Metropolis step must be performed. This allows for the use of a hybrid Gibbs--Metropolis sampler. A generic approach was devised for the implementation of both general state space models and estimation algorithms within a programming platform. It was designed using the Julia language, which combines an elegant syntax, metaprogramming capabilities and exhibits high efficiency. Results were obtained for Arabidopsis thaliana on both simulated and real data. An organ-scale Greenlab model for the latter is thus presented, where the surface areas of each individual leaf can be simulated. It is assumed that the error made on the measurement of leaf areas is proportional to the leaf area itself; multiplicative normal noises for the observations are therefore used. Real data were obtained via image analysis of zenithal images of Arabidopsis thaliana over a period of 21 days using a two-step segmentation and tracking algorithm which notably takes advantage of the Arabidopsis thaliana phyllotaxy. Since the model formulation is rather flexible, there is no need that the data for a single individual be available at all times, nor that the times at which data is available be the same for all the different individuals. This allows to discard data from image analysis when it is not considered reliable enough, thereby providing low-biased data in large quantity for leaf areas. The proposed model precisely reproduces the dynamics of Arabidopsis thaliana’s growth while accounting for the variability between genotypes. In addition to the estimation of the population parameters, the level of variability is an interesting indicator of the genotypic stability of model parameters. A promising perspective is to test whether some of the latter should be considered as fixed effects.Keywords: bayesian, genotypic differentiation, hierarchical models, plant growth models
Procedia PDF Downloads 303355 Bartlett Factor Scores in Multiple Linear Regression Equation as a Tool for Estimating Economic Traits in Broilers
Authors: Oluwatosin M. A. Jesuyon
Abstract:
In order to propose a simpler tool that eliminates the age-long problems associated with the traditional index method for selection of multiple traits in broilers, the Barttlet factor regression equation is being proposed as an alternative selection tool. 100 day-old chicks each of Arbor Acres (AA) and Annak (AN) broiler strains were obtained from two rival hatcheries in Ibadan Nigeria. These were raised in deep litter system in a 56-day feeding trial at the University of Ibadan Teaching and Research Farm, located in South-west Tropical Nigeria. The body weight and body dimensions were measured and recorded during the trial period. Eight (8) zoometric measurements namely live weight (g), abdominal circumference, abdominal length, breast width, leg length, height, wing length and thigh circumference (all in cm) were recorded randomly from 20 birds within strain, at a fixed time on the first day of the new week respectively with a 5-kg capacity Camry scale. These records were analyzed and compared using completely randomized design (CRD) of SPSS analytical software, with the means procedure, Factor Scores (FS) in stepwise Multiple Linear Regression (MLR) procedure for initial live weight equations. Bartlett Factor Score (BFS) analysis extracted 2 factors for each strain, termed Body-length and Thigh-meatiness Factors for AA, and; Breast Size and Height Factors for AN. These derived orthogonal factors assisted in deducing and comparing trait-combinations that best describe body conformation and Meatiness in experimental broilers. BFS procedure yielded different body conformational traits for the two strains, thus indicating the different economic traits and advantages of strains. These factors could be useful as selection criteria for improving desired economic traits. The final Bartlett Factor Regression equations for prediction of body weight were highly significant with P < 0.0001, R2 of 0.92 and above, VIF of 1.00, and DW of 1.90 and 1.47 for Arbor Acres and Annak respectively. These FSR equations could be used as a simple and potent tool for selection during poultry flock improvement, it could also be used to estimate selection index of flocks in order to discriminate between strains, and evaluate consumer preference traits in broilers.Keywords: alternative selection tool, Bartlet factor regression model, consumer preference trait, linear and body measurements, live body weight
Procedia PDF Downloads 203354 Effect of Self-Lubricating Carbon Materials on the Tribological Performance of Ultra-High Molecular Weight Polyethylene
Authors: Nayeli Camacho, Fernanda Lara-Perez, Carolina Ortega-Portilla, Diego G. Espinosa-Arbelaez, Juan M. Alvarado-Orozco, Guillermo C. Mondragon-Rodriguez
Abstract:
Ultra-high molecular weight polyethylene (UHMWPE) has been the gold standard material for total knee replacements for almost five decades. Wear damage to UHMWPE articulating surface is inevitable due to the natural sliding and rolling movements of the knee. This generates a considerable amount of wear debris, which results in mechanical instability of the joint, reduces joint mobility, increases pain with detrimental biologic responses, and causes component loosening. The presence of wear particles has been closely related to adverse reactions in the knee joint surrounding tissue, especially for particles in the range of 0.3 to 2 μm. Carbon-based materials possess excellent mechanical properties and have shown great promise in tribological applications. In this study, diamond-like carbon coatings (DLC) and carbon nanotubes (CNTs) were used to decrease the wear rate of ultra-high molecular weight polyethylene. A titanium doped DLC (Ti-DLC) was deposited by magnetron sputtering on stainless steel precision spheres while CNTs were used as a second phase reinforcement in UHMWPE at a concentration of 1.25 wt.%. A comparative tribological analysis of the wear of UHMWPE and UHMWPE-CNTs with a stainless steel counterpart with and without Ti-DLC coating is presented. The experimental wear testing was performed on a pin-on-disc tribometer under dry conditions, using a reciprocating movement with a load of 1 N at a frequency of 2 Hz for 100,000 and 200,000 cycles. The wear tracks were analyzed with high-resolution scanning electron microscopy to determine wear modes and observe the size and shape of the wear debris. Furthermore, profilometry was used to study the depth of the wear tracks and to map the wear of the articulating surface. The wear tracks at 100,000 and 200,000 cycles on all samples were relatively shallow, and they were in the range of average roughness. It was observed that the Ti-DLC coating decreases the mass loss in the UHMWPE and the depth of the wear track. The combination of both carbon-based materials decreased the material loss compared to the system of stainless steel and UHMWPE. Burnishing of the surface was the predominant wear mode observed with all the systems, more subtle for the systems with Ti-DLC coatings. Meanwhile, in the system composed of stainless steel-UHMWPE, the intrinsic surface roughness of the material was completely replaced by the wear tracks.Keywords: CNT reinforcement, self-lubricating materials, Ti-DLC, UHMWPE tribological performance
Procedia PDF Downloads 110353 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks
Authors: Sulemana Ibrahim
Abstract:
Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks
Procedia PDF Downloads 62352 Identification of Natural Liver X Receptor Agonists as the Treatments or Supplements for the Management of Alzheimer and Metabolic Diseases
Authors: Hsiang-Ru Lin
Abstract:
Cholesterol plays an essential role in the regulation of the progression of numerous important diseases including atherosclerosis and Alzheimer disease so the generation of suitable cholesterol-lowering reagents is urgent to develop. Liver X receptor (LXR) is a ligand-activated transcription factor whose natural ligands are cholesterols, oxysterols and glucose. Once being activated, LXR can transactivate the transcription action of various genes including CYP7A1, ABCA1, and SREBP1c, involved in the lipid metabolism, glucose metabolism and inflammatory pathway. Essentially, the upregulation of ABCA1 facilitates cholesterol efflux from the cells and attenuates the production of beta-amyloid (ABeta) 42 in brain so LXR is a promising target to develop the cholesterol-lowering reagents and preventative treatment of Alzheimer disease. Engelhardia roxburghiana is a deciduous tree growing in India, China, and Taiwan. However, its chemical composition is only reported to exhibit antitubercular and anti-inflammatory effects. In this study, four compounds, engelheptanoxides A, C, engelhardiol A, and B isolated from the root of Engelhardia roxburghiana were evaluated for their agonistic activity against LXR by the transient transfection reporter assays in the HepG2 cells. Furthermore, their interactive modes with LXR ligand binding pocket were generated by molecular modeling programs. By using the cell-based biological assays, engelheptanoxides A, C, engelhardiol A, and B showing no cytotoxic effect against the proliferation of HepG2 cells, exerted obvious LXR agonistic effects with similar activity as T0901317, a novel synthetic LXR agonist. Further modeling studies including docking and SAR (structure-activity relationship) showed that these compounds can locate in LXR ligand binding pocket in the similar manner as T0901317. Thus, LXR is one of nuclear receptors targeted by pharmaceutical industry for developing treatments of Alzheimer and atherosclerosis diseases. Importantly, the cell-based assays, together with molecular modeling studies suggesting a plausible binding mode, demonstrate that engelheptanoxides A, C, engelhardiol A, and B function as LXR agonists. This is the first report to demonstrate that the extract of Engelhardia roxburghiana contains LXR agonists. As such, these active components of Engelhardia roxburghiana or subsequent analogs may show important therapeutic effects through selective modulation of the LXR pathway.Keywords: Liver X receptor (LXR), Engelhardia roxburghiana, CYP7A1, ABCA1, SREBP1c, HepG2 cells
Procedia PDF Downloads 420351 Investigation of Elastic Properties of 3D Full Five Directional (f5d) Braided Composite Materials
Authors: Apeng Dong, Shu Li, Wenguo Zhu, Ming Qi, Qiuyi Xu
Abstract:
The primary objective of this paper is to focus on the elasticity properties of three-dimensional full five directional (3Df5d) braided composite. A large body of research has been focused on the 3D four directional (4d) and 3D five directional (5d) structure but not much research on the 3Df5d material. Generally, the influence of the yarn shape on mechanical properties of braided materials tends to be ignored, which makes results too ideal. Besides, with the improvement of the computational ability, people are accustomed to using computers to predict the material parameters, which fails to give an explicit and concise result facilitating production and application. Based on the traditional mechanics, this paper firstly deduced the functional relation between elasticity properties and braiding parameters. In addition, considering the actual shape of yarns after consolidation, the longitudinal modulus is modified and defined practically. Firstly, the analytic model is established based on the certain assumptions for the sake of clarity, this paper assumes that: A: the cross section of axial yarns is square; B: The cross section of braiding yarns is hexagonal; C: the characters of braiding yarns and axial yarns are the same; D: The angle between the structure boundary and the projection of braiding yarns in transverse plane is 45°; E: The filling factor ε of composite yarns is π/4; F: The deformation of unit cell is under constant strain condition. Then, the functional relation between material constants and braiding parameters is systematically deduced aimed at the yarn deformation mode. Finally, considering the actual shape of axial yarns after consolidation, the concept of technology factor is proposed and the longitudinal modulus of the material is modified based on the energy theory. In this paper, the analytic solution of material parameters is given for the first time, which provides a good reference for further research and application for 3Df5d materials. Although the analysis model is established based on certain assumptions, the analysis method is also applicable for other braided structures. Meanwhile, it is crucial that the cross section shape and straightness of axial yarns play dominant roles in the longitudinal elastic property. So in the braiding and solidifying process, the stability of the axial yarns should be guaranteed to increase the technology factor to reduce the dispersion of material parameters. Overall, the elastic properties of this materials are closely related to the braiding parameters and can be strongly designable, and although the longitudinal modulus of the material is greatly influenced by the technology factors, it can be defined to certain extent.Keywords: analytic solution, braided composites, elasticity properties, technology factor
Procedia PDF Downloads 237350 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment
Authors: Arindam Chaudhuri
Abstract:
Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.Keywords: FRSVM, Hadoop, MapReduce, PFRSVM
Procedia PDF Downloads 490349 Contribution of PALB2 and BLM Mutations to Familial Breast Cancer Risk in BRCA1/2 Negative South African Breast Cancer Patients Detected Using High-Resolution Melting Analysis
Authors: N. C. van der Merwe, J. Oosthuizen, M. F. Makhetha, J. Adams, B. K. Dajee, S-R. Schneider
Abstract:
Women representing high-risk breast cancer families, who tested negative for pathogenic mutations in BRCA1 and BRCA2, are four times more likely to develop breast cancer compared to women in the general population. Sequencing of genes involved in genomic stability and DNA repair led to the identification of novel contributors to familial breast cancer risk. These include BLM and PALB2. Bloom's syndrome is a rare homozygous autosomal recessive chromosomal instability disorder with a high incidence of various types of neoplasia and is associated with breast cancer when in a heterozygous state. PALB2, on the other hand, binds to BRCA2 and together, they partake actively in DNA damage repair. Archived DNA samples of 66 BRCA1/2 negative high-risk breast cancer patients were retrospectively selected based on the presence of an extensive family history of the disease ( > 3 affecteds per family). All coding regions and splice-site boundaries of both genes were screened using High-Resolution Melting Analysis. Samples exhibiting variation were bi-directionally automated Sanger sequenced. The clinical significance of each variant was assessed using various in silico and splice site prediction algorithms. Comprehensive screening identified a total of 11 BLM and 26 PALB2 variants. The variants detected ranged from global to rare and included three novel mutations. Three BLM and two PALB2 likely pathogenic mutations were identified that could account for the disease in these extensive breast cancer families in the absence of BRCA mutations (BLM c.11T > A, p.V4D; BLM c.2603C > T, p.P868L; BLM c.3961G > A, p.V1321I; PALB2 c.421C > T, p.Gln141Ter; PALB2 c.508A > T, p.Arg170Ter). Conclusion: The study confirmed the contribution of pathogenic mutations in BLM and PALB2 to the familial breast cancer burden in South Africa. It explained the presence of the disease in 7.5% of the BRCA1/2 negative families with an extensive family history of breast cancer. Segregation analysis will be performed to confirm the clinical impact of these mutations for each of these families. These results justify the inclusion of both these genes in a comprehensive breast and ovarian next generation sequencing cancer panel and should be screened simultaneously with BRCA1 and BRCA2 as it might explain a significant percentage of familial breast and ovarian cancer in South Africa.Keywords: Bloom Syndrome, familial breast cancer, PALB2, South Africa
Procedia PDF Downloads 236348 Theta-Phase Gamma-Amplitude Coupling as a Neurophysiological Marker in Neuroleptic-Naive Schizophrenia
Authors: Jun Won Kim
Abstract:
Objective: Theta-phase gamma-amplitude coupling (TGC) was used as a novel evidence-based tool to reflect the dysfunctional cortico-thalamic interaction in patients with schizophrenia. However, to our best knowledge, no studies have reported the diagnostic utility of the TGC in the resting-state electroencephalographic (EEG) of neuroleptic-naive patients with schizophrenia compared to healthy controls. Thus, the purpose of this EEG study was to understand the underlying mechanisms in patients with schizophrenia by comparing the TGC at rest between two groups and to evaluate the diagnostic utility of TGC. Method: The subjects included 90 patients with schizophrenia and 90 healthy controls. All patients were diagnosed with schizophrenia according to the criteria of Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) by two independent psychiatrists using semi-structured clinical interviews. Because patients were either drug-naïve (first episode) or had not been taking psychoactive drugs for one month before the study, we could exclude the influence of medications. Five frequency bands were defined for spectral analyses: delta (1–4 Hz), theta (4–8 Hz), slow alpha (8–10 Hz), fast alpha (10–13.5 Hz), beta (13.5–30 Hz), and gamma (30-80 Hz). The spectral power of the EEG data was calculated with fast Fourier Transformation using the 'spectrogram.m' function of the signal processing toolbox in Matlab. An analysis of covariance (ANCOVA) was performed to compare the TGC results between the groups, which were adjusted using a Bonferroni correction (P < 0.05/19 = 0.0026). Receiver operator characteristic (ROC) analysis was conducted to examine the discriminating ability of the TGC data for schizophrenia diagnosis. Results: The patients with schizophrenia showed a significant increase in the resting-state TGC at all electrodes. The delta, theta, slow alpha, fast alpha, and beta powers showed low accuracies of 62.2%, 58.4%, 56.9%, 60.9%, and 59.0%, respectively, in discriminating the patients with schizophrenia from the healthy controls. The ROC analysis performed on the TGC data generated the most accurate result among the EEG measures, displaying an overall classification accuracy of 92.5%. Conclusion: As TGC includes phase, which contains information about neuronal interactions from the EEG recording, TGC is expected to be useful for understanding the mechanisms the dysfunctional cortico-thalamic interaction in patients with schizophrenia. The resting-state TGC value was increased in the patients with schizophrenia compared to that in the healthy controls and had a higher discriminating ability than the other parameters. These findings may be related to the compensatory hyper-arousal patterns of the dysfunctional default-mode network (DMN) in schizophrenia. Further research exploring the association between TGC and medical or psychiatric conditions that may confound EEG signals will help clarify the potential utility of TGC.Keywords: quantitative electroencephalography (QEEG), theta-phase gamma-amplitude coupling (TGC), schizophrenia, diagnostic utility
Procedia PDF Downloads 143347 Achieving Product Robustness through Variation Simulation: An Industrial Case Study
Authors: Narendra Akhadkar, Philippe Delcambre
Abstract:
In power protection and control products, assembly process variations due to the individual parts manufactured from single or multi-cavity tooling is a major problem. The dimensional and geometrical variations on the individual parts, in the form of manufacturing tolerances and assembly tolerances, are sources of clearance in the kinematic joints, polarization effect in the joints, and tolerance stack-up. All these variations adversely affect the quality of product, functionality, cost, and time-to-market. Variation simulation analysis may be used in the early product design stage to predict such uncertainties. Usually, variations exist in both manufacturing processes and materials. In the tolerance analysis, the effect of the dimensional and geometrical variations of the individual parts on the functional characteristics (conditions) of the final assembled products are studied. A functional characteristic of the product may be affected by a set of interrelated dimensions (functional parameters) that usually form a geometrical closure in a 3D chain. In power protection and control products, the prerequisite is: when a fault occurs in the electrical network, the product must respond quickly to react and break the circuit to clear the fault. Usually, the response time is in milliseconds. Any failure in clearing the fault may result in severe damage to the equipment or network, and human safety is at stake. In this article, we have investigated two important functional characteristics that are associated with the robust performance of the product. It is demonstrated that the experimental data obtained at the Schneider Electric Laboratory prove the very good prediction capabilities of the variation simulation performed using CETOL (tolerance analysis software) in an industrial context. Especially, this study allows design engineers to better understand the critical parts in the product that needs to be manufactured with good, capable tolerances. On the contrary, some parts are not critical for the functional characteristics (conditions) of the product and may lead to some reduction of the manufacturing cost, ensuring robust performance. The capable tolerancing is one of the most important aspects in product and manufacturing process design. In the case of miniature circuit breaker (MCB), the product's quality and its robustness are mainly impacted by two aspects: (1) allocation of design tolerances between the components of a mechanical assembly and (2) manufacturing tolerances in the intermediate machining steps of component fabrication.Keywords: geometrical variation, product robustness, tolerance analysis, variation simulation
Procedia PDF Downloads 164346 Development of Allergenic and Melliferous Floral Pollen Spectrum Using Scanning Electron Microscopy
Authors: Mehwish Jamil Noor
Abstract:
Morphological features of pollen (sculpturing) were useful for identification of different floral taxa. In this study 49 pollen grains, types belonging to 25 families were studied using Scanning Electron Microscope. Shape and sculpturing of pollen ranging from Psilate, scabrate to reticulate, bireticulate and echinolophate. Honey pollen was identified using morphological features, number and arrangement of pore and colpi, size and shape. It presents the first attempt from Pakistan involving extraction of pollen from honey, its identification and taxonomic analysis. Among pollen studied diversity in shape and sculpturing has been observed ranging from Psilate, scabrate to reticulate to bireticulate and echinolophate condition. Pollen has been identified with the help of morphological feature, number and arrangement of pore and colpi, size and shape, reference slides, light microscopic data and previous literature have been consulted for pollen identification. Pollen of closely related species resemble each other therefore pollen identification of airborne and honey pollen is not possible till species level. Survey of flora was carried in parallel to keep the record about the allergenic and melliferous preference of specific sites through surveys and interviews. Their pollination season and geographical distribution were recorded. Two hundred and five including wild and cultivated taxa were identified belonging to sixty-seven families. Major bee attracting wild shrub and trees includes Justicia adhatoda, Acacia nilotica, Ziziphus jujuba, Taraxicum officinalis, Artemisia dubia, Casuarina sp., Ulmus sp., Broussonetia papyrifera, Cupressus sp. or Pinus roxburghii etc. Cultivated crops like Pennisetum typhoides, Nigella sativa, Triticum sativum along with fruit trees of Pyrus, Prunus, Eryobotria, Citrus etc. are popular melliferous floras. Exotic/ introduced species like Eucalyptus or Parthenium hysterophorus, are also frequently visited by bees indicating the significance of those plants in the honey industry. It is concluded that different microscopic analysis techniques give more clear and authentic pictures of and melliferous pollen identification which is well supported by the floral calendar. The diversity of pollen are observed in case of melliferous pollen, and most of the windborne pollen were found less sculptured or psilate expressing the adaptation to the specific mode of pollination. Pollen morphology and sculpturing would serve as a reference for future studies.Keywords: pollen, allergenic flora, sem, pollen key, Scanning Electron Microscopy (SEM)
Procedia PDF Downloads 201345 A Robust Optimization of Chassis Durability/Comfort Compromise Using Chebyshev Polynomial Chaos Expansion Method
Authors: Hanwei Gao, Louis Jezequel, Eric Cabrol, Bernard Vitry
Abstract:
The chassis system is composed of complex elements that take up all the loads from the tire-ground contact area and thus it plays an important role in numerous specifications such as durability, comfort, crash, etc. During the development of new vehicle projects in Renault, durability validation is always the main focus while deployment of comfort comes later in the project. Therefore, sometimes design choices have to be reconsidered because of the natural incompatibility between these two specifications. Besides, robustness is also an important point of concern as it is related to manufacturing costs as well as the performance after the ageing of components like shock absorbers. In this paper an approach is proposed aiming to realize a multi-objective optimization between chassis endurance and comfort while taking the random factors into consideration. The adaptive-sparse polynomial chaos expansion method (PCE) with Chebyshev polynomial series has been applied to predict responses’ uncertainty intervals of a system according to its uncertain-but-bounded parameters. The approach can be divided into three steps. First an initial design of experiments is realized to build the response surfaces which represent statistically a black-box system. Secondly within several iterations an optimum set is proposed and validated which will form a Pareto front. At the same time the robustness of each response, served as additional objectives, is calculated from the pre-defined parameter intervals and the response surfaces obtained in the first step. Finally an inverse strategy is carried out to determine the parameters’ tolerance combination with a maximally acceptable degradation of the responses in terms of manufacturing costs. A quarter car model has been tested as an example by applying the road excitations from the actual road measurements for both endurance and comfort calculations. One indicator based on the Basquin’s law is defined to compare the global chassis durability of different parameter settings. Another indicator related to comfort is obtained from the vertical acceleration of the sprung mass. An optimum set with best robustness has been finally obtained and the reference tests prove a good robustness prediction of Chebyshev PCE method. This example demonstrates the effectiveness and reliability of the approach, in particular its ability to save computational costs for a complex system.Keywords: chassis durability, Chebyshev polynomials, multi-objective optimization, polynomial chaos expansion, ride comfort, robust design
Procedia PDF Downloads 152344 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources
Authors: Mustafa Alhamdi
Abstract:
Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification
Procedia PDF Downloads 150343 Optimization of Heat Source Assisted Combustion on Solid Rocket Motors
Authors: Minal Jain, Vinayak Malhotra
Abstract:
Solid Propellant ignition consists of rapid and complex events comprising of heat generation and transfer of heat with spreading of flames over the entire burning surface area. Proper combustion and thus propulsion depends heavily on the modes of heat transfer characteristics and cavity volume. Fire safety is an integral component of a successful rocket flight failing to which may lead to overall failure of the rocket. This leads to enormous forfeiture in resources viz., money, time, and labor involved. When the propellant is ignited, thrust is generated and the casing gets heated up. This heat adds on to the propellant heat and the casing, if not at proper orientation starts burning as well, leading to the whole rocket being completely destroyed. This has necessitated active research efforts emphasizing a comprehensive study on the inter-energy relations involved for effective utilization of the solid rocket motors for better space missions. Present work is focused on one of the major influential aspects of this detrimental burning which is the presence of an external heat source, in addition to a potential heat source which is already ignited. The study is motivated by the need to ensure better combustion and fire safety presented experimentally as a simplified small-scale mode of a rocket carrying a solid propellant inside a cavity. The experimental setup comprises of a paraffin wax candle as the pilot fuel and incense stick as the external heat source. The candle is fixed and the incense stick position and location is varied to investigate the find the influence of the pilot heat source. Different configurations of the external heat source presence with separation distance are tested upon. Regression rates of the pilot thin solid fuel are noted to fundamentally understand the non-linear heat and mass transfer which is the governing phenomenon. An attempt is made to understand the phenomenon fundamentally and the mechanism governing it. Results till now indicate non-linear heat transfer assisted with the occurrence of flaming transition at selected critical distances. With an increase in separation distance, the effect is noted to drop in a non-monotonic trend. The parametric study results are likely to provide useful physical insight about the governing physics and utilization in proper testing, validation, material selection, and designing of solid rocket motors with enhanced safety.Keywords: combustion, propellant, regression, safety
Procedia PDF Downloads 161342 Toxicity and Biodegradability of Veterinary Antibiotic Tiamulin
Authors: Gabriela Kalcikova, Igor Bosevski, Ula Rozman, Andreja Zgajnar Gotvajn
Abstract:
Antibiotics are extensively used in human medicine and also in animal husbandry to prevent or control infections. Recently, a lot of attention has been put on veterinary antibiotics, because their global consumption is increasing and it is expected to be 106.600 tons in 2030. Most of veterinary antibiotics are introduced into the environment via animal manure, which is used as fertilizer. One of such veterinary antibiotics is tiamulin. It is used the form of fumarate for treatment of pig and poultry. It is used against prophylaxis of dysentery, pneumonia and mycroplasmal infections, but its environmental impact is practically unknown. Tiamulin has been found very persistent in animal manure and thus it is expected that can be, during rainfalls, transported into the aquatic environment and affect various organisms. For assessment of its environmental impact, it is necessary to evaluate its biodegradability and toxicity to various organisms from different levels of a food chain. Therefore, the aim of our study was to evaluate ready biodegradability and toxicity of tiamulin fumarate to various organisms. Bioassay used included luminescent bacterium Vibrio fischeri heterotrophic and nitrifying microorganisms of activated sludge, water flea Daphnia magna and duckweed Lemna minor. For each species, EC₅₀ values were calculated. Biodegradability test was used for determination of ready biodegradability and it provides information about biodegradability of tiamulin under the most common environmental conditions. Results of our study showed that tiamulin differently affects selected organisms. The most sensitive organisms were water fleas with 48hEC₅₀ = 14.2 ± 4.8 mg/L and duckweed with 168hEC₅₀ = 22.6 ± 0.8 mg/L. Higher concentrations of tiamulin (from 10 mg/L) significantly affected photosynthetic pigments content in duckweed and concentrations above 80 mg/L cause visible chlorosis. It is in agreement with previous studies showing significant effect of tiamulin on green algae and cyanobacteria. Tiamuline has a low effect on microorganisms. The lower toxicity was observed for heterotrophic microorganisms (30minEC₅₀ = 1656 ± 296 mg/L), than Vibrio fisheri (30minEC₅₀ = 492 ± 21) and the most sensitive organisms were nitrifying microorganisms (30minEC₅₀ = 183 ± 127 mg/L). The reason is most probably the mode of action of tiamulin being effective to gram-positive bacteria while gram-negative (e.g., Vibrio fisheri) are more tolerant to tiamulin. Biodegradation of tiamulin was very slow with a long lag-phase being 20 days. The maximal degradation reached 40 ± 2 % in 43 days of the test and tiamulin as other antibiotics (e.g. ciprofloxacin) are not easily biodegradable. Tiamulin is widely used antibiotic in veterinary medicine and thus present in the environment. According to our results, tiamulin can have negative effect on water fleas and duckweeds, but the concentrations are several magnitudes higher than that found in any environmental compartment. Tiamulin is low toxic to tested microorganisms, but it is very low biodegradable and thus possibly persistent in the environment.Keywords: antibiotics, biodegradability, tiamulin, toxicity
Procedia PDF Downloads 186341 Radar on Bike: Coarse Classification based on Multi-Level Clustering for Cyclist Safety Enhancement
Authors: Asma Omri, Noureddine Benothman, Sofiane Sayahi, Fethi Tlili, Hichem Besbes
Abstract:
Cycling, a popular mode of transportation, can also be perilous due to cyclists' vulnerability to collisions with vehicles and obstacles. This paper presents an innovative cyclist safety system based on radar technology designed to offer real-time collision risk warnings to cyclists. The system incorporates a low-power radar sensor affixed to the bicycle and connected to a microcontroller. It leverages radar point cloud detections, a clustering algorithm, and a supervised classifier. These algorithms are optimized for efficiency to run on the TI’s AWR 1843 BOOST radar, utilizing a coarse classification approach distinguishing between cars, trucks, two-wheeled vehicles, and other objects. To enhance the performance of clustering techniques, we propose a 2-Level clustering approach. This approach builds on the state-of-the-art Density-based spatial clustering of applications with noise (DBSCAN). The objective is to first cluster objects based on their velocity, then refine the analysis by clustering based on position. The initial level identifies groups of objects with similar velocities and movement patterns. The subsequent level refines the analysis by considering the spatial distribution of these objects. The clusters obtained from the first level serve as input for the second level of clustering. Our proposed technique surpasses the classical DBSCAN algorithm in terms of geometrical metrics, including homogeneity, completeness, and V-score. Relevant cluster features are extracted and utilized to classify objects using an SVM classifier. Potential obstacles are identified based on their velocity and proximity to the cyclist. To optimize the system, we used the View of Delft dataset for hyperparameter selection and SVM classifier training. The system's performance was assessed using our collected dataset of radar point clouds synchronized with a camera on an Nvidia Jetson Nano board. The radar-based cyclist safety system is a practical solution that can be easily installed on any bicycle and connected to smartphones or other devices, offering real-time feedback and navigation assistance to cyclists. We conducted experiments to validate the system's feasibility, achieving an impressive 85% accuracy in the classification task. This system has the potential to significantly reduce the number of accidents involving cyclists and enhance their safety on the road.Keywords: 2-level clustering, coarse classification, cyclist safety, warning system based on radar technology
Procedia PDF Downloads 79340 Gendered Experiences of the Urban Space in India as Portrayed by Hindi Cinema: A Quantitative Analysis
Authors: Hugo Ribadeau Dumas
Abstract:
In India, cities represent intense battlefields where patriarchal norms are simultaneously defied and reinforced. While Indian metropolises have witnessed numerous initiatives where women boldly claimed their right to the city, urban spaces still remain disproportionately unfriendly to female city-dwellers. As a result, the presence of strees (women, in Hindi) in the streets remains a socially and politically potent phenomenon. This paper explores how, in India, women engage with the city as compared to men. Borrowing analytical tools from urban geography, it uses Hindi cinema as a medium to map the extent to which activities, attitudes and experiences in urban spaces are highly gendered. The sample consists of 30 movies, both mainstream and independent, which were released between 2010 and 2020, were set in an urban environment and comprised at least one pivotal female character. The paper adopts a quantitative approach, consisting of the scrutiny of close to 3,000 minutes of footage, the labeling and time count of every scene, and the computation of regressions to identify statistical relationships between characters and the way they navigate the city. According to the analysis, female characters spend half less time in the public space than their male counterparts. When they do step out, women do it mostly for utilitarian reasons; inversely, in private spaces or in pseudo-public commercial places – like malls – they indulge in fun activities. For male characters, the pattern is the exact opposite: fun takes place in public and serious work in private. The characters’ attitudes in the streets are also greatly gendered: men spend a significant amount of time immobile, loitering, while women are usually on the move, displaying some sense of purpose. Likewise, body language and emotional expressiveness betray differentiated gender scripts: while women wander in the streets either smiling – in a charming role – or with a hostile face – in a defensive mode – men are more likely to adopt neutral facial expressions. These trends were observed across all movies, although some nuances were identified depending on the character's age group, social background, and city, highlighting that the urban experience is not the same for all women. The empirical pieces of evidence presented in this study are helpful to reflect on the meaning of public space in the context of contemporary Indian cities. The paper ends with a discussion on the link between universal access to public spaces and women's empowerment.Keywords: cinema, Indian cities, public space, women empowerment
Procedia PDF Downloads 155339 Frequency Response of Complex Systems with Localized Nonlinearities
Authors: E. Menga, S. Hernandez
Abstract:
Finite Element Models (FEMs) are widely used in order to study and predict the dynamic properties of structures and usually, the prediction can be obtained with much more accuracy in the case of a single component than in the case of assemblies. Especially for structural dynamics studies, in the low and middle frequency range, most complex FEMs can be seen as assemblies made by linear components joined together at interfaces. From a modelling and computational point of view, these types of joints can be seen as localized sources of stiffness and damping and can be modelled as lumped spring/damper elements, most of time, characterized by nonlinear constitutive laws. On the other side, most of FE programs are able to run nonlinear analysis in time-domain. They treat the whole structure as nonlinear, even if there is one nonlinear degree of freedom (DOF) out of thousands of linear ones, making the analysis unnecessarily expensive from a computational point of view. In this work, a methodology in order to obtain the nonlinear frequency response of structures, whose nonlinearities can be considered as localized sources, is presented. The work extends the well-known Structural Dynamic Modification Method (SDMM) to a nonlinear set of modifications, and allows getting the Nonlinear Frequency Response Functions (NLFRFs), through an ‘updating’ process of the Linear Frequency Response Functions (LFRFs). A brief summary of the analytical concepts is given, starting from the linear formulation and understanding what the implications of the nonlinear one, are. The response of the system is formulated in both: time and frequency domain. First the Modal Database is extracted and the linear response is calculated. Secondly the nonlinear response is obtained thru the NL SDMM, by updating the underlying linear behavior of the system. The methodology, implemented in MATLAB, has been successfully applied to estimate the nonlinear frequency response of two systems. The first one is a two DOFs spring-mass-damper system, and the second example takes into account a full aircraft FE Model. In spite of the different levels of complexity, both examples show the reliability and effectiveness of the method. The results highlight a feasible and robust procedure, which allows a quick estimation of the effect of localized nonlinearities on the dynamic behavior. The method is particularly powerful when most of the FE Model can be considered as acting linearly and the nonlinear behavior is restricted to few degrees of freedom. The procedure is very attractive from a computational point of view because the FEM needs to be run just once, which allows faster nonlinear sensitivity analysis and easier implementation of optimization procedures for the calibration of nonlinear models.Keywords: frequency response, nonlinear dynamics, structural dynamic modification, softening effect, rubber
Procedia PDF Downloads 266