Search results for: WSN design requirements
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13939

Search results for: WSN design requirements

10129 Generation of Waste Streams in Small Model Reactors

Authors: Sara Mostofian

Abstract:

The nuclear industry is a technology that can fulfill future energy needs but requires special attention to ensure safety and reliability while minimizing any environmental impact. To meet these expectations, the nuclear industry is exploring different reactor technologies for power production. Several designs are under development and the technical viability of these new designs is the subject of many ongoing studies. One of these studies considers the radioactive emissions and radioactive waste generated during the life of a nuclear power production plant to allow a successful license process. For all the modern technologies, a good understanding of the radioactivity generated in the process systems of the plant is essential. Some of that understanding may be gleaned from the performance of some prototype reactors of similar design that operated decades ago. This paper presents how, with that understanding, a model can be developed to estimate the emissions as well as the radioactive waste during the normal operation of a nuclear power plant. The model would predict the radioactive material concentrations in different waste streams. Using this information, the radioactive emission and waste generated during the life of these new technologies can be estimated during the early stages of the design of the plant.

Keywords: SMRs, activity transport, model, radioactive waste

Procedia PDF Downloads 88
10128 The Investigation of the Impact of Process and Location Parameters in Warpage Study of Semiconductor Packages

Authors: Wheyming Song, Ssu-Ping Lin

Abstract:

The primary advantage of package-on-package (PoP) packaging is that since it has less volume, it weighs less. But this is also related to its principal drawback, which is warpage. This research investigates how PoP package warpage patterns are affected by assembling process parameters, including substrate temperature, injection speed, injection temperature, and compound forces. We also investigate how warpage patterns are affected by the location of the silicon chip. The methodologies used in this research are design of experiment and warpage simulation via ANSYS. We propose a regression model to predict the warpage value as a function of substrate temperature, injection speed, injection temperature, and compound forces. Our results show that interaction effects exist between substrate temperature and compound forces and between injection speed and injection temperature. Therefore, determining the optimal values for substrate temperature, compound forces, injection speed, and injection temperature cannot be done individually. Also, our results show that the warpage patterns based on the location of silicon chips can be classified into 11 groups, with the largest warpage occurring at the left-most and right-most sides.

Keywords: package-on-package, warpage, design of experiment, simulation

Procedia PDF Downloads 289
10127 The Antecedents of Brand Loyalty on Female Cosmetics Buying Behavior

Authors: Velly Anatasia

Abstract:

The worldwide annual expenditure for cosmetics is estimated at U.S. $18 billion and many players in the field are competing aggressively to capture more and more markets. Players in the cosmetics industry strive to be the foremost by establish customer loyalty. Furthermore, customer loyalty is portrayed by brand loyalty. Therefore, brand loyalty is the key determine of winning the competition in tight market. This study examines the influence of brand loyalty on cosmetics buying behavior of female consumers in Jakarta as capital of Indonesia. The seven factors of brand loyalty are brand name, Product quality, price, design, promotion, servicesquality and store environment. The paper adopted descriptive analysis, factor loading and multiple regression approach to test the hypotheses. The data has been collected by using questionnaires which were distributed and self-administered to 125female respondents accustomed using cosmetics. The findings of this study indicated that promotion has shown strong correlation with brand loyalty. The research results showed that there is positive and significant relationship between factors of brand loyalty (brand name, product quality, price, design, promotion, services quality and store environment) with cosmetics brand loyalty.

Keywords: brand loyalty, brand name, product quality, service quality, promotion

Procedia PDF Downloads 373
10126 Transforming Butterworth Low Pass Filter into Microstrip Line Form at LC-Band Applications

Authors: Liew Hui Fang, Syed Idris Syed Hassan, Mohd Fareq Abd. Malek, Yufridin Wahab, Norshafinash Saudin

Abstract:

The paper implementation new approach method applied into transforming lumped element circuit into microstrip line form for Butterworth low pass filter which is operating at LC band. The filter’s lumped element circuits and microstrip line form were first designed and simulated using Advanced Design Software (ADS) to obtain the best filter characteristic based on S-parameter and implemented on FR4 substrate for order N=3,4,5,6,7,8 and 9. The importance of a new approach of transforming method as a correction factor has been considered into designed microstrip line. From ADS simulation results proved that the response of microstrip line circuit of Butterworth low pass filter with fringing correction factor has an excellent agreement with its lumped circuit. This shows that the new approach of transforming lumped element circuit into microstrip line is able to solve the conventional design of complexity size of circuit of Butterworth low pass filter (LPF) into microstrip line.

