Search results for: hybrid electric vehicle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4066

Search results for: hybrid electric vehicle

256 Application of Improved Semantic Communication Technology in Remote Sensing Data Transmission

Authors: Tingwei Shu, Dong Zhou, Chengjun Guo

Abstract:

Semantic communication is an emerging form of communication that realize intelligent communication by extracting semantic information of data at the source and transmitting it, and recovering the data at the receiving end. It can effectively solve the problem of data transmission under the situation of large data volume, low SNR and restricted bandwidth. With the development of Deep Learning, semantic communication further matures and is gradually applied in the fields of the Internet of Things, Uumanned Air Vehicle cluster communication, remote sensing scenarios, etc. We propose an improved semantic communication system for the situation where the data volume is huge and the spectrum resources are limited during the transmission of remote sensing images. At the transmitting, we need to extract the semantic information of remote sensing images, but there are some problems. The traditional semantic communication system based on Convolutional Neural Network cannot take into account the global semantic information and local semantic information of the image, which results in less-than-ideal image recovery at the receiving end. Therefore, we adopt the improved vision-Transformer-based structure as the semantic encoder instead of the mainstream one using CNN to extract the image semantic features. In this paper, we first perform pre-processing operations on remote sensing images to improve the resolution of the images in order to obtain images with more semantic information. We use wavelet transform to decompose the image into high-frequency and low-frequency components, perform bilinear interpolation on the high-frequency components and bicubic interpolation on the low-frequency components, and finally perform wavelet inverse transform to obtain the preprocessed image. We adopt the improved Vision-Transformer structure as the semantic coder to extract and transmit the semantic information of remote sensing images. The Vision-Transformer structure can better train the huge data volume and extract better image semantic features, and adopt the multi-layer self-attention mechanism to better capture the correlation between semantic features and reduce redundant features. Secondly, to improve the coding efficiency, we reduce the quadratic complexity of the self-attentive mechanism itself to linear so as to improve the image data processing speed of the model. We conducted experimental simulations on the RSOD dataset and compared the designed system with a semantic communication system based on CNN and image coding methods such as BGP and JPEG to verify that the method can effectively alleviate the problem of excessive data volume and improve the performance of image data communication.

Keywords: semantic communication, transformer, wavelet transform, data processing

Procedia PDF Downloads 53
255 A Measurement Instrument to Determine Curricula Competency of Licensure Track Graduate Psychotherapy Programs in the United States

Authors: Laith F. Gulli, Nicole M. Mallory

Abstract:

We developed a novel measurement instrument to assess Knowledge of Educational Programs in Professional Psychotherapy Programs (KEP-PPP or KEP-Triple P) within the United States. The instrument was designed by a Panel of Experts (PoE) that consisted of Licensed Psychotherapists and Medical Care Providers. Licensure track psychotherapy programs are listed in the databases of the Commission on Accreditation for Marriage and Family Therapy Education (COAMFTE); American Psychological Association (APA); Council on Social Work Education (CSWE); and the Council for Accreditation of Counseling & Related Educational Programs (CACREP). A complete list of psychotherapy programs can be obtained from these professional databases, selecting search fields of (All Programs) in (All States). Each program has a Web link that electronically and directly connects to the institutional program, which can be researched using the KEP-Triple P. The 29-item KEP Triple P was designed to consist of six categorical fields; Institutional Type: Degree: Educational Delivery: Accreditation: Coursework Competency: and Special Program Considerations. The KEP-Triple P was designed to determine whether a specific course(s) is offered in licensure track psychotherapy programs. The KEP-Triple P is designed to be modified to assess any part or the entire curriculum of licensure graduate programs. We utilized the KEP-Triple P instrument to study whether a graduate course in Addictions was offered in Marriage and Family Therapy (MFT) programs. Marriage and Family Therapists are likely to commonly encounter patients with Addiction(s) due to the broad treatment scope providing psychotherapy services to individuals, couples and families of all age groups. Our study of 124 MFT programs which concluded at the end of 2016 found that we were able to assess 61 % of programs (N = 76) since 27 % (N = 34) of programs were inaccessible due to broken Web links. From the total of all MFT programs 11 % (N = 14) did not have a published curriculum on their Institutional Web site. From the sample study, we found that 66 % (N = 50) of curricula did not offer a course in Addiction Treatment and that 34 % (N =26) of curricula did require a mandatory course in Addiction Treatment. From our study sample, we determined that 15 % (N = 11) of MFT doctorate programs did not require an Addictions Treatment course and that 1 % (N = 1) did require such a course. We found that 99 % of our study sample offered a Campus based program and 1 % offered a hybrid program with both online and residential components. From the total sample studied, we determined that 84 % of programs would be able to obtain reaccreditation within a five-year period. We recommend that MFT programs initiate procedures to revise curricula to include a required course in Addiction Treatment prior to their next accreditation cycle, to improve the escalating addiction crisis in the United States. This disparity in MFT curricula raises serious ethical and legal consideration for national and Federal stakeholders as well as for patients seeking a competently trained psychotherapist.

Keywords: addiction, competency, curriculum, psychotherapy

Procedia PDF Downloads 129
254 Heavy Metals in the Water of Lakes in the 'Bory Tucholskie' National Park of Biosphere Reserve

Authors: Krzysztof Gwozdzinski, Janusz Mazur

Abstract:

Bory Tucholskie (Tucholskie Forest) is one of the largest pine forest complexes in Poland. It occupies approx. 3,000 square kilometers of Sandr in the Brda and Wda basin and the Tuchola Plain and the Charzykowskie Plain. Since 2010 it has transformed into The Bory Tucholskie Biosphere Reserve, according to the UNESCO decision. The area of the Bory Tucholskie National Park (BTNP), the park area, has been designated in 1996. There is little data on the presence of heavy metals in the Park's lakes. Concentration of heavy metals in the water of 19 lakes in the BTNP was examined. The lakes were divided into two groups: subglacial channel lakes of Struga Siedmiu Jezior (the Seven Lakes Stream) and other lakes. Heavy metals (transition metals) belong to d-block of elements. The part of these metals plays an important role in the function of living organisms as metalloproteins (enzymes, hemoproteins, vitamins, etc.). However, heavy metals are also typical; heavy metals are typical anthropogenic pollutants. Water samples were collected at the deepest points of lakes during spring and during summer stagnation. The analysis of metals was performed in an atomic absorption spectrophotometer Varian Spectra A300/400 in electric atomizer (GTA 96) in graphite cuvette. In the waters of the Seven Lakes Stream (Ostrowite, Zielone, Jelen, Belczak, Glowka, Plesno, Skrzynka, Mielnica) the increase in the concentration of the manganese and iron from outflow to inflow of Charzykowskie lake was found, while the concentration of copper (approx. 4 μg dm⁻³) and cadmium ( < 0.5 μg dm⁻³) was similar in all lakes. The concentration of the lead also varied within 2.1-3.6 μg dm⁻³. The concentration of nickel was approx. 3-fold higher in Ostrowite lake than other lakes of Struga. In turn the waters of the lakes Ostrowite, Jelen and Belczak were rich in zinc. The lowest level of heavy metals was observed in Zielone lake. In the second group of lakes, i.e., Krzywce Wielkie and Krzywce Male the heavy metal concentrations were lower than in the waters of Struga but higher than in oligotrophic lakes, i.e., Nierybno, Gluche, Kociol, Gacno Wielkie, Gacno Mae, Dlugie, Zabionek, and Sosnowek. The concentration of cadmium was below 0.5 μg dm⁻³ in all the studied lakes from this group. In the group of oligotrophic lakes the highest concentrations of metals such as manganese, iron, zinc and nickel in Gacno Male and Gacno Wielkie were observed. The high level of manganese in Sosnowek and Gacno Wielkie lakes was found. The lead level was also high in Nierybno lake and nickel in Gacno Wielkie lake. The lower level of heavy metals was in oligotrophic lakes such as Kociol, Dlugie, Zabionek and α-mesotrophic lake, Krzywce Wielkie. Generally, the level of heavy metals in studied lakes situated in Bory Tucholskie National Park was lower than in other lakes of Bory Tucholskie Biosphere Reserve.

Keywords: Bory Tucholskie Biosphere Reserve, Bory Tucholskie National Park, heavy metals, lakes

Procedia PDF Downloads 98
253 Mapping Potential Soil Salinization Using Rule Based Object Oriented Image Analysis

Authors: Zermina Q., Wasif Y., Naeem S., Urooj S., Sajid R. A.

Abstract:

Land degradation, a leading environemtnal problem and a decrease in the quality of land has become a major global issue, caused by human activities. By land degradation, more than half of the world’s drylands are affected. The worldwide scope of main saline soils is approximately 955 M ha, whereas inferior salinization affected approximately 77 M ha. In irrigated areas, a total of 58% of these soils is found. As most of the vegetation types requires fertile soil for their growth and quality production, salinity causes serious problem to the production of these vegetation types and agriculture demands. This research aims to identify the salt affected areas in the selected part of Indus Delta, Sindh province, Pakistan. This particular mangroves dominating coastal belt is important to the local community for their crop growth. Object based image analysis approach has been adopted on Landsat TM imagery of year 2011 by incorporating different mathematical band ratios, thermal radiance and salinity index. Accuracy assessment of developed salinity landcover map was performed using Erdas Imagine Accuracy Assessment Utility. Rain factor was also considered before acquiring satellite imagery and conducting field survey, as wet soil can greatly affect the condition of saline soil of the area. Dry season considered best for the remote sensing based observation and monitoring of the saline soil. These areas were trained with the ground truth data w.r.t pH and electric condutivity of the soil samples. The results were obtained from the object based image analysis of Keti bunder and Kharo chan shows most of the region under low saline soil.Total salt affected soil was measured to be 46,581.7 ha in Keti Bunder, which represents 57.81 % of the total area of 80,566.49 ha. High Saline Area was about 7,944.68 ha (9.86%). Medium Saline Area was about 17,937.26 ha (22.26 %) and low Saline Area was about 20,699.77 ha (25.69%). Where as total salt affected soil was measured to be 52,821.87 ha in Kharo Chann, which represents 55.87 % of the total area of 94,543.54 ha. High Saline Area was about 5,486.55 ha (5.80 %). Medium Saline Area was about 13,354.72 ha (14.13 %) and low Saline Area was about 33980.61 ha (35.94 %). These results show that the area is low to medium saline in nature. Accuracy of the soil salinity map was found to be 83 % with the Kappa co-efficient of 0.77. From this research, it was evident that this area as a whole falls under the category of low to medium saline area and being close to coastal area, mangrove forest can flourish. As Mangroves are salt tolerant plant so this area is consider heaven for mangrove plantation. It would ultimately benefit both the local community and the environment. Increase in mangrove forest control the problem of soil salinity and prevent sea water to intrude more into coastal area. So deforestation of mangrove should be regularly monitored.

Keywords: indus delta, object based image analysis, soil salinity, thematic mapper

Procedia PDF Downloads 591
252 Formation of the Water Assisted Supramolecular Assembly in the Transition Structure of Organocatalytic Asymmetric Aldol Reaction: A DFT Study

Authors: Kuheli Chakrabarty, Animesh Ghosh, Atanu Roy, Gourab Kanti Das

Abstract:

Aldol reaction is an important class of carbon-carbon bond forming reactions. One of the popular ways to impose asymmetry in aldol reaction is the introduction of chiral auxiliary that binds the approaching reactants and create dissymmetry in the reaction environment, which finally evolves to enantiomeric excess in the aldol products. The last decade witnesses the usage of natural amino acids as chiral auxiliary to control the stereoselectivity in various carbon-carbon bond forming processes. In this context, L-proline was found to be an effective organocatalyst in asymmetric aldol additions. In last few decades the use of water as solvent or co-solvent in asymmetric organocatalytic reaction is increased sharply. Simple amino acids like L-proline does not catalyze asymmetric aldol reaction in aqueous medium not only that, In organic solvent medium high catalytic loading (~30 mol%) is required to achieve moderate to high asymmetric induction. In this context, huge efforts have been made to modify L-proline and 4-hydroxy-L-proline to prepare organocatalyst for aqueous medium asymmetric aldol reaction. Here, we report the result of our DFT calculations on asymmetric aldol reaction of benzaldehyde, p-NO2 benzaldehyde and t-butyraldehyde with a number of ketones using L-proline hydrazide as organocatalyst in wet solvent free condition. Gaussian 09 program package and Gauss View program were used for the present work. Geometry optimizations were performed using B3LYP hybrid functional and 6-31G(d,p) basis set. Transition structures were confirmed by hessian calculation and IRC calculation. As the reactions were carried out in solvent free condition, No solvent effect were studied theoretically. Present study has revealed for the first time, the direct involvement of two water molecules in the aldol transition structures. In the TS, the enamine and the aldehyde is connected through hydrogen bonding by the assistance of two intervening water molecules forming a supramolecular network. Formation of this type of supramolecular assembly is possible due to the presence of protonated -NH2 group in the L-proline hydrazide moiety, which is responsible for the favorable entropy contribution to the aldol reaction. It is also revealed from the present study that, water assisted TS is energetically more favorable than the TS without involving any water molecule. It can be concluded from this study that, insertion of polar group capable of hydrogen bond formation in the L-proline skeleton can lead to a favorable aldol reaction with significantly high enantiomeric excess in wet solvent free condition by reducing the activation barrier of this reaction.

Keywords: aldol reaction, DFT, organocatalysis, transition structure

Procedia PDF Downloads 404
251 Using a Card Game as a Tool for Developing a Design

Authors: Matthias Haenisch, Katharina Hermann, Marc Godau, Verena Weidner

Abstract:

Over the past two decades, international music education has been characterized by a growing interest in informal learning for formal contexts and a "compositional turn" that has moved from closed to open forms of composing. This change occurs under social and technological conditions that permeate 21st-century musical practices. This forms the background of Musical Communities in the (Post)Digital Age (MusCoDA), a four-year joint research project of the University of Erfurt (UE) and the University of Education Karlsruhe (PHK), funded by the German Federal Ministry of Education and Research (BMBF). Both explore songwriting processes as an example of collective creativity in (post)digital communities, one in formal and the other in informal learning contexts. Collective songwriting will be studied from a network perspective, that will allow us to view boundaries between both online and offline as well as formal and informal or hybrid contexts as permeable and to reconstruct musical learning practices. By comparing these songwriting processes, possibilities for a pedagogical-didactic interweaving of different educational worlds are highlighted. Therefore, the subproject of the University of Erfurt investigates school music lessons with the help of interviews, videography, and network maps by analyzing new digital pedagogical and didactic possibilities. In the first step, the international literature on songwriting in the music classroom was examined for design development. The analysis focused on the question of which methods and practices are circulating in the current literature. Results from this stage of the project form the basis for the first instructional design that will help teachers in planning regular music classes and subsequently reconstruct musical learning practices under these conditions. In analyzing the literature, we noticed certain structural methods and concepts that recur, such as the Building Blocks method and the pre-structuring of the songwriting process. From these findings, we developed a deck of cards that both captures the current state of research and serves as a method for design development. With this deck of cards, both teachers and students themselves can plan their individual songwriting lessons by independently selecting and arranging topic, structure, and action cards. In terms of science communication, music educators' interactions with the card game provide us with essential insights for developing the first design. The overall goal of MusCoDA is to develop an empirical model of collective musical creativity and learning and an instructional design for teaching music in the postdigital age.

Keywords: card game, collective songwriting, community of practice, network, postdigital

Procedia PDF Downloads 42
250 Exploring the Energy Saving Benefits of Solar Power and Hot Water Systems: A Case Study of a Hospital in Central Taiwan

Authors: Ming-Chan Chung, Wen-Ming Huang, Yi-Chu Liu, Li-Hui Yang, Ming-Jyh Chen

Abstract:

introduction: Hospital buildings require considerable energy, including air conditioning, lighting, elevators, heating, and medical equipment. Energy consumption in hospitals is expected to increase significantly due to innovative equipment and continuous development plans. Consequently, the environment and climate will be adversely affected. Hospitals should therefore consider transforming from their traditional role of saving lives to being at the forefront of global efforts to reduce carbon dioxide emissions. As healthcare providers, it is our responsibility to provide a high-quality environment while using as little energy as possible. Purpose / Methods: Compare the energy-saving benefits of solar photovoltaic systems and solar hot water systems. The proportion of electricity consumption effectively reduced after the installation of solar photovoltaic systems. To comprehensively assess the potential benefits of utilizing solar energy for both photovoltaic (PV) and solar thermal applications in hospitals, a solar PV system was installed covering a total area of 28.95 square meters in 2021. Approval was obtained from the Taiwan Power Company to integrate the system into the hospital's electrical infrastructure for self-use. To measure the performance of the system, a dedicated meter was installed to track monthly power generation, which was then converted into area output using an electric energy conversion factor. This research aims to compare the energy efficiency of solar PV systems and solar thermal systems. Results: Using the conversion formula between electrical and thermal energy, we can compare the energy output of solar heating systems and solar photovoltaic systems. The comparative study draws upon data from February 2021 to February 2023, wherein the solar heating system generated an average of 2.54 kWh of energy per panel per day, while the solar photovoltaic system produced 1.17 kWh of energy per panel per day, resulting in a difference of approximately 2.17 times between the two systems. Conclusions: After conducting statistical analysis and comparisons, it was found that solar thermal heating systems offer higher energy and greater benefits than solar photovoltaic systems. Furthermore, an examination of literature data and simulations of the energy and economic benefits of solar thermal water systems and solar-assisted heat pump systems revealed that solar thermal water systems have higher energy density values, shorter recovery periods, and lower power consumption than solar-assisted heat pump systems. Through monitoring and empirical research in this study, it has been concluded that a heat pump-assisted solar thermal water system represents a relatively superior energy-saving and carbon-reducing solution for medical institutions. Not only can this system help reduce overall electricity consumption and the use of fossil fuels, but it can also provide more effective heating solutions.

Keywords: sustainable development, energy conservation, carbon reduction, renewable energy, heat pump system

Procedia PDF Downloads 57
249 Development of Structural Deterioration Models for Flexible Pavement Using Traffic Speed Deflectometer Data

Authors: Sittampalam Manoharan, Gary Chai, Sanaul Chowdhury, Andrew Golding

Abstract:

The primary objective of this paper is to present a simplified approach to develop the structural deterioration model using traffic speed deflectometer data for flexible pavements. Maintaining assets to meet functional performance is not economical or sustainable in the long terms, and it would end up needing much more investments for road agencies and extra costs for road users. Performance models have to be included for structural and functional predicting capabilities, in order to assess the needs, and the time frame of those needs. As such structural modelling plays a vital role in the prediction of pavement performance. A structural condition is important for the prediction of remaining life and overall health of a road network and also major influence on the valuation of road pavement. Therefore, the structural deterioration model is a critical input into pavement management system for predicting pavement rehabilitation needs accurately. The Traffic Speed Deflectometer (TSD) is a vehicle-mounted Doppler laser system that is capable of continuously measuring the structural bearing capacity of a pavement whilst moving at traffic speeds. The device’s high accuracy, high speed, and continuous deflection profiles are useful for network-level applications such as predicting road rehabilitations needs and remaining structural service life. The methodology adopted in this model by utilizing time series TSD maximum deflection (D0) data in conjunction with rutting, rutting progression, pavement age, subgrade strength and equivalent standard axle (ESA) data. Then, regression analyses were undertaken to establish a correlation equation of structural deterioration as a function of rutting, pavement age, seal age and equivalent standard axle (ESA). This study developed a simple structural deterioration model which will enable to incorporate available TSD structural data in pavement management system for developing network-level pavement investment strategies. Therefore, the available funding can be used effectively to minimize the whole –of- life cost of the road asset and also improve pavement performance. This study will contribute to narrowing the knowledge gap in structural data usage in network level investment analysis and provide a simple methodology to use structural data effectively in investment decision-making process for road agencies to manage aging road assets.

Keywords: adjusted structural number (SNP), maximum deflection (D0), equant standard axle (ESA), traffic speed deflectometer (TSD)

Procedia PDF Downloads 126
248 Synthesis of Carbon Nanotubes from Coconut Oil and Fabrication of a Non Enzymatic Cholesterol Biosensor

Authors: Mitali Saha, Soma Das

Abstract:

The fabrication of nanoscale materials for use in chemical sensing, biosensing and biological analyses has proven a promising avenue in the last few years. Cholesterol has aroused considerable interest in recent years on account of its being an important parameter in clinical diagnosis. There is a strong positive correlation between high serum cholesterol level and arteriosclerosis, hypertension, and myocardial infarction. Enzyme-based electrochemical biosensors have shown high selectivity and excellent sensitivity, but the enzyme is easily denatured during its immobilization procedure and its activity is also affected by temperature, pH, and toxic chemicals. Besides, the reproducibility of enzyme-based sensors is not very good which further restrict the application of cholesterol biosensor. It has been demonstrated that carbon nanotubes could promote electron transfer with various redox active proteins, ranging from cytochrome c to glucose oxidase with a deeply embedded redox center. In continuation of our earlier work on the synthesis and applications of carbon and metal based nanoparticles, we have reported here the synthesis of carbon nanotubes (CCNT) by burning coconut oil under insufficient flow of air using an oil lamp. The soot was collected from the top portion of the flame, where the temperature was around 6500C which was purified, functionalized and then characterized by SEM, p-XRD and Raman spectroscopy. The SEM micrographs showed the formation of tubular structure of CCNT having diameter below 100 nm. The XRD pattern indicated the presence of two predominant peaks at 25.20 and 43.80, which corresponded to (002) and (100) planes of CCNT respectively. The Raman spectrum (514 nm excitation) showed the presence of 1600 cm-1 (G-band) related to the vibration of sp2-bonded carbon and at 1350 cm-1 (D-band) responsible for the vibrations of sp3-bonded carbon. A nonenzymatic cholesterol biosensor was then fabricated on an insulating Teflon material containing three silver wires at the surface, covered by CCNT, obtained from coconut oil. Here, CCNTs worked as working as well as counter electrodes whereas reference electrode and electric contacts were made of silver. The dimensions of the electrode was 3.5 cm×1.0 cm×0.5 cm (length× width × height) and it is ideal for working with 50 µL volume like the standard screen printed electrodes. The voltammetric behavior of cholesterol at CCNT electrode was investigated by cyclic voltammeter and differential pulse voltammeter using 0.001 M H2SO4 as electrolyte. The influence of the experimental parameters on the peak currents of cholesterol like pH, accumulation time, and scan rates were optimized. Under optimum conditions, the peak current was found to be linear in the cholesterol concentration range from 1 µM to 50 µM with a sensitivity of ~15.31 μAμM−1cm−2 with lower detection limit of 0.017 µM and response time of about 6s. The long-term storage stability of the sensor was tested for 30 days and the current response was found to be ~85% of its initial response after 30 days.

Keywords: coconut oil, CCNT, cholesterol, biosensor

Procedia PDF Downloads 259
247 Sustaining Efficiency in Electricity Distribution to Enhance Effective Human Security for the Vulnerable People in Ghana

Authors: Anthony Nyamekeh-Armah Adjei, Toshiaki Aoki

Abstract:

The unreliable and poor efficiency of electricity distribution leading to frequent power outages and high losses are the major challenge facing the power distribution sector in Ghana. Distribution system routes electricity from the power generating station at a higher voltage through the transmission grid and steps it down through the low voltage lines to end users. Approximately all electricity problems and disturbances that have increased the call for renewable and sustainable energy in recent years have their roots in the distribution system. Therefore, sustaining electricity distribution efficiency can potentially contribute to the reserve of natural energy resources use in power generation, reducing greenhouse gas emission (GHG), decreasing tariffs for consumers and effective human security. Human Security is a people-centered approach where individual human being is the principal object of concern, focuses on protecting the vital core of all human lives in ways for meeting basic needs that enhance the safety and protection of individuals and communities. The vulnerability is the diminished capacity of an individual or group to anticipate, resist and recover from the effect of natural, human-induced disaster. The research objectives are to explore the causes of frequent power outages to consumers, high losses in the distribution network and the effect of poor electricity distribution efficiency on the vulnerable (poor and ordinary) people that mostly depend on electricity for their daily activities or life to survive. The importance of the study is that in a developing country like Ghana where raising a capital for new infrastructure project is difficult, it would be beneficial to enhance the efficiency that will significantly minimize the high energy losses, reduce power outage, to ensure safe and reliable delivery of electric power to consumers to secure the security of people’s livelihood. The methodology used in this study is both interview and questionnaire survey to analyze the response from the respondents on causes of power outages and high losses facing the electricity company of Ghana (ECG) and its effect on the livelihood on the vulnerable people. Among the outcome of both administered questionnaire and the interview survey from the field were; poor maintenance of existing sub-stations, use of aging equipment, use of poor distribution infrastructure and poor metering and billing system. The main observation of this paper is that the poor network efficiency (high losses and power outages) affects the livelihood of the vulnerable people. Therefore, the paper recommends that policymakers should insist on all regulation guiding electricity distribution to improve system efficiency. In conclusion, there should be decentralization of off-grid solar PV technologies to provide a sustainable and cost-effective, which can increase daily productivity and improve the quality of life of the vulnerable people in the rural communities.

Keywords: electricity efficiency, high losses, human security, power outage

Procedia PDF Downloads 252
246 Comparison between Photogrammetric and Structure from Motion Techniques in Processing Unmanned Aerial Vehicles Imageries

Authors: Ahmed Elaksher

Abstract:

Over the last few years, significant progresses have been made and new approaches have been proposed for efficient collection of 3D spatial data from Unmanned aerial vehicles (UAVs) with reduced costs compared to imagery from satellite or manned aircraft. In these systems, a low-cost GPS unit provides the position, velocity of the vehicle, a low-quality inertial measurement unit (IMU) determines its orientation, and off-the-shelf cameras capture the images. Structure from Motion (SfM) and photogrammetry are the main tools for 3D surface reconstruction from images collected by these systems. Unlike traditional techniques, SfM allows the computation of calibration parameters using point correspondences across images without performing a rigorous laboratory or field calibration process and it is more flexible in that it does not require consistent image overlap or same rotation angles between successive photos. These benefits make SfM ideal for UAVs aerial mapping. In this paper, a direct comparison between SfM Digital Elevation Models (DEM) and those generated through traditional photogrammetric techniques was performed. Data was collected by a 3DR IRIS+ Quadcopter with a Canon PowerShot S100 digital camera. Twenty ground control points were randomly distributed on the ground and surveyed with a total station in a local coordinate system. Images were collected from an altitude of 30 meters with a ground resolution of nine mm/pixel. Data was processed with PhotoScan, VisualSFM, Imagine Photogrammetry, and a photogrammetric algorithm developed by the author. The algorithm starts with performing a laboratory camera calibration then the acquired imagery undergoes an orientation procedure to determine the cameras’ positions and orientations. After the orientation is attained, correlation based image matching is conducted to automatically generate three-dimensional surface models followed by a refining step using sub-pixel image information for high matching accuracy. Tests with different number and configurations of the control points were conducted. Camera calibration parameters estimated from commercial software and those obtained with laboratory procedures were comparable. Exposure station positions were within less than few centimeters and insignificant differences, within less than three seconds, among orientation angles were found. DEM differencing was performed between generated DEMs and few centimeters vertical shifts were found.

Keywords: UAV, photogrammetry, SfM, DEM

Procedia PDF Downloads 265
245 Investigating the Impacts on Cyclist Casualty Severity at Roundabouts: A UK Case Study

Authors: Nurten Akgun, Dilum Dissanayake, Neil Thorpe, Margaret C. Bell

Abstract:

Cycling has gained a great attention with comparable speeds, low cost, health benefits and reducing the impact on the environment. The main challenge associated with cycling is the provision of safety for the people choosing to cycle as their main means of transport. From the road safety point of view, cyclists are considered as vulnerable road users because they are at higher risk of serious casualty in the urban network but more specifically at roundabouts. This research addresses the development of an enhanced mathematical model by including a broad spectrum of casualty related variables. These variables were geometric design measures (approach number of lanes and entry path radius), speed limit, meteorological condition variables (light, weather, road surface) and socio-demographic characteristics (age and gender), as well as contributory factors. Contributory factors included driver’s behavior related variables such as failed to look properly, sudden braking, a vehicle passing too close to a cyclist, junction overshot, failed to judge other person’s path, restart moving off at the junction, poor turn or manoeuvre and disobeyed give-way. Tyne and Wear in the UK were selected as a case study area. The cyclist casualty data was obtained from UK STATS19 National dataset. The reference categories for the regression model were set to slight and serious cyclist casualties. Therefore, binary logistic regression was applied. Binary logistic regression analysis showed that approach number of lanes was statistically significant at the 95% level of confidence. A higher number of approach lanes increased the probability of severity of cyclist casualty occurrence. In addition, sudden braking statistically significantly increased the cyclist casualty severity at the 95% level of confidence. The result concluded that cyclist casualty severity was highly related to approach a number of lanes and sudden braking. Further research should be carried out an in-depth analysis to explore connectivity of sudden braking and approach number of lanes in order to investigate the driver’s behavior at approach locations. The output of this research will inform investment in measure to improve the safety of cyclists at roundabouts.

Keywords: binary logistic regression, casualty severity, cyclist safety, roundabout

Procedia PDF Downloads 160
244 A Preliminary Randomized Controlled Trial of Pure L-Ascorbic Acid with Using a Needle-Free and Micro-Needle Mesotherapy in Treatment of Anti-Aging Procedure

Authors: M. Zasada, A. Markiewicz, A. Erkiert-Polguj, E. Budzisz

Abstract:

The epidermis is a keratinized stratified squamous epithelium covered by the hydro-lipid barrier. Therefore, active substances should be able to penetrate through this hydro-lipid coating. L-ascorbic acid is one of the vitamins which plays an important role in stimulation fibroblast to produce collagen type I and in hyperpigmentation lightening. Vitamin C is a water-soluble antioxidant, which protects skin from oxidation damage and rejuvenates photoaged skin. No-needle mesotherapy is a non-invasive rejuvenation technique depending on electric pulses, electroporation, and ultrasounds. These physicals factors result in deeper penetration of cosmetics. It is important to increase the penetration of L-ascorbic acid, thereby increasing the spectrum of its activity. The aim of the work was to assess the effectiveness of pure L-ascorbic acid activity in anti-aging therapy using a needle-free and micro-needling mesotherapy. The study was performed on a group of 35 healthy volunteers in accordance with the Declaration of Helsinki of 1964 and agreement of the Ethics Commissions no RNN/281/16/KE 2017. Women were randomized to mesotherapy or control group. Control group applied topically 2,5 ml serum containing 20% L-ascorbic acid with hydrate from strawberries, every 10 days for a period of 9 weeks. No-needle mesotherapy, on the left half of the face and micro-needling on the right with the same serum, was done in mesotherapy group. The pH of serum was 3.5-4, and the serum was prepared directly prior to the facial treatment. The skin parameters were measured at the beginning and before each treatment. The measurement of the forehead skin was done using Cutometer® (measurement of skin elasticity and firmness), Corneometer® (skin hydration measurement), Mexameter® (skin tone measurement). Also, the photographs were taken by Fotomedicus system. Additionally, the volunteers fulfilled the questionnaire. Serum was tested for microbiological purity and stability after the opening of the cosmetic. During the study, all of the volunteers were taken care of a dermatologist. The regular application of the serum has caused improvement of the skin parameters. Respectively, after 4 and 8 weeks improvement in hydration and elasticity has been seen (Corneometer®, Cutometer® results). Moreover, the number of hyper-pigmentated spots has decreased (Mexameter®). After 8 weeks the volunteers has claimed that the tested product has smoothing and moisturizing features. Subjective opinions indicted significant improvement of skin color and elasticity. The product containing the L-ascorbic acid used with intercellular penetration promoters demonstrates higher anti-aging efficiency than control. In vivo studies confirmed the effectiveness of serum and the impact of the active substance on skin firmness and elasticity, the degree of hydration and skin tone. Mesotherapy with pure L-ascorbic acid provides better diffusion of active substances through the skin.

Keywords: anti-aging, l-ascorbic acid, mesotherapy, promoters

Procedia PDF Downloads 245
243 Delhi Metro: A Race towards Zero Emission

Authors: Pramit Garg, Vikas Kumar

Abstract:

In December 2015, all the members of the United Nations Framework Convention on Climate Change (UNFCCC) unanimously adopted the historic Paris Agreement. As per the convention, 197 countries have followed the guidelines of the agreement and have agreed to reduce the use of fossil fuels and also reduce the carbon emission to reach net carbon neutrality by 2050 and reduce the global temperature by 2°C by the year 2100. Globally, transport accounts for 23% of the energy-related CO2 that feeds global warming. Decarbonization of the transport sector is an essential step towards achieving India’s nationally determined contributions and net zero emissions by 2050. Metro rail systems are playing a vital role in the decarbonization of the transport sector as they create metro cities for the “21st-century world” that could ensure “mobility, connectivity, productivity, safety and sustainability” for the populace. Metro rail was introduced in Delhi in 2002 to decarbonize Delhi-National Capital Region and to provide a sustainable mode of public transportation. Metro Rail Projects significantly contribute to pollution reduction and are thus a prerequisite for sustainable development. The Delhi Metro is the 1ˢᵗ metro system in the world to earn carbon credits from Clean Development Mechanism (CDM) projects registered under United Nations Framework Convention on Climate Change. A good Metro Project with reasonable network coverage attracts a modal shift from various private modes and hence fewer vehicles on the road, thus restraining the pollution at the source. The absence of Greenhouse Gas emissions from the vehicle of modal shift passengers and lower emissions due to decongested roads contribute to the reduction in Green House Gas emissions and hence overall reduction in atmospheric pollution. The reduction in emission during the horizon year 2002 to 2019 has been estimated using emission standards and deterioration factor(s) for different categories of vehicles. Presently, our results indicate that the Delhi Metro system has reduced approximately 17.3% of motorized trips by road resulting in an emission reduction significantly. Overall, Delhi Metro, with an immediate catchment area of 17% of the National Capital Territory of Delhi (NCTD), is helping today to reduce 387 tonnes of emissions per day and 141.2 ktonnes of emissions yearly. The findings indicate that the Metro rail system is driving cities towards a more livable environment.

Keywords: Delhi metro, GHG emission, sustainable public transport, urban transport

Procedia PDF Downloads 102
242 Mechanisms of Atiulcerogenic Activity of Costus speciosus Rhizome Extract in Ethanol-Induced Gastric Mucosal Injury in Rats

Authors: Somayeh Fani, Mahmood Ameen Abdulla

Abstract:

Costus speciosus is an important Malaysian medicinal plant commonly used traditionally in the treatment of many aliments. The present investigation is designed to elucidate preventive effects of ethanolic extracts of C. speciosus rhizome against absolute ethanol-induced gastric mucosal injury in Sprague-Dawley rats. Five groups of rats were orally pre-treated with vehicle, carboxymethylcellulose (CMC) as normal control group (Group 1), ethanol as ulcer control group (Group 2), omeprazole 20 mg/kg (reference group) (Group 3), and 250 and 500 mg/kg of C. speciosus extract (experimental groups) (Group 4 and 5), respectively. An hour later, CMC was given orally to Group 1 rats and absolute ethanol was given orally to Group 2-5 rats to generate gastric mucosal injury. After an additional hour, the rats were sacrificed. Grossly, ulcer control group exhibited severe of gastric mucosal hemorrhagic injury and increased in ulcer area, whereas groups pre-treated with omeprazole or plant’s rhizomes exhibited the significant reduction of gastric mucosal injury. Significant increase in the pH and mucous of gastric content was observed in rats re-treated with C. speciosus rhizome. Histology, ulcer control rats, demonstrated remarkable disruption of gastric mucosa, increased in edema and inflammatory cells infiltration of submucosal layer compared to rats pre-treated with rhizomes extract. Periodic acid Schiff staining for glycoprotein, rats pre-fed with C. speciosus C. displayed remarkably intense uptake of magenta color by glandular gastric mucosa compared with ulcer control rats. Immunostaining of gastric epithelium, rats pre-treatment with rhizome extract provide evidence of up-regulation of HSP70 and down-regulation of Bax proteins compared to ulcer control animals. Gastric tissue homogenate, C. speciosus significantly increased the activity of superoxide dismutase (SOD), and catalase (CAT), increased the level of non-protein sulfhydryl (NP-SH) and decreased the level of lipid peroxidation after ethanol administration. Acute toxicity test did not show any signs of toxicity. The mechanisms implicated the gasrtoprotective property of C. speciosus depend upon the antisecretory activity, increased in gastric mucus glycoprotein, up-regulation of HSP70 protein and down-regulation of Bax proteins, reduction in the lipid peroxidation and increase in the level of NP-SH and antioxidant enzymes activity in gastic homogenate.

Keywords: antioxidant, Costus speciosus, gastric ulcer, histology, omeprazole

Procedia PDF Downloads 284
241 Electron Bernstein Wave Heating in the Toroidally Magnetized System

Authors: Johan Buermans, Kristel Crombé, Niek Desmet, Laura Dittrich, Andrei Goriaev, Yurii Kovtun, Daniel López-Rodriguez, Sören Möller, Per Petersson, Maja Verstraeten

Abstract:

The International Thermonuclear Experimental Reactor (ITER) will rely on three sources of external heating to produce and sustain a plasma; Neutral Beam Injection (NBI), Ion Cyclotron Resonance Heating (ICRH), and Electron Cyclotron Resonance Heating (ECRH). ECRH is a way to heat the electrons in a plasma by resonant absorption of electromagnetic waves. The energy of the electrons is transferred indirectly to the ions by collisions. The electron cyclotron heating system can be directed to deposit heat in particular regions in the plasma (https://www.iter.org/mach/Heating). Electron Cyclotron Resonance Heating (ECRH) at the fundamental resonance in X-mode is limited by a low cut-off density. Electromagnetic waves cannot propagate in the region between this cut-off and the Upper Hybrid Resonance (UHR) and cannot reach the Electron Cyclotron Resonance (ECR) position. Higher harmonic heating is hence preferred in heating scenarios nowadays to overcome this problem. Additional power deposition mechanisms can occur above this threshold to increase the plasma density. This includes collisional losses in the evanescent region, resonant power coupling at the UHR, tunneling of the X-wave with resonant coupling at the ECR, and conversion to the Electron Bernstein Wave (EBW) with resonant coupling at the ECR. A more profound knowledge of these deposition mechanisms can help determine the optimal plasma production scenarios. Several ECRH experiments are performed on the TOroidally MAgnetized System (TOMAS) to identify the conditions for Electron Bernstein Wave (EBW) heating. Density and temperature profiles are measured with movable Triple Langmuir Probes in the horizontal and vertical directions. Measurements of the forwarded and reflected power allow evaluation of the coupling efficiency. Optical emission spectroscopy and camera images also contribute to plasma characterization. The influence of the injected power, magnetic field, gas pressure, and wave polarization on the different deposition mechanisms is studied, and the contribution of the Electron Bernstein Wave is evaluated. The TOMATOR 1D hydrogen-helium plasma simulator numerically describes the evolution of current less magnetized Radio Frequency plasmas in a tokamak based on Braginskii’s legal continuity and heat balance equations. This code was initially benchmarked with experimental data from TCV to determine the transport coefficients. The code is used to model the plasma parameters and the power deposition profiles. The modeling is compared with the data from the experiments.

Keywords: electron Bernstein wave, Langmuir probe, plasma characterization, TOMAS

Procedia PDF Downloads 70
240 Acrylate-Based Photopolymer Resin Combined with Acrylated Epoxidized Soybean Oil for 3D-Printing

Authors: Raphael Palucci Rosa, Giuseppe Rosace

Abstract:

Stereolithography (SLA) is one of the 3D-printing technologies that has been steadily growing in popularity for both industrial and personal applications due to its versatility, high accuracy, and low cost. Its printing process consists of using a light emitter to solidify photosensitive liquid resins layer-by-layer to produce solid objects. However, the majority of the resins used in SLA are derived from petroleum and characterized by toxicity, stability, and recalcitrance to degradation in natural environments. Aiming to develop an eco-friendly resin, in this work, different combinations of a standard commercial SLA resin (Peopoly UV professional) with a vegetable-based resin were investigated. To reach this goal, different mass concentrations (varying from 10 to 50 wt%) of acrylated epoxidized soybean oil (AESO), a vegetable resin produced from soyabean oil, were mixed with a commercial acrylate-based resin. 1.0 wt% of Diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO) was used as photo-initiator, and the samples were printed using a Peopoly moai 130. The machine was set to operate at standard configurations when printing commercial resins. After the print was finished, the excess resin was drained off, and the samples were washed in isopropanol and water to remove any non-reacted resin. Finally, the samples were post-cured for 30 min in a UV chamber. FT-IR analysis was used to confirm the UV polymerization of the formulated resin with different AESO/Peopoly ratios. The signals from 1643.7 to 1616, which corresponds to the C=C stretching of the AESO acrylic acids and Peopoly acrylic groups, significantly decreases after the reaction. The signal decrease indicates the consumption of the double bonds during the radical polymerization. Furthermore, the slight change of the C-O-C signal from 1186.1 to 1159.9 decrease of the signals at 809.5 and 983.1, which corresponds to unsaturated double bonds, are both proofs of the successful polymerization. Mechanical analyses showed a decrease of 50.44% on tensile strength when adding 10 wt% of AESO, but it was still in the same range as other commercial resins. The elongation of break increased by 24% with 10 wt% of AESO and swelling analysis showed that samples with a higher concentration of AESO mixed absorbed less water than their counterparts. Furthermore, high-resolution prototypes were printed using both resins, and visual analysis did not show any significant difference between both products. In conclusion, the AESO resin was successful incorporated into a commercial resin without affecting its printability. The bio-based resin showed lower tensile strength than the Peopoly resin due to network loosening, but it was still in the range of other commercial resins. The hybrid resin also showed better flexibility and water resistance than Peopoly resin without affecting its resolution. Finally, the development of new types of SLA resins is essential to provide new sustainable alternatives to the commercial petroleum-based ones.

Keywords: 3D-printing, bio-based, resin, soybean, stereolithography

Procedia PDF Downloads 107
239 Accurate Calculation of the Penetration Depth of a Bullet Using ANSYS

Authors: Eunsu Jang, Kang Park

Abstract:

In developing an armored ground combat vehicle (AGCV), it is a very important step to analyze the vulnerability (or the survivability) of the AGCV against enemy’s attack. In the vulnerability analysis, the penetration equations are usually used to get the penetration depth and check whether a bullet can penetrate the armor of the AGCV, which causes the damage of internal components or crews. The penetration equations are derived from penetration experiments which require long time and great efforts. However, they usually hold only for the specific material of the target and the specific type of the bullet used in experiments. Thus, penetration simulation using ANSYS can be another option to calculate penetration depth. However, it is very important to model the targets and select the input parameters in order to get an accurate penetration depth. This paper performed a sensitivity analysis of input parameters of ANSYS on the accuracy of the calculated penetration depth. Two conflicting objectives need to be achieved in adopting ANSYS in penetration analysis: maximizing the accuracy of calculation and minimizing the calculation time. To maximize the calculation accuracy, the sensitivity analysis of the input parameters for ANSYS was performed and calculated the RMS error with the experimental data. The input parameters include mesh size, boundary condition, material properties, target diameter are tested and selected to minimize the error between the calculated result from simulation and the experiment data from the papers on the penetration equation. To minimize the calculation time, the parameter values obtained from accuracy analysis are adjusted to get optimized overall performance. As result of analysis, the followings were found: 1) As the mesh size gradually decreases from 0.9 mm to 0.5 mm, both the penetration depth and calculation time increase. 2) As diameters of the target decrease from 250mm to 60 mm, both the penetration depth and calculation time decrease. 3) As the yield stress which is one of the material property of the target decreases, the penetration depth increases. 4) The boundary condition with the fixed side surface of the target gives more penetration depth than that with the fixed side and rear surfaces. By using above finding, the input parameters can be tuned to minimize the error between simulation and experiments. By using simulation tool, ANSYS, with delicately tuned input parameters, penetration analysis can be done on computer without actual experiments. The data of penetration experiments are usually hard to get because of security reasons and only published papers provide them in the limited target material. The next step of this research is to generalize this approach to anticipate the penetration depth by interpolating the known penetration experiments. This result may not be accurate enough to be used to replace the penetration experiments, but those simulations can be used in the early stage of the design process of AGCV in modelling and simulation stage.

Keywords: ANSYS, input parameters, penetration depth, sensitivity analysis

Procedia PDF Downloads 366
238 Topographic Coast Monitoring Using UAV Photogrammetry: A Case Study in Port of Veracruz Expansion Project

Authors: Francisco Liaño-Carrera, Jorge Enrique Baños-Illana, Arturo Gómez-Barrero, José Isaac Ramírez-Macías, Erik Omar Paredes-JuáRez, David Salas-Monreal, Mayra Lorena Riveron-Enzastiga

Abstract:

Topographical changes in coastal areas are usually assessed with airborne LIDAR and conventional photogrammetry. In recent times Unmanned Aerial Vehicles (UAV) have been used several in photogrammetric applications including coastline evolution. However, its use goes further by using the points cloud associated to generate beach Digital Elevation Models (DEM). We present a methodology for monitoring coastal topographic changes along a 50 km coastline in Veracruz, Mexico using high-resolution images (less than 10 cm ground resolution) and dense points cloud captured with an UAV. This monitoring develops in the context of the port of Veracruz expansion project which construction began in 2015 and intends to characterize coast evolution and prevent and mitigate project impacts on coastal environments. The monitoring began with a historical coastline reconstruction since 1979 to 2015 using aerial photography and Landsat imagery. We could define some patterns: the northern part of the study area showed accretion while the southern part of the study area showed erosion. Since the study area is located off the port of Veracruz, a touristic and economical Mexican urban city, where coastal development structures have been built since 1979 in a continuous way, the local beaches of the touristic area are been refilled constantly. Those areas were not described as accretion since every month sand-filled trucks refill the sand beaches located in front of the hotel area. The construction of marinas and the comitial port of Veracruz, the old and the new expansion were made in the erosion part of the area. Northward from the City of Veracruz the beaches were described as accretion areas while southward from the city, the beaches were described as erosion areas. One of the problems is the expansion of the new development in the southern area of the city using the beach view as an incentive to buy front beach houses. We assessed coastal changes between seasons using high-resolution images and also points clouds during 2016 and preliminary results confirm that UAVs can be used in permanent coast monitoring programs with excellent performance and detail.

Keywords: digital elevation model, high-resolution images, topographic coast monitoring, unmanned aerial vehicle

Procedia PDF Downloads 248
237 Engineering Photodynamic with Radioactive Therapeutic Systems for Sustainable Molecular Polarity: Autopoiesis Systems

Authors: Moustafa Osman Mohammed

Abstract:

This paper introduces Luhmann’s autopoietic social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. A specific type of autopoietic system is explained in the three existing groups of the ecological phenomena: interaction, social and medical sciences. This hypothesis model, nevertheless, has a nonlinear interaction with its natural environment ‘interactional cycle’ for the exchange of photon energy with molecular without any changes in topology. The external forces in the systems environment might be concomitant with the natural fluctuations’ influence (e.g. radioactive radiation, electromagnetic waves). The cantilever sensor deploys insights to the future chip processor for prevention of social metabolic systems. Thus, the circuits with resonant electric and optical properties are prototyped on board as an intra–chip inter–chip transmission for producing electromagnetic energy approximately ranges from 1.7 mA at 3.3 V to service the detection in locomotion with the least significant power losses. Nowadays, therapeutic systems are assimilated materials from embryonic stem cells to aggregate multiple functions of the vessels nature de-cellular structure for replenishment. While, the interior actuators deploy base-pair complementarity of nucleotides for the symmetric arrangement in particular bacterial nanonetworks of the sequence cycle creating double-stranded DNA strings. The DNA strands must be sequenced, assembled, and decoded in order to reconstruct the original source reliably. The design of exterior actuators have the ability in sensing different variations in the corresponding patterns regarding beat-to-beat heart rate variability (HRV) for spatial autocorrelation of molecular communication, which consists of human electromagnetic, piezoelectric, electrostatic and electrothermal energy to monitor and transfer the dynamic changes of all the cantilevers simultaneously in real-time workspace with high precision. A prototype-enabled dynamic energy sensor has been investigated in the laboratory for inclusion of nanoscale devices in the architecture with a fuzzy logic control for detection of thermal and electrostatic changes with optoelectronic devices to interpret uncertainty associated with signal interference. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other and forms its unique spatial structure modules for providing the environment mutual contribution in the investigation of mass temperature changes due to pathogenic archival architecture of clusters.

Keywords: autopoiesis, nanoparticles, quantum photonics, portable energy, photonic structure, photodynamic therapeutic system

Procedia PDF Downloads 98
236 Application of a Submerged Anaerobic Osmotic Membrane Bioreactor Hybrid System for High-Strength Wastewater Treatment and Phosphorus Recovery

Authors: Ming-Yeh Lu, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu

Abstract:

Recently, anaerobic membrane bioreactors (AnMBRs) has been widely utilized, which combines anaerobic biological treatment process and membrane filtration, that can be present an attractive option for wastewater treatment and water reuse. Conventional AnMBR is having several advantages, such as improving effluent quality, compact space usage, lower sludge yield, without aeration and production of energy. However, the removal of nitrogen and phosphorus in the AnMBR permeate was negligible which become the biggest disadvantage. In recent years, forward osmosis (FO) is an emerging technology that utilizes osmotic pressure as driving force to extract clean water without additional external pressure. The pore size of FO membrane is kindly mentioned the pore size, so nitrogen or phosphorus could effectively improve removal of nitrogen or phosphorus. Anaerobic bioreactor with FO membrane (AnOMBR) can retain the concentrate organic matters and nutrients. However, phosphorus is a non-renewable resource. Due to the high rejection property of FO membrane, the high amount of phosphorus could be recovered from the combination of AnMBR and FO. In this study, development of novel submerged anaerobic osmotic membrane bioreactor integrated with periodic microfiltration (MF) extraction for simultaneous phosphorus and clean water recovery from wastewater was evaluated. A laboratory-scale AnOMBR utilizes cellulose triacetate (CTA) membranes with effective membrane area of 130 cm² was fully submerged into a 5.5 L bioreactor at 30-35℃. Active layer-facing feed stream orientation was utilized, for minimizing fouling and scaling. Additionally, a peristaltic pump was used to circulate draw solution (DS) at a cross flow velocity of 0.7 cm/s. Magnesium sulphate (MgSO₄) solution was used as DS. Microfiltration membrane periodically extracted about 1 L solution when the TDS reaches to 5 g/L to recover phosphorus and simultaneous control the salt accumulation in the bioreactor. During experiment progressed, the average water flux was achieved around 1.6 LMH. The AnOMBR process show greater than 95% removal of soluble chemical oxygen demand (sCOD), nearly 100% of total phosphorous whereas only partial removal of ammonia, and finally average methane production of 0.22 L/g sCOD was obtained. Therefore, AnOMBR system periodically utilizes MF membrane extracted for phosphorus recovery with simultaneous pH adjustment. The overall performance demonstrates that a novel submerged AnOMBR system is having potential for simultaneous wastewater treatment and resource recovery from wastewater, and hence, the new concept of this system can be used to replace for conventional AnMBR in the future.

Keywords: anaerobic treatment, forward osmosis, phosphorus recovery, membrane bioreactor

Procedia PDF Downloads 238
235 Socio-Economic Transformation of Barpak Post-Earthquake Reconstruction

Authors: Sudikshya Bhandari, Jonathan K. London

Abstract:

The earthquake of April 2015 was one of the biggest disasters in the history of Nepal. The epicenter was located near Barpak, north of the Gorkha district. Before the disaster, this settlement was a compact and homogeneous settlement manifesting its uniqueness through the social and cultural activities, and a distinct vernacular architecture. Narrow alleys with stone paved streets, buildings with slate roofs, and common spaces between the houses made this settlement socially, culturally, and environmentally cohesive. With the presence of micro hydro power plants, local economic activities enabled the local community to exist and thrive. Agriculture and animal rearing are the sources of livelihood for the majority of families, along with the booming homestays (where local people welcome guests to their home, as a business) and local shops. Most of these activities are difficult to find as the houses have been destroyed with the earthquake and the process of reconstruction has been transforming the outlook of the settlement. This study characterized the drastic transformation in Barpak post-earthquake, and analyzed the consequences of the reconstruction process. In addition, it contributes to comprehending a broader representation about unsustainability created by the lack of contextual post-disaster development. Since the research is based in a specific area, a case study approach was used. Sample houses were selected on the basis of ethnicity and house typology. Mixed methods such as key informant and semi structured interviews, focus groups, observations and photographs are used for the collection of data. The research focus is predominantly on the physical change of the house typology from vernacular to externally adopted designs. This transformation of the house entails socio-cultural changes such as social fragmentation with differences among the rich and the poor and decreases in the social connectivity within families and neighborhood. Families have found that new houses require more maintenance and resources that have increased their economic expenses. The study also found that the reconstructed houses are not thermally comfortable in the cold climate of Barpak, leading to the increased use of different sources of heating like electric heaters and more firewood. Lack of storage spaces for crops and livestock have discouraged them to pursue traditional means of livelihood and depend more on buying food from stores, ultimately making it less economical for most of the families. The transformation of space leading to the economic, social and cultural changes demonstrates the unsustainability of Barpak. Conclusions from the study suggest place based and inclusive planning and policy formations that include locals as partners, identifying the possible ways to minimize the impact and implement these recommendations into the future policy and planning scenarios.

Keywords: earthquake, Nepal, reconstruction, settlement, transformation

Procedia PDF Downloads 95
234 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach

Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal

Abstract:

Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.

Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol

Procedia PDF Downloads 89
233 Features of Composites Application in Shipbuilding

Authors: Valerii Levshakov, Olga Fedorova

Abstract:

Specific features of ship structures, made from composites, i.e. simultaneous shaping of material and structure, large sizes, complicated outlines and tapered thickness have defined leading role of technology, integrating test results from material science, designing and structural analysis. Main procedures of composite shipbuilding are contact molding, vacuum molding and winding. Now, the most demanded composite shipbuilding technology is the manufacture of structures from fiberglass and multilayer hybrid composites by means of vacuum molding. This technology enables the manufacture of products with improved strength properties (in comparison with contact molding), reduction of production duration, weight and secures better environmental conditions in production area. Mechanized winding is applied for the manufacture of parts, shaped as rotary bodies – i.e. parts of ship, oil and other pipelines, deep-submergence vehicles hulls, bottles, reservoirs and other structures. This procedure involves processing of reinforcing fiberglass, carbon and polyaramide fibers. Polyaramide fibers have tensile strength of 5000 MPa, elastic modulus value of 130 MPa and rigidity of the same can be compared with rigidity of fiberglass, however, the weight of polyaramide fiber is 30% less than weight of fiberglass. The same enables to the manufacture different structures, including that, using both – fiberglass and organic composites. Organic composites are widely used for the manufacture of parts with size and weight limitations. High price of polyaramide fiber restricts the use of organic composites. Perspective area of winding technology development is the manufacture of carbon fiber shafts and couplings for ships. JSC ‘Shipbuilding & Shiprepair Technology Center’ (JSC SSTC) developed technology of dielectric uncouplers for cryogenic lines, cooled by gaseous or liquid cryogenic agents (helium, nitrogen, etc.) for temperature range 4.2-300 K and pressure up to 30 MPa – the same is used for separating components of electro physical equipment with different electrical potentials. Dielectric uncouplers were developed, the manufactured and tested in accordance with International Thermonuclear Experimental Reactor (ITER) Technical specification. Spiral uncouplers withstand operating voltage of 30 kV, direct-flow uncoupler – 4 kV. Application of spiral channel instead of rectilinear enables increasing of breakdown potential and reduction of uncouplers sizes. 95 uncouplers were successfully the manufactured and tested. At the present time, Russian the manufacturers of ship composite structures have started absorption of technology of manufacturing the same using automated prepreg laminating; this technology enables the manufacture of structures with improved operational specifications.

Keywords: fiberglass, infusion, polymeric composites, winding

Procedia PDF Downloads 213
232 Fabrication of Highly Conductive Graphene/ITO Transparent Bi-Film through Chemical Vapor Deposition (CVD) and Organic Additives-Free Sol-Gel Techniques

Authors: Bastian Waduge Naveen Harindu Hemasiri, Jae-Kwan Kim, Ji-Myon Lee

Abstract:

Indium tin oxide (ITO) remains the industrial standard transparent conducting oxides with better performances. Recently, graphene becomes as a strong material with unique properties to replace the ITO. However, graphene/ITO hybrid composite material is a newly born field in the electronic world. In this study, the graphene/ITO composite bi-film was synthesized by a two steps process. 10 wt.% tin-doped, ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO3)3.H2O and SnCl4 without using organic additives. The wettability and surface free energy (97.6986 mJ/m2) enhanced oxygen plasma treated glass substrates were used to form voids free continuous ITO film. The spin-coated samples were annealed at 600 0C for 1 hour under low vacuum conditions to obtained crystallized, ITO film. The crystal structure and crystalline phases of ITO thin films were analyzed by X-ray diffraction (XRD) technique. The Scherrer equation was used to determine the crystallite size. Detailed information about chemical composition and elemental composition of the ITO film were determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) coupled with FE-SEM respectively. Graphene synthesis was done under chemical vapor deposition (CVD) method by using Cu foil at 1000 0C for 1 min. The quality of the synthesized graphene was characterized by Raman spectroscopy (532nm excitation laser beam) and data was collected at room temperature and normal atmosphere. The surface and cross-sectional observation were done by using FE-SEM. The optical transmission and sheet resistance were measured by UV-Vis spectroscopy and four point probe head at room temperature respectively. Electrical properties were also measured by using V-I characteristics. XRD patterns reveal that the films contain the In2O3 phase only and exhibit the polycrystalline nature of the cubic structure with the main peak of (222) plane. The peak positions of In3d5/2 (444.28 eV) and Sn3d5/2 (486.7 eV) in XPS results indicated that indium and tin are in the oxide form only. The UV-visible transmittance shows 91.35 % at 550 nm with 5.88 x 10-3 Ωcm specific resistance. The G and 2D band in Raman spectroscopy of graphene appear at 1582.52 cm-1 and 2690.54 cm-1 respectively when the synthesized CVD graphene on SiO2/Si. The determined intensity ratios of 2D to G (I2D/IG) and D to G (ID/IG) were 1.531 and 0.108 respectively. However, the above-mentioned G and 2D peaks appear at 1573.57 cm-1 and 2668.14 cm-1 respectively when the CVD graphene on the ITO coated glass, the positions of G and 2D peaks were red shifted by 8.948 cm-1 and 22.396 cm-1 respectively. This graphene/ITO bi-film shows modified electrical properties when compares with sol-gel derived ITO film. The reduction of sheet resistance in the bi-film was 12.03 % from the ITO film. Further, the fabricated graphene/ITO bi-film shows 88.66 % transmittance at 550 nm wavelength.

Keywords: chemical vapor deposition, graphene, ITO, Raman Spectroscopy, sol-gel

Procedia PDF Downloads 237
231 Monitoring of Wound Healing Through Structural and Functional Mechanisms Using Photoacoustic Imaging Modality

Authors: Souradip Paul, Arijit Paramanick, M. Suheshkumar Singh

Abstract:

Traumatic injury is the leading worldwide health problem. Annually, millions of surgical wounds are created for the sake of routine medical care. The healing of these unintended injuries is always monitored based on visual inspection. The maximal restoration of tissue functionality remains a significant concern of clinical care. Although minor injuries heal well with proper care and medical treatment, large injuries negatively influence various factors (vasculature insufficiency, tissue coagulation) and cause poor healing. Demographically, the number of people suffering from severe wounds and impaired healing conditions is burdensome for both human health and the economy. An incomplete understanding of the functional and molecular mechanism of tissue healing often leads to a lack of proper therapies and treatment. Hence, strong and promising medical guidance is necessary for monitoring the tissue regeneration processes. Photoacoustic imaging (PAI), is a non-invasive, hybrid imaging modality that can provide a suitable solution in this regard. Light combined with sound offers structural, functional and molecular information from the higher penetration depth. Therefore, molecular and structural mechanisms of tissue repair will be readily observable in PAI from the superficial layer and in the deep tissue region. Blood vessel formation and its growth is an essential tissue-repairing components. These vessels supply nutrition and oxygen to the cell in the wound region. Angiogenesis (formation of new capillaries from existing blood vessels) contributes to new blood vessel formation during tissue repair. The betterment of tissue healing directly depends on angiogenesis. Other optical microscopy techniques can visualize angiogenesis in micron-scale penetration depth but are unable to provide deep tissue information. PAI overcomes this barrier due to its unique capability. It is ideally suited for deep tissue imaging and provides the rich optical contrast generated by hemoglobin in blood vessels. Hence, an early angiogenesis detection method provided by PAI leads to monitoring the medical treatment of the wound. Along with functional property, mechanical property also plays a key role in tissue regeneration. The wound heals through a dynamic series of physiological events like coagulation, granulation tissue formation, and extracellular matrix (ECM) remodeling. Therefore tissue elasticity changes, can be identified using non-contact photoacoustic elastography (PAE). In a nutshell, angiogenesis and biomechanical properties are both critical parameters for tissue healing and these can be characterized in a single imaging modality (PAI).

Keywords: PAT, wound healing, tissue coagulation, angiogenesis

Procedia PDF Downloads 79
230 Ultra-Tightly Coupled GNSS/INS Based on High Degree Cubature Kalman Filtering

Authors: Hamza Benzerrouk, Alexander Nebylov

Abstract:

In classical GNSS/INS integration designs, the loosely coupled approach uses the GNSS derived position and the velocity as the measurements vector. This design is suboptimal from the standpoint of preventing GNSSoutliers/outages. The tightly coupled GPS/INS navigation filter mixes the GNSS pseudo range and inertial measurements and obtains the vehicle navigation state as the final navigation solution. The ultra‐tightly coupled GNSS/INS design combines the I (inphase) and Q(quadrature) accumulator outputs in the GNSS receiver signal tracking loops and the INS navigation filter function intoa single Kalman filter variant (EKF, UKF, SPKF, CKF and HCKF). As mentioned, EKF and UKF are the most used nonlinear filters in the literature and are well adapted to inertial navigation state estimation when integrated with GNSS signal outputs. In this paper, it is proposed to move a step forward with more accurate filters and modern approaches called Cubature and High Degree cubature Kalman Filtering methods, on the basis of previous results solving the state estimation based on INS/GNSS integration, Cubature Kalman Filter (CKF) and High Degree Cubature Kalman Filter with (HCKF) are the references for the recent developed generalized Cubature rule based Kalman Filter (GCKF). High degree cubature rules are the kernel of the new solution for more accurate estimation with less computational complexity compared with the Gauss-Hermite Quadrature (GHQKF). Gauss-Hermite Kalman Filter GHKF which is not selected in this work because of its limited real-time implementation in high-dimensional state-spaces. In ultra tightly or a deeply coupled GNSS/INS system is dynamics EKF is used with transition matrix factorization together with GNSS block processing which is well described in the paper and assumes available the intermediary frequency IF by using a correlator samples with a rate of 500 Hz in the presented approach. GNSS (GPS+GLONASS) measurements are assumed available and modern SPKF with Cubature Kalman Filter (CKF) are compared with new versions of CKF called high order CKF based on Spherical-radial cubature rules developed at the fifth order in this work. Estimation accuracy of the high degree CKF is supposed to be comparative to GHKF, results of state estimation are then observed and discussed for different initialization parameters. Results show more accurate navigation state estimation and more robust GNSS receiver when Ultra Tightly Coupled approach applied based on High Degree Cubature Kalman Filter.

Keywords: GNSS, INS, Kalman filtering, ultra tight integration

Procedia PDF Downloads 261
229 A Design Methodology and Tool to Support Ecodesign Implementation in Induction Hobs

Authors: Anna Costanza Russo, Daniele Landi, Michele Germani

Abstract:

Nowadays, the European Ecodesign Directive has emerged as a new approach to integrate environmental concerns into the product design and related processes. Ecodesign aims to minimize environmental impacts throughout the product life cycle, without compromising performances and costs. In addition, the recent Ecodesign Directives require products which are increasingly eco-friendly and eco-efficient, preserving high-performances. It is very important for producers measuring performances, for electric cooking ranges, hobs, ovens, and grills for household use, and a low power consumption of appliances represents a powerful selling point, also in terms of ecodesign requirements. The Ecodesign Directive provides a clear framework about the sustainable design of products and it has been extended in 2009 to all energy-related products, or products with an impact on energy consumption during the use. The European Regulation establishes measures of ecodesign of ovens, hobs, and kitchen hoods, and domestic use and energy efficiency of a product has a significant environmental aspect in the use phase which is the most impactful in the life cycle. It is important that the product parameters and performances are not affected by ecodesign requirements from a user’s point of view, and the benefits of reducing energy consumption in the use phase should offset the possible environmental impact in the production stage. Accurate measurements of cooking appliance performance are essential to help the industry to produce more energy efficient appliances. The development of ecodriven products requires ecoinnovation and ecodesign tools to support the sustainability improvement. The ecodesign tools should be practical and focused on specific ecoobjectives in order to be largely diffused. The main scope of this paper is the development, implementation, and testing of an innovative tool, which could be an improvement for the sustainable design of induction hobs. In particular, a prototypical software tool is developed in order to simulate the energy performances of the induction hobs. The tool is focused on a multiphysics model which is able to simulate the energy performances and the efficiency of induction hobs starting from the design data. The multiphysics model is composed by an electromagnetic simulation and a thermal simulation. The electromagnetic simulation is able to calculate the eddy current induced in the pot, which leads to the Joule heating of material. The thermal simulation is able to measure the energy consumption during the operational phase. The Joule heating caused from the eddy currents is the output of electromagnetic simulation and the input of thermal ones. The aims of the paper are the development of integrated tools and methodologies of virtual prototyping in the context of the ecodesign. This tool could be a revolutionary instrument in the field of industrial engineering and it gives consideration to the environmental aspects of product design and focus on the ecodesign of energy-related products, in order to achieve a reduced environmental impact.

Keywords: ecodesign, energy efficiency, induction hobs, virtual prototyping

Procedia PDF Downloads 236
228 Accounting for Downtime Effects in Resilience-Based Highway Network Restoration Scheduling

Authors: Zhenyu Zhang, Hsi-Hsien Wei

Abstract:

Highway networks play a vital role in post-disaster recovery for disaster-damaged areas. Damaged bridges in such networks can disrupt the recovery activities by impeding the transportation of people, cargo, and reconstruction resources. Therefore, rapid restoration of damaged bridges is of paramount importance to long-term disaster recovery. In the post-disaster recovery phase, the key to restoration scheduling for a highway network is prioritization of bridge-repair tasks. Resilience is widely used as a measure of the ability to recover with which a network can return to its pre-disaster level of functionality. In practice, highways will be temporarily blocked during the downtime of bridge restoration, leading to the decrease of highway-network functionality. The failure to take downtime effects into account can lead to overestimation of network resilience. Additionally, post-disaster recovery of highway networks is generally divided into emergency bridge repair (EBR) in the response phase and long-term bridge repair (LBR) in the recovery phase, and both of EBR and LBR are different in terms of restoration objectives, restoration duration, budget, etc. Distinguish these two phases are important to precisely quantify highway network resilience and generate suitable restoration schedules for highway networks in the recovery phase. To address the above issues, this study proposes a novel resilience quantification method for the optimization of long-term bridge repair schedules (LBRS) taking into account the impact of EBR activities and restoration downtime on a highway network’s functionality. A time-dependent integer program with recursive functions is formulated for optimally scheduling LBR activities. Moreover, since uncertainty always exists in the LBRS problem, this paper extends the optimization model from the deterministic case to the stochastic case. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. The proposed methods are tested using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that, in this case, neglecting the bridge restoration downtime can lead to approximately 15% overestimation of highway network resilience. Moreover, accounting for the impact of EBR on network functionality can help to generate a more specific and reasonable LBRS. The theoretical and practical values are as follows. First, the proposed network recovery curve contributes to comprehensive quantification of highway network resilience by accounting for the impact of both restoration downtime and EBR activities on the recovery curves. Moreover, this study can improve the highway network resilience from the organizational dimension by providing bridge managers with optimal LBR strategies.

Keywords: disaster management, highway network, long-term bridge repair schedule, resilience, restoration downtime

Procedia PDF Downloads 124
227 Flux-Gate vs. Anisotropic Magneto Resistance Magnetic Sensors Characteristics in Closed-Loop Operation

Authors: Neoclis Hadjigeorgiou, Spyridon Angelopoulos, Evangelos V. Hristoforou, Paul P. Sotiriadis

Abstract:

The increasing demand for accurate and reliable magnetic measurements over the past decades has paved the way for the development of different types of magnetic sensing systems as well as of more advanced measurement techniques. Anisotropic Magneto Resistance (AMR) sensors have emerged as a promising solution for applications requiring high resolution, providing an ideal balance between performance and cost. However, certain issues of AMR sensors such as non-linear response and measurement noise are rarely discussed in the relevant literature. In this work, an analog closed loop compensation system is proposed, developed and tested as a means to eliminate the non-linearity of AMR response, reduce the 1/f noise and enhance the sensitivity of magnetic sensor. Additional performance aspects, such as cross-axis and hysteresis effects are also examined. This system was analyzed using an analytical model and a P-Spice model, considering both the sensor itself as well as the accompanying electronic circuitry. In addition, a commercial closed loop architecture Flux-Gate sensor (calibrated and certified), has been used for comparison purposes. Three different experimental setups have been constructed for the purposes of this work, each one utilized for DC magnetic field measurements, AC magnetic field measurements and Noise density measurements respectively. The DC magnetic field measurements have been conducted in laboratory environment employing a cubic Helmholtz coil setup in order to calibrate and characterize the system under consideration. A high-accuracy DC power supply has been used for providing the operating current to the Helmholtz coils. The results were recorded by a multichannel voltmeter The AC magnetic field measurements have been conducted in laboratory environment employing a cubic Helmholtz coil setup in order to examine the effective bandwidth not only of the proposed system but also for the Flux-Gate sensor. A voltage controlled current source driven by a function generator has been utilized for the Helmholtz coil excitation. The result was observed by the oscilloscope. The third experimental apparatus incorporated an AC magnetic shielding construction composed of several layers of electric steel that had been demagnetized prior to the experimental process. Each sensor was placed alone and the response was captured by the oscilloscope. The preliminary experimental results indicate that closed loop AMR response presented a maximum deviation of 0.36% with respect to the ideal linear response, while the corresponding values for the open loop AMR system and the Fluxgate sensor reached 2% and 0.01% respectively. Moreover, the noise density of the proposed close loop AMR sensor system remained almost as low as the noise density of the AMR sensor itself, yet considerably higher than that of the Flux-Gate sensor. All relevant numerical data are presented in the paper.

Keywords: AMR sensor, chopper, closed loop, electronic noise, magnetic noise, memory effects, flux-gate sensor, linearity improvement, sensitivity improvement

Procedia PDF Downloads 402