Search results for: log-linear model
13049 Factors Affecting Customer Loyalty in the Independent Surveyor Service Industry in Indonesia
Authors: Sufrin Hannan, Budi Suharjo, Rita Nurmalina, Kirbrandoko
Abstract:
The challenge for independent surveyor service companies now is growing with increasing uncertainty in business. Protection from the government for domestic independent surveyor industry from competitor attack, such as entering the global surveyors to Indonesia also no longer exists. Therefore, building customer loyalty becomes very important to create a long-term relationship between an independent surveyor with its customers. This study aims to develop a model that can be used to build customer loyalty by looking at various factors that determine customer loyalty, especially on independent surveyors for coal inspection in Indonesia. The development of this model uses the relationship marketing approach. Testing of the hypothesis is done by testing the variables that determine customer loyalty, either directly or indirectly, which amounted to 10 variables. The data were collected from 200 questionnaires filled by independent surveyor company decision makers from 51 exporting companies and coal trading companies in Indonesia and analyzed using Structural Equation Model (SEM). The results show that customer loyalty of independent surveyors is influenced by customer satisfaction, trust, switching-barrier, and relationship-bond. Research on customer satisfaction shows that customer satisfaction is influenced by the perceived quality and perceived value, while perceived quality is influenced by reliability, assurance, responsiveness, and empathy.Keywords: relationship marketing, customer loyalty, customer satisfaction, switching barriers, relationship bonds
Procedia PDF Downloads 17113048 Simulation of Stress in Graphite Anode of Lithium-Ion Battery: Intra and Inter-Particle
Authors: Wenxin Mei, Jinhua Sun, Qingsong Wang
Abstract:
The volume expansion of lithium-ion batteries is mainly induced by intercalation induced stress within the negative electrode, resulting in capacity degradation and even battery failure. Stress generation due to lithium intercalation into graphite particles is investigated based on an electrochemical-mechanical model in this work. The two-dimensional model presented is fully coupled, inclusive of the impacts of intercalation-induced stress, stress-induced intercalation, to evaluate the lithium concentration, stress generation, and displacement intra and inter-particle. The results show that the distribution of lithium concentration and stress exhibits an analogous pattern, which reflects the relation between lithium diffusion and stress. The results of inter-particle stress indicate that larger Von-Mises stress is displayed where the two particles are in contact with each other, and deformation at the edge of particles is also observed, predicting fracture. Additionally, the maximum inter-particle stress at the end of lithium intercalation is nearly ten times the intraparticle stress. And the maximum inter-particle displacement is increased by 24% compared to the single-particle. Finally, the effect of graphite particle arrangement on inter-particle stress is studied. It is found that inter-particle stress with tighter arrangement exhibits lower stress. This work can provide guidance for predicting the intra and inter-particle stress to take measures to avoid cracking of electrode material.Keywords: electrochemical-mechanical model, graphite particle, lithium concentration, lithium ion battery, stress
Procedia PDF Downloads 20213047 Determinants of Budget Performance in an Oil-Based Economy
Authors: Adeola Adenikinju, Olusanya E. Olubusoye, Lateef O. Akinpelu, Dilinna L. Nwobi
Abstract:
Since the enactment of the Fiscal Responsibility Act (2007), the Federal Government of Nigeria (FGN) has made public its fiscal budget and the subsequent implementation report. A critical review of these documents shows significant variations in the five macroeconomic variables which are inputs in each Presidential budget; oil Production target (mbpd), oil price ($), Foreign exchange rate(N/$), and Gross Domestic Product growth rate (%) and inflation rate (%). This results in underperformance of the Federal budget expected output in terms of non-oil and oil revenue aggregates. This paper evaluates first the existing variance between budgeted and actuals, then the relationship and causality between the determinants of Federal fiscal budget assumptions, and finally the determinants of FGN’s Gross Oil Revenue. The paper employed the use of descriptive statistics, the Autoregressive distributed lag (ARDL) model, and a Profit oil probabilistic model to achieve these objectives. This model permits for both the static and dynamic effect(s) of the independent variable(s) on the dependent variable, unlike a static model that accounts for static or fixed effect(s) only. It offers a technique for checking the existence of a long-run relationship between variables, unlike other tests of cointegration, such as the Engle-Granger and Johansen tests, which consider only non-stationary series that are integrated of the same order. Finally, even with small sample size, the ARDL model is known to generate a valid result, for it is the dependent variable and is the explanatory variable. The results showed that there is a long-run relationship between oil revenue as a proxy for budget performance and its determinants; oil price, produced oil quantity, and foreign exchange rate. There is a short-run relationship between oil revenue and its determinants; oil price, produced oil quantity, and foreign exchange rate. There is a long-run relationship between non-oil revenue and its determinants; inflation rate, GDP growth rate, and foreign exchange rate. The grangers’ causality test results show that there is a mono-directional causality between oil revenue and its determinants. The Federal budget assumptions only explain 68% of oil revenue and 62% of non-oil revenue. There is a mono-directional causality between non-oil revenue and its determinants. The Profit oil Model describes production sharing contracts, joint ventures, and modified carrying arrangements as the greatest contributors to FGN’s gross oil revenue. This provides empirical justification for the selected macroeconomic variables used in the Federal budget design and performance evaluation. The research recommends other variables, debt and money supply, be included in the Federal budget design to explain the Federal budget revenue performance further.Keywords: ARDL, budget performance, oil price, oil quantity, oil revenue
Procedia PDF Downloads 17813046 Modeling of CREB Pathway Induced Gene Induction: From Stimulation to Repression
Authors: K. Julia Rose Mary, Victor Arokia Doss
Abstract:
Electrical and chemical stimulations up-regulate phosphorylaion of CREB, a transcriptional factor that induces its target gene production for memory consolidation and Late Long-Term Potentiation (L-LTP) in CA1 region of the hippocampus. L-LTP requires complex interactions among second-messenger signaling cascade molecules such as cAMP, CAMKII, CAMKIV, MAPK, RSK, PKA, all of which converge to phosphorylate CREB which along with CBP induces the transcription of target genes involved in memory consolidation. A differential equation based model for L-LTP representing stimulus-mediated activation of downstream mediators which confirms the steep, supralinear stimulus-response effects of activation and inhibition was used. The same was extended to accommodate the inhibitory effect of the Inducible cAMP Early Repressor (ICER). ICER is the natural inducible CREB antagonist represses CRE-Mediated gene transcription involved in long-term plasticity for learning and memory. After verifying the sensitivity and robustness of the model, we had simulated it with various empirical levels of repressor concentration to analyse their effect on the gene induction. The model appears to predict the regulatory dynamics of repression on the L-LTP and agrees with the experimental values. The flux data obtained in the simulations demonstrate various aspects of equilibrium between the gene induction and repression.Keywords: CREB, L-LTP, mathematical modeling, simulation
Procedia PDF Downloads 29613045 Failure Load Investigations in Adhesively Bonded Single-Strap Joints of Dissimilar Materials Using Cohesive Zone Model
Authors: B. Paygozar, S.A. Dizaji
Abstract:
Adhesive bonding is a highly valued type of fastening mechanical parts in complex structures, where joining some simple components is always needed. This method is of several merits, such as uniform stress distribution, appropriate bonding strength, and fatigue performance, and lightness, thereby outweighing other sorts of bonding methods. This study is to investigate the failure load of adhesive single-strap joints, including adherends of different sizes and materials. This kind of adhesive joint is very practical in different industries, especially when repairing the existing joints or attaching substrates of dissimilar materials. In this research, experimentally validated numerical analyses carried out in a commercial finite element package, ABAQUS, are utilized to extract the failure loads of the joints, based on the cohesive zone model. In addition, the stress analyses of the substrates are performed in order to acquire the effects of lowering the thickness of the substrates on the stress distribution inside them to avoid designs suffering from the necking or failure of the adherends. It was found out that this method of bonding is really feasible in joining dissimilar materials which can be utilized in a variety of applications. Moreover, the stress analyses indicated the minimum thickness for the adherends so as to avoid the failure of them.Keywords: cohesive zone model, dissimilar materials, failure load, single strap joint
Procedia PDF Downloads 12613044 Mathematical Modelling of Slag Formation in an Entrained-Flow Gasifier
Authors: Girts Zageris, Vadims Geza, Andris Jakovics
Abstract:
Gasification processes are of great interest due to their generation of renewable energy in the form of syngas from biodegradable waste. It is, therefore, important to study the factors that play a role in the efficiency of gasification and the longevity of the machines in which gasification takes place. This study focuses on the latter, aiming to optimize an entrained-flow gasifier by reducing slag formation on its walls to reduce maintenance costs. A CFD mathematical model for an entrained-flow gasifier is constructed – the model of an actual gasifier is rendered in 3D and appropriately meshed. Then, the turbulent gas flow in the gasifier is modeled with the realizable k-ε approach, taking devolatilization, combustion and coal gasification into account. Various such simulations are conducted, obtaining results for different air inlet positions and by tracking particles of varying sizes undergoing devolatilization and gasification. The model identifies potential problematic zones where most particles collide with the gasifier walls, indicating risk regions where ash deposits could most likely form. In conclusion, the effects on the formation of an ash layer of air inlet positioning and particle size allowed in the main gasifier tank are discussed, and possible solutions for decreasing a number of undesirable deposits are proposed. Additionally, an estimate of the impact of different factors such as temperature, gas properties and gas content, and different forces acting on the particles undergoing gasification is given.Keywords: biomass particles, gasification, slag formation, turbulence k-ε modelling
Procedia PDF Downloads 28713043 Application of Principal Component Analysis and Ordered Logit Model in Diabetic Kidney Disease Progression in People with Type 2 Diabetes
Authors: Mequanent Wale Mekonen, Edoardo Otranto, Angela Alibrandi
Abstract:
Diabetic kidney disease is one of the main microvascular complications caused by diabetes. Several clinical and biochemical variables are reported to be associated with diabetic kidney disease in people with type 2 diabetes. However, their interrelations could distort the effect estimation of these variables for the disease's progression. The objective of the study is to determine how the biochemical and clinical variables in people with type 2 diabetes are interrelated with each other and their effects on kidney disease progression through advanced statistical methods. First, principal component analysis was used to explore how the biochemical and clinical variables intercorrelate with each other, which helped us reduce a set of correlated biochemical variables to a smaller number of uncorrelated variables. Then, ordered logit regression models (cumulative, stage, and adjacent) were employed to assess the effect of biochemical and clinical variables on the order-level response variable (progression of kidney function) by considering the proportionality assumption for more robust effect estimation. This retrospective cross-sectional study retrieved data from a type 2 diabetic cohort in a polyclinic hospital at the University of Messina, Italy. The principal component analysis yielded three uncorrelated components. These are principal component 1, with negative loading of glycosylated haemoglobin, glycemia, and creatinine; principal component 2, with negative loading of total cholesterol and low-density lipoprotein; and principal component 3, with negative loading of high-density lipoprotein and a positive load of triglycerides. The ordered logit models (cumulative, stage, and adjacent) showed that the first component (glycosylated haemoglobin, glycemia, and creatinine) had a significant effect on the progression of kidney disease. For instance, the cumulative odds model indicated that the first principal component (linear combination of glycosylated haemoglobin, glycemia, and creatinine) had a strong and significant effect on the progression of kidney disease, with an effect or odds ratio of 0.423 (P value = 0.000). However, this effect was inconsistent across levels of kidney disease because the first principal component did not meet the proportionality assumption. To address the proportionality problem and provide robust effect estimates, alternative ordered logit models, such as the partial cumulative odds model, the partial adjacent category model, and the partial continuation ratio model, were used. These models suggested that clinical variables such as age, sex, body mass index, medication (metformin), and biochemical variables such as glycosylated haemoglobin, glycemia, and creatinine have a significant effect on the progression of kidney disease.Keywords: diabetic kidney disease, ordered logit model, principal component analysis, type 2 diabetes
Procedia PDF Downloads 4413042 Dynamic Modeling of Energy Systems Adapted to Low Energy Buildings in Lebanon
Authors: Nadine Yehya, Chantal Maatouk
Abstract:
Low energy buildings have been developed to achieve global climate commitments in reducing energy consumption. They comprise energy efficient buildings, zero energy buildings, positive buildings and passive house buildings. The reduced energy demands in Low Energy buildings call for advanced building energy modeling that focuses on studying active building systems such as heating, cooling and ventilation, improvement of systems performances, and development of control systems. Modeling and building simulation have expanded to cover different modeling approach i.e.: detailed physical model, dynamic empirical models, and hybrid approaches, which are adopted by various simulation tools. This paper uses DesignBuilder with EnergyPlus simulation engine in order to; First, study the impact of efficiency measures on building energy behavior by comparing Low energy residential model to a conventional one in Beirut-Lebanon. Second, choose the appropriate energy systems for the studied case characterized by an important cooling demand. Third, study dynamic modeling of Variable Refrigerant Flow (VRF) system in EnergyPlus that is chosen due to its advantages over other systems and its availability in the Lebanese market. Finally, simulation of different energy systems models with different modeling approaches is necessary to confront the different modeling approaches and to investigate the interaction between energy systems and building envelope that affects the total energy consumption of Low Energy buildings.Keywords: physical model, variable refrigerant flow heat pump, dynamic modeling, EnergyPlus, the modeling approach
Procedia PDF Downloads 22413041 Using Machine Learning to Classify Human Fetal Health and Analyze Feature Importance
Authors: Yash Bingi, Yiqiao Yin
Abstract:
Reduction of child mortality is an ongoing struggle and a commonly used factor in determining progress in the medical field. The under-5 mortality number is around 5 million around the world, with many of the deaths being preventable. In light of this issue, Cardiotocograms (CTGs) have emerged as a leading tool to determine fetal health. By using ultrasound pulses and reading the responses, CTGs help healthcare professionals assess the overall health of the fetus to determine the risk of child mortality. However, interpreting the results of the CTGs is time-consuming and inefficient, especially in underdeveloped areas where an expert obstetrician is hard to come by. Using a support vector machine (SVM) and oversampling, this paper proposed a model that classifies fetal health with an accuracy of 99.59%. To further explain the CTG measurements, an algorithm based on Randomized Input Sampling for Explanation ((RISE) of Black-box Models was created, called Feature Alteration for explanation of Black Box Models (FAB), and compared the findings to Shapley Additive Explanations (SHAP) and Local Interpretable Model Agnostic Explanations (LIME). This allows doctors and medical professionals to classify fetal health with high accuracy and determine which features were most influential in the process.Keywords: machine learning, fetal health, gradient boosting, support vector machine, Shapley values, local interpretable model agnostic explanations
Procedia PDF Downloads 14513040 Hardware Co-Simulation Based Based Direct Torque Control for Induction Motor Drive
Authors: Hanan Mikhael Dawood, Haider Salim, Jafar Al-Wash
Abstract:
This paper presents Proportional-Integral (PI) controller to improve the system performance which gives better torque and flux response. In addition, it reduces the undesirable torque ripple. The conventional DTC controller approach for induction machines, based on an improved torque and stator flux estimator, is implemented using Xilinx System Generator (XSG) for MATLAB/Simulink environment through Xilinx blocksets. The design was achieved in VHDL which is based on a MATLAB/Simulink simulation model. The hardware in the loop results are obtained considering the implementation of the proposed model on the Xilinx NEXYS2 Spartan 3E1200 FG320 Kit.Keywords: induction motor, Direct Torque Control (DTC), Xilinx FPGA, motor drive
Procedia PDF Downloads 62313039 Human Behavior Modeling in Video Surveillance of Conference Halls
Authors: Nour Charara, Hussein Charara, Omar Abou Khaled, Hani Abdallah, Elena Mugellini
Abstract:
In this paper, we present a human behavior modeling approach in videos scenes. This approach is used to model the normal behaviors in the conference halls. We exploited the Probabilistic Latent Semantic Analysis technique (PLSA), using the 'Bag-of-Terms' paradigm, as a tool for exploring video data to learn the model by grouping similar activities. Our term vocabulary consists of 3D spatio-temporal patch groups assigned by the direction of motion. Our video representation ensures the spatial information, the object trajectory, and the motion. The main importance of this approach is that it can be adapted to detect abnormal behaviors in order to ensure and enhance human security.Keywords: activity modeling, clustering, PLSA, video representation
Procedia PDF Downloads 39513038 Assessing Transition to Renewable Energy for Transportation in Indonesia through Drop-in Biofuel Utilization
Authors: Maslan Lamria, Ralph E. H. Sims, Tatang H. Soerawidjaja
Abstract:
In increasing its self-sufficiency on transportation fuel, Indonesia is currently developing commercial production and use of drop-in biofuel (DBF) from vegetable oil. To maximize the level of success, it is necessary to get insights on how the implementation would develop as well as any important factors. This study assessed the dynamics of transition from existing fossil fuel system to a renewable fuel system, which involves the transition from existing biodiesel to projected DBF. A systems dynamics approach was applied and a model developed to simulate the dynamics of liquid biofuel transition. The use of palm oil feedstock was taken as a case study to assess the projected DBF implementation by 2045. The set of model indicators include liquid fuel self-sufficiency, liquid biofuel share, foreign exchange savings and green-house gas emissions reduction. The model outputs showed that supports on DBF investment and use play an important role in the transition progress. Given assumptions which include application of a maximum level of supports over time, liquid fuel self-sufficiency would be still unfulfilled in which palm biofuel contribution is 0.2. Thus, other types of feedstock such as algae and oil feedstock from marginal lands need to be developed synergically. Regarding support on DBF use, this study recommended that removal of fossil subsidy would be necessary prior to applying a carbon tax policy effectively.Keywords: biofuel, drop-in biofuel, energy transition, liquid fuel
Procedia PDF Downloads 14913037 Measuring the Unmeasurable: A Project of High Risk Families Prediction and Management
Authors: Peifang Hsieh
Abstract:
The prevention of child abuse has aroused serious concerns in Taiwan because of the disparity between the increasing amount of reported child abuse cases that doubled over the past decade and the scarcity of social workers. New Taipei city, with the most population in Taiwan and over 70% of its 4 million citizens are migrant families in which the needs of children can be easily neglected due to insufficient support from relatives and communities, sees urgency for a social support system, by preemptively identifying and outreaching high-risk families of child abuse, so as to offer timely assistance and preventive measure to safeguard the welfare of the children. Big data analysis is the inspiration. As it was clear that high-risk families of child abuse have certain characteristics in common, New Taipei city decides to consolidate detailed background information data from departments of social affairs, education, labor, and health (for example considering status of parents’ employment, health, and if they are imprisoned, fugitives or under substance abuse), to cross-reference for accurate and prompt identification of the high-risk families in need. 'The Service Center for High-Risk Families' (SCHF) was established to integrate data cross-departmentally. By utilizing the machine learning 'random forest method' to build a risk prediction model which can early detect families that may very likely to have child abuse occurrence, the SCHF marks high-risk families red, yellow, or green to indicate the urgency for intervention, so as to those families concerned can be provided timely services. The accuracy and recall rates of the above model were 80% and 65%. This prediction model can not only improve the child abuse prevention process by helping social workers differentiate the risk level of newly reported cases, which may further reduce their major workload significantly but also can be referenced for future policy-making.Keywords: child abuse, high-risk families, big data analysis, risk prediction model
Procedia PDF Downloads 13513036 Method for Requirements Analysis and Decision Making for Restructuring Projects in Factories
Authors: Rene Hellmuth
Abstract:
The requirements for the factory planning and the building concerned have changed in the last years. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring gains more importance in order to maintain the competitiveness of a factory. Restrictions regarding new areas, shorter life cycles of product and production technology as well as a VUCA (volatility, uncertainty, complexity and ambiguity) world cause more frequently occurring rebuilding measures within a factory. Restructuring of factories is the most common planning case today. Restructuring is more common than new construction, revitalization and dismantling of factories. The increasing importance of restructuring processes shows that the ability to change was and is a promising concept for the reaction of companies to permanently changing conditions. The factory building is the basis for most changes within a factory. If an adaptation of a construction project (factory) is necessary, the inventory documents must be checked and often time-consuming planning of the adaptation must take place to define the relevant components to be adapted, in order to be able to finally evaluate them. The different requirements of the planning participants from the disciplines of factory planning (production planner, logistics planner, automation planner) and industrial construction planning (architect, civil engineer) come together during reconstruction and must be structured. This raises the research question: Which requirements do the disciplines involved in the reconstruction planning place on a digital factory model? A subordinate research question is: How can model-based decision support be provided for a more efficient design of the conversion within a factory? Because of the high adaptation rate of factories and its building described above, a methodology for rescheduling factories based on the requirements engineering method from software development is conceived and designed for practical application in factory restructuring projects. The explorative research procedure according to Kubicek is applied. Explorative research is suitable if the practical usability of the research results has priority. Furthermore, it will be shown how to best use a digital factory model in practice. The focus will be on mobile applications to meet the needs of factory planners on site. An augmented reality (AR) application will be designed and created to provide decision support for planning variants. The aim is to contribute to a shortening of the planning process and model-based decision support for more efficient change management. This requires the application of a methodology that reduces the deficits of the existing approaches. The time and cost expenditure are represented in the AR tablet solution based on a building information model (BIM). Overall, the requirements of those involved in the planning process for a digital factory model in the case of restructuring within a factory are thus first determined in a structured manner. The results are then applied and transferred to a construction site solution based on augmented reality.Keywords: augmented reality, digital factory model, factory planning, restructuring
Procedia PDF Downloads 13613035 The Determinants of Trade Flow and Potential between Ethiopia and Group of Twenty
Authors: Terefe Alemu
Abstract:
This study is intended to examine Ethiopia’s trade flow determinants and trade potential with G20 countries whether it was overtraded or there is/are trade potential by using trade gravity model. The sources of panel data used were IMF, WDI, United Nations population division, The Heritage Foundation, Washington's No. 1 think tank online website database, online distance calculator, and others for the duration of 2010 to 2019 for 10 consecutive years. The empirical data analyzing tool used was Random effect model (REM), which is effective in estimation of time-invariant data. The empirical data analyzed using STATA software result indicates that Ethiopia has a trade potential with seven countries of G20, whereas Ethiopia overtrade with 12 countries and EU region. The Ethiopia’s and G20 countries/region bilateral trade flow statistically significant/ p<0.05/determinants were the population of G20 countries, growth domestic products of G20 countries, growth domestic products of Ethiopia, geographical distance between Ethiopia and G20 countries. The top five G20 countries exported to Ethiopia were china, United State of America, European Union, India, and South Africa, whereas the top five G20 countries imported from Ethiopia were EU, China, United State of America, Saudi Arabia, and Germany, respectively. Finally, the policy implication were Ethiopia has to Keep the consistence of trade flow with overtraded countries and improve with under traded countries through trade policy revision, and secondly, focusing on the trade determinants to improve trade flow is recommended.Keywords: trade gravity model, trade determinants, G20, international trade, trade potential
Procedia PDF Downloads 21813034 Numerical and Experimental Investigation of Mixed-Mode Fracture of Cement Paste and Interface Under Three-Point Bending Test
Authors: S. Al Dandachli, F. Perales, Y. Monerie, F. Jamin, M. S. El Youssoufi, C. Pelissou
Abstract:
The goal of this research is to study the fracture process and mechanical behavior of concrete under I–II mixed-mode stress, which is essential for ensuring the safety of concrete structures. For this purpose, two-dimensional simulations of three-point bending tests under variable load and geometry on notched cement paste samples of composite samples (cement paste/siliceous aggregate) are modeled by employing Cohesive Zone Models (CZMs). As a result of experimental validation of these tests, the CZM model demonstrates its capacity to predict fracture propagation at the local scale.Keywords: cement paste, interface, cohesive zone model, fracture, three-point flexural test bending
Procedia PDF Downloads 15413033 Implementing Lesson Study in Qatari Mathematics Classroom: A Case Study of a New Experience for Teachers through IMPULS-QU Lesson Study Program
Authors: Areej Isam Barham
Abstract:
The implementation of Japanese lesson study approach in the mathematics classroom has been grown worldwide as a model of professional development for teachers. In Qatar, the implementation of IMPULS-QU lesson study program aimed to establish a robust organizational improvement model of professional development for mathematics teachers in Qatar schools. This study describes the implementation of a lesson study model at Al-Markhyia Independent Primary School through different stages; and discusses how the planning process, the research lesson, and the post discussion participates in providing teachers and researchers with a successful research lesson for teacher professional development. The research followed a case study approach in one mathematics classroom. Two teachers and one professional development specialist participated the planning process. One teacher conducted the research lesson study by introducing a problem solving related to the concept of the ‘Mean’ in a mathematics class, 21 students in grade 6 participated in solving the mathematic problem, 11 teachers, 4 professional development specialists, and 4 mathematics professors observed the research lesson. All previous participants except the students participated in a pre and post-lesson discussion within this research. This study followed a qualitative research approach by analyzing the collected data through different stages in the research lesson study. Observation, field notes, and semi-structured interviews conducted to collect data to achieve the research aims. One feature of this lesson study research is that this research describes the implementation for a lesson study as a new experience for one mathematics teacher and 21 students after 3 years of conducting IMPULS-QU project in Al-Markhyia school. The research describes various stages through the implementation of this lesson study model starting from the planning process and ending by the post discussion process. Findings of the study also address the impact of lesson study approach in teaching mathematics for the development of teachers from their point views. Results of the study show the benefits of using lesson study from the point views of participated teachers, theory perceptions about the essential features of lesson study, and their needs for future development. The discussion of the study addresses different features and issues related to the implementation of IMPULS-QU lesson study model in the mathematics classroom. In the light of the study, the research presents recommendations and suggestions for future professional development.Keywords: lesson study, mathematics education, mathematics teaching experience, teacher professional development
Procedia PDF Downloads 18713032 Management by Sufficient Economy Philosophy for Hospitality Business in Samut Songkram
Authors: Krisada Sungkhamanee
Abstract:
The objectives of this research are to know the management form of Samut Songkram lodging entrepreneurs with sufficient economy framework, to know the threat that affect this business and drawing the fit model for this province in order to sustain their business with Samut Songkram style. What will happen if they do not use this philosophy? Will they have a cash short fall? The data and information are collected by informal discussion with 8 managers and 400 questionnaires. We will use a mix of methods both qualitative research and quantitative research for our study. Bent Flyvbjerg’s phronesis is utilized for this analysis. Our research will prove that sufficient economy can help small and medium business firms solve their problems. We think that the results of our research will be a financial model to solve many problems of the entrepreneurs and this way will use to practice in other areas of our country.Keywords: Samut Songkram, hospitality business, sufficient economy philosophy, style
Procedia PDF Downloads 30713031 ANSYS FLUENT Simulation of Natural Convection and Radiation in a Solar Enclosure
Authors: Sireetorn Kuharat, Anwar Beg
Abstract:
In this study, multi-mode heat transfer characteristics of spacecraft solar collectors are investigated computationally. Two-dimensional steady-state incompressible laminar Newtonian viscous convection-radiative heat transfer in a rectangular solar collector geometry. The ANSYS FLUENT finite volume code (version 17.2) is employed to simulate the thermo-fluid characteristics. Several radiative transfer models are employed which are available in the ANSYS workbench, including the classical Rosseland flux model and the more elegant P1 flux model. Mesh-independence tests are conducted. Validation of the simulations is conducted with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation. The influence of aspect ratio, Prandtl number (Pr), Rayleigh number (Ra) and radiative flux model on temperature, isotherms, velocity, the pressure is evaluated and visualized in color plots. Additionally, the local convective heat flux is computed and solutions are compared with the MAC solver for various buoyancy effects (e.g. Ra = 10,000,000) achieving excellent agreement. The P1 model is shown to better predict the actual influence of solar radiative flux on thermal fluid behavior compared with the limited Rosseland model. With increasing Rayleigh numbers the hot zone emanating from the base of the collector is found to penetrate deeper into the collector and rises symmetrically dividing into two vortex regions with very high buoyancy effect (Ra >100,000). With increasing Prandtl number (three gas cases are examined respectively hydrogen gas mixture, air and ammonia gas) there is also a progressive incursion of the hot zone at the solar collector base higher into the solar collector space and simultaneously a greater asymmetric behavior of the dual isothermal zones. With increasing aspect ratio (wider base relative to the height of the solar collector geometry) there is a greater thermal convection pattern around the whole geometry, higher temperatures and the elimination of the cold upper zone associated with lower aspect ratio.Keywords: thermal convection, radiative heat transfer, solar collector, Rayleigh number
Procedia PDF Downloads 12013030 Analysis of Spatial Heterogeneity of Residential Prices in Guangzhou: An Actual Study Based on Point of Interest Geographically Weighted Regression Model
Authors: Zichun Guo
Abstract:
Guangzhou's house price has long been lower than the other three major cities; with the gradual increase in Guangzhou's house price, the influencing factors of house price have gradually been paid attention to; this paper tries to use house price data and POI (Point of Interest) data, and explores the distribution of house price and influencing factors by applying the Kriging spatial interpolation method and geographically weighted regression model in ArcGIS. The results show that the interpolation result of house price has a significant relationship with the economic development and development potential of the region and that different POI types have different impacts on the growth of house prices in different regions.Keywords: POI, house price, spatial heterogeneity, Guangzhou
Procedia PDF Downloads 6113029 Study of Transport Phenomena in Photonic Crystals with Correlated Disorder
Authors: Samira Cherid, Samir Bentata, Feyza Zahira Meghoufel, Yamina Sefir, Sabria Terkhi, Fatima Bendahma, Bouabdellah Bouadjemi, Ali Zitouni
Abstract:
Using the transfer-matrix technique and the Kronig Penney model, we numerically and analytically investigate the effect of short-range correlated disorder in random dimer model (RDM) on transmission properties of light in one dimension photonic crystals made of three different materials. Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that one kind of these layers appears in pairs. It is shown that the one-dimensional random dimer photonic crystals support two types of extended modes. By shifting of the dimer resonance toward the host fundamental stationary resonance state, we demonstrate the existence of the ballistic response in these systems.Keywords: photonic crystals, disorder, correlation, transmission
Procedia PDF Downloads 47913028 Method of Visual Prosthesis Design Based on Biologically Inspired Design
Authors: Shen Jian, Hu Jie, Zhu Guo Niu, Peng Ying Hong
Abstract:
There are two issues exited in the traditional visual prosthesis: lacking systematic method and the low level of humanization. To tackcle those obstacles, a visual prosthesis design method based on biologically inspired design is proposed. Firstly, a constrained FBS knowledge cell model is applied to construct the functional model of visual prosthesis in biological field. Then the clustering results of engineering domain are ob-tained with the use of the cross-domain knowledge cell clustering algorithm. Finally, a prototype system is designed to support the bio-logically inspired design where the conflict is digested by TRIZ and other tools, and the validity of the method is verified by the solution schemeKeywords: knowledge-based engineering, visual prosthesis, biologically inspired design, biomedical engineering
Procedia PDF Downloads 19513027 Intelligent Human Pose Recognition Based on EMG Signal Analysis and Machine 3D Model
Authors: Si Chen, Quanhong Jiang
Abstract:
In the increasingly mature posture recognition technology, human movement information is widely used in sports rehabilitation, human-computer interaction, medical health, human posture assessment, and other fields today; this project uses the most original ideas; it is proposed to use the collection equipment for the collection of myoelectric data, reflect the muscle posture change on a degree of freedom through data processing, carry out data-muscle three-dimensional model joint adjustment, and realize basic pose recognition. Based on this, bionic aids or medical rehabilitation equipment can be further developed with the help of robotic arms and cutting-edge technology, which has a bright future and unlimited development space.Keywords: pose recognition, 3D animation, electromyography, machine learning, bionics
Procedia PDF Downloads 8213026 Influence of the Granular Mixture Properties on the Rheological Properties of Concrete: Yield Stress Determination Using Modified Chateau et al. Model
Authors: Rachid Zentar, Mokrane Bala, Pascal Boustingorry
Abstract:
The prediction of the rheological behavior of concrete is at the center of current concerns of the concrete industry for different reasons. The shortage of good quality standard materials combined with variable properties of available materials imposes to improve existing models to take into account these variations at the design stage of concrete. The main reasons for improving the predictive models are, of course, saving time and cost at the design stage as well as to optimize concrete performances. In this study, we will highlight the different properties of the granular mixtures that affect the rheological properties of concrete. Our objective is to identify the intrinsic parameters of the aggregates which make it possible to predict the yield stress of concrete. The work was done using two typologies of grains: crushed and rolled aggregates. The experimental results have shown that the rheology of concrete is improved by increasing the packing density of the granular mixture using rolled aggregates. The experimental program realized allowed to model the yield stress of concrete by a modified model of Chateau et al. through a dimensionless parameter following Krieger-Dougherty law. The modelling confirms that the yield stress of concrete depends not only on the properties of cement paste but also on the packing density of the granular skeleton and the shape of grains.Keywords: crushed aggregates, intrinsic viscosity, packing density, rolled aggregates, slump, yield stress of concrete
Procedia PDF Downloads 13013025 Thrust Vectoring Control of Supersonic Flow through an Orifice Injector
Authors: I. Mnafeg, A. Abichou, L. Beji
Abstract:
Traditional mechanical control systems in thrust vectoring are efficient in rocket thrust guidance but their costs and their weights are excessive. The fluidic injection in the nozzle divergent constitutes an alternative procedure to achieve the goal. In this paper, we present a 3D analytical model for fluidic injection in a supersonic nozzle integrating an orifice. The fluidic vectoring uses a sonic secondary injection in the divergent. As a result, the flow and interaction between the main and secondary jet has built in order to express the pressure fields from which the forces and thrust vectoring are deduced. Under various separation criteria, the present analytical model results are compared with the existing numerical and experimental data from the literature.Keywords: flow separation, fluidic thrust vectoring, nozzle, secondary jet, shock wave
Procedia PDF Downloads 29913024 Empirical Study and Modelling of Three-Dimensional Pedestrian Flow in Railway Foot-Over-Bridge Stair
Authors: Ujjal Chattaraj, M. Raviteja, Chaitanya Aemala
Abstract:
Over the years vehicular traffic has been given priority over pedestrian traffic. With the increase of population in cities, pedestrian traffic is increasing day by day. Pedestrian safety has become a matter of concern for the Traffic Engineers. Pedestrian comfort is primary important for the Engineers who design different pedestrian facilities. Pedestrian comfort and safety can be measured in terms of different level of service (LOS) of the facilities. In this study video data on pedestrian movement have been collected from different railway foot over bridges (FOB) in India. The level of service of those facilities has been analyzed. A cellular automata based model has been formulated to mimic the route choice behaviour of the pedestrians on the foot over bridges.Keywords: cellular automata model, foot over bridge, level of service, pedestrian
Procedia PDF Downloads 26613023 Simulation of Piezoelectric Laminated Smart Structure under Strong Electric Field
Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen
Abstract:
Applying strong electric field on piezoelectric actuators, on one hand very significant electroelastic material nonlinear effects will occur, on the other hand piezo plates and shells may undergo large displacements and rotations. In order to give a precise prediction of piezolaminated smart structures under large electric field, this paper develops a finite element (FE) model accounting for both electroelastic material nonlinearity and geometric nonlinearity with large rotations based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is applied to analyze a piezolaminated semicircular shell structure.Keywords: smart structures, piezolamintes, material nonlinearity, strong electric field
Procedia PDF Downloads 42913022 Urban Security and Social Sustainability in Cities of Developing Countries
Authors: Taimaz Larimian, Negin Sadeghi
Abstract:
Very little is known about the impacts of urban security on the level of social sustainability within the cities of developing countries. Urban security is still struggling to find its position in the social sustainability agenda, despite the significant role of safety and security on different aspects of peoples’ lives. This paper argues that urban safety and security should be better integrated within the social sustainability framework. With this aim, this study investigates the hypothesized relationship between social sustainability and Crime Prevention through Environmental Design (CPTED) approach at the neighborhood scale. This study proposes a model of key influential dimensions of CPTED analyzed into localized factors and sub-factors. These factors are then prioritized using pairwise comparison logic and fuzzy group Analytic Hierarchy Process (AHP) method in order to determine the relative importance of each factor on achieving social sustainability. The proposed model then investigates social sustainability in six case study neighborhoods of Isfahan city based on residents’ perceptions of safety within their neighborhood. Mixed method of data collection is used by using a self-administered questionnaire to explore the residents’ perceptions of social sustainability in their area of residency followed by an on-site observation to measure the CPTED construct. In all, 150 respondents from selected neighborhoods were involved in this research. The model indicates that CPTED approach has a significant direct influence on increasing social sustainability in neighborhood scale. According to the findings, among different dimensions of CPTED, ‘activity support’ and ‘image/ management’ have the most influence on people’s feeling of safety within studied areas. This model represents a useful designing tool in achieving urban safety and security during the development of more socially sustainable and user-friendly urban areas.Keywords: crime prevention through environmental design (CPTED), developing countries, fuzzy analytic hierarchy process (FAHP), social sustainability
Procedia PDF Downloads 30913021 Analytical Model of Multiphase Machines Under Electrical Faults: Application on Dual Stator Asynchronous Machine
Authors: Nacera Yassa, Abdelmalek Saidoune, Ghania Ouadfel, Hamza Houassine
Abstract:
The rapid advancement in electrical technologies has underscored the increasing importance of multiphase machines across various industrial sectors. These machines offer significant advantages in terms of efficiency, compactness, and reliability compared to their single-phase counterparts. However, early detection and diagnosis of electrical faults remain critical challenges to ensure the durability and safety of these complex systems. This paper presents an advanced analytical model for multiphase machines, with a particular focus on dual stator asynchronous machines. The primary objective is to develop a robust diagnostic tool capable of effectively detecting and locating electrical faults in these machines, including short circuits, winding faults, and voltage imbalances. The proposed methodology relies on an analytical approach combining electrical machine theory, modeling of magnetic and electrical circuits, and advanced signal analysis techniques. By employing detailed analytical equations, the developed model accurately simulates the behavior of multiphase machines in the presence of electrical faults. The effectiveness of the proposed model is demonstrated through a series of case studies and numerical simulations. In particular, special attention is given to analyzing the dynamic behavior of machines under different types of faults, as well as optimizing diagnostic and recovery strategies. The obtained results pave the way for new advancements in the field of multiphase machine diagnostics, with potential applications in various sectors such as automotive, aerospace, and renewable energies. By providing precise and reliable tools for early fault detection, this research contributes to improving the reliability and durability of complex electrical systems while reducing maintenance and operation costs.Keywords: faults, diagnosis, modelling, multiphase machine
Procedia PDF Downloads 6813020 The Leaching Kinetics of Zinc from Industrial Zinc Slag Waste
Authors: Hilary Rutto
Abstract:
The investigation was aimed at determining the extent at which the zinc will be extracted from secondary sources generated from galvanising process using dilute sulphuric acid under controlled laboratory conditions of temperature, solid-liquid ratio, and agitation rate. The leaching experiment was conducted for a period of 2 hours and to total zinc extracted calculated in relation to the amount of zinc dissolved at a unit time in comparison to the initial zinc content of the zinc ash. Sulphuric acid was found to be an effective leaching agent with an overall extraction of 91.1% when concentration is at 2M, and solid/liquid ratio kept at 1g/200mL leaching solution and temperature set at 65ᵒC while slurry agitation is at 450rpm. The leaching mechanism of zinc ash with sulphuric acid was conformed well to the shrinking core model.Keywords: leaching, kinetics, shrinking core model, zinc slag
Procedia PDF Downloads 160