Keywords: Butterworth low pass filter, number of order, microstrip line, microwave filter, maximally flat

Procedia PDF Downloads 315
10125 Flexible Coupling between Gearbox and Pump (High Speed Machine)

Authors: Naif Mohsen Alharbi

Abstract:

This paper present failure occurred on flexible coupling installed at oil anf gas operation. Also it presents maintenance ideas implemented on the flexible coupling installed to transmit high torque from gearbox to pump. Basically, the machine train is including steam turbine which drives the pump and there is gearbox located in between for speed reduction. investigation are identifying the root causes, solving and developing the technology designs or bad actor. This report provides the study intentionally for continues operation optimization, utilize the advanced opportunity and implement a improvement. Objective: The main objectives of the investigation are identifying the root causes, solving and developing the technology designs or bad actor. Ultimately, fulfilling the operation productivity, also ensuring better technology, quality and design by solutions. This report provides the study intentionally for continues operation optimization, utilize the advanced opportunity and implemet improvement. Method: The method used in this project was a very focused root cause analysis procedure that incorporated engineering analysis and measurements. The analysis method extensively covers the measuring of the complete coupling dimensions. Including the membranes thickness, hubs, bore diameter and total length, dismantle flexible coupling to diagnose how deep the coupling has been affected. Also, defining failure modes, so that the causes could be identified and verified. Moreover, Vibration analysis and metallurgy test. Lastly applying several solutions by advanced tools (will be mentioned in detail). Results and observation: Design capacity: Coupling capacity is an inadequate to fulfil 100% of operating conditions. Therefore, design modification of service factor to be at least 2.07 is crucial to address this issue and prevent recurrence of similar scenario, especially for the new upgrading project. Discharge fluctuation: High torque flexible coupling encountered during the operation. Therefore, discharge valve behaviour, tuning, set point and general conditions revaluated and modified subsequently, it can be used as baseline for upcoming Coupling design project. Metallurgy test: Material of flexible coupling membrane (discs) tested at the lab, for a detailed metallurgical investigation, better material grade has been selected for our operating conditions,

Keywords: high speed machine, reliabilty, flexible coupling, rotating equipment

Procedia PDF Downloads 52
10124 Optimization of Dissolution of Chevreul’s Salt in Ammonium Chloride Solutions

Authors: Mustafa Sertçelik, Hacali Necefoğlu, Turan Çalban, Soner Kuşlu

Abstract:

In this study, Chevreul’s salt was dissolved in ammonium chloride solutions. All experiments were performed in a batch reactor. The obtained results were optimized. Parameters used in the experiments were the reaction temperature, the ammonium chloride concentration, the reaction time and the solid-to-liquid ratio. The optimum conditions were determined by 24 factorial experimental design method. The best values of four parameters were determined as based on the experiment results. After the evaluation of experiment results, all parameters were found as effective in experiment conditions selected. The optimum conditions on the maximum Chevreul’s salt dissolution were the ammonium chloride concentration 4.5 M, the reaction time 13.2 min., the reaction temperature 25 oC, and the solid-to-liquid ratio 9/80 g.mL-1. The best dissolution yield in these conditions was 96.20%.

Keywords: Chevreul's salt, factorial experimental design method, ammonium chloride, dissolution, optimization

Procedia PDF Downloads 228
10123 A Functional Thermochemical Energy Storage System for Mobile Applications: Design and Performance Analysis

Authors: Jure Galović, Peter Hofmann

Abstract:

Thermochemical energy storage (TCES), as a long-term and lossless energy storage principle, provides a contribution for the reduction of greenhouse emissions of mobile applications, such as passenger vehicles with an internal combustion engine. A prototype of a TCES system, based on reversible sorption reactions of LiBr composite and methanol has been designed at Vienna University of Technology. In this paper, the selection of reactive and inert carrier materials as well as the design of heat exchangers (reactor vessel and evapo-condenser) was reviewed and the cycle stability under real operating conditions was investigated. The performance of the developed system strongly depends on the environmental temperatures, to which the reactor vessel and evapo-condenser are exposed during the phases of thermal conversion. For an integration of the system into mobile applications, the functionality of the designed prototype was proved in numerous conducted cycles whereby no adverse reactions were observed.

Keywords: dynamic applications, LiBr composite, methanol, performance of TCES system, sorption process, thermochemical energy storage

Procedia PDF Downloads 147
10122 Modeling and Simulation of Textile Effluent Treatment Using Ultrafiltration Membrane Technology

Authors: Samia Rabet, Rachida Chemini, Gerhard Schäfer, Farid Aiouache

Abstract:

The textile industry generates large quantities of wastewater, which poses significant environmental problems due to its complex composition and high levels of pollutants loaded principally with heavy metals, large amounts of COD, and dye. Separation treatment methods are often known for their effectiveness in removing contaminants whereas membrane separation techniques are a promising process for the treatment of textile effluent due to their versatility, efficiency, and low energy requirements. This study focuses on the modeling and simulation of membrane separation technologies with a cross-flow filtration process for textile effluent treatment. It aims to explore the application of mathematical models and computational simulations using ASPEN Plus Software in the prediction of a complex and real effluent separation. The results demonstrate the effectiveness of modeling and simulation techniques in predicting pollutant removal efficiencies with a global deviation percentage of 1.83% between experimental and simulated results; membrane fouling behavior, and overall process performance (hydraulic resistance, membrane porosity) were also estimated and indicating that the membrane losses 10% of its efficiency after 40 min of working.

Keywords: membrane separation, ultrafiltration, textile effluent, modeling, simulation

Procedia PDF Downloads 42
10121 Overview About Sludge Produced From Treatment Plant of Bahr El-Baqar Drain and Reusing It With Cement in Outdoor Paving

Authors: Khaled M.Naguib, Ahmed M.Noureldin

Abstract:

This paper aims to achieve many goals such as knowing (quantities produced- main properties- characteristics) of sludge produced from Bahr EL-Baqar drains treatment plant. This prediction or projection was made by laboratory analysis and modelling of Model samples from sludge depending on many studies that have previously done, second check the feasibility and do a risk analysis to know the best alternatives for reuse in producing secondary products that add value to sludge. Also, to know alternatives that have no value to add. All recovery methods are relatively very expensive and challenging to be done in this mega plant, so the recommendation from this study is to use the sludge as a coagulant to reduce some compounds or in secondary products. The study utilized sludge-cement replacement percentages of 10%, 20%, 30%, 40% and 50%. Produced tiles were tested for water absorption and breaking (bending) strength. The study showed that all produced tiles exhibited a water absorption ratio of around 10%. The study concluded that produced tiles, except for 50% sludge-cement replacement, comply with the breaking strength requirements of 2.8 MPa for tiles for external use.

Keywords: cement, tiles, water treatment sludge, breaking strength, absorption, heavy metals, risk analysis

Procedia PDF Downloads 92
10120 Development of Electronic Waste Management Framework at College of Design Art, Design and Technology

Authors: Wafula Simon Peter, Kimuli Nabayego Ibtihal, Nabaggala Kimuli Nashua

Abstract:

The worldwide use of information and communications technology (ICT) equipment and other electronic equipment is growing and consequently, there is a growing amount of equipment that becomes waste after its time in use. This growth is expected to accelerate since equipment lifetime decreases with time and growing consumption. As a result, e-waste is one of the fastest-growing waste streams globally. The United Nations University (UNU) calculates in its second Global E-waste Monitor 44.7 million metric tonnes (Mt) of e-waste were generated globally in 2016. The study population was 80 respondents, from which a sample of 69 respondents was selected using simple and purposive sampling techniques. This research was carried out to investigate the problem of e-waste and come up with a framework to improve e-waste management. The objective of the study was to develop a framework for improving e-waste management at the College of Engineering, Design, Art and Technology (CEDAT). This was achieved by breaking it down into specific objectives, and these included the establishment of the policy and other Regulatory frameworks being used in e-waste management at CEDAT, the determination of the effectiveness of the e-waste management practices at CEDAT, the establishment of the critical challenges constraining e-waste management at the College, development of a framework for e-waste management. The study reviewed the e-waste regulatory framework used at the college and then collected data which was used to come up with a framework. The study also established that weak policy and regulatory framework, lack of proper infrastructure, improper disposal of e-waste and a general lack of awareness of the e-waste and the magnitude of the problem are the critical challenges of e-waste management. In conclusion, the policy and regulatory framework should be revised, localized and strengthened to contextually address the problem. Awareness campaigns, the development of proper infrastructure and extensive research to establish the volumes and magnitude of the problems will come in handy. The study recommends a framework for the improvement of e-waste.

Keywords: e-waste, treatment, disposal, computers, model, management policy and guidelines

Procedia PDF Downloads 64
10119 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage

Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng

Abstract:

Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.

Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning

Procedia PDF Downloads 58
10118 Design and Analysis of Deep Excavations

Authors: Barham J. Nareeman, Ilham I. Mohammed

Abstract:

Excavations in urban developed area are generally supported by deep excavation walls such as; diaphragm wall, bored piles, soldier piles and sheet piles. In some cases, these walls may be braced by internal braces or tie back anchors. Tie back anchors are by far the predominant method for wall support, the large working space inside the excavation provided by a tieback anchor system has a significant construction advantage. This paper aims to analyze a deep excavation bracing system of contiguous pile wall braced by pre-stressed tie back anchors, which is a part of a huge residential building project, located in Turkey/Gaziantep province. The contiguous pile wall will be constructed with a length of 270 m that consists of 285 piles, each having a diameter of 80 cm, and a center to center spacing of 95 cm. The deformation analysis was carried out by a finite element analysis tool using PLAXIS. In the analysis, beam element method together with an elastic perfect plastic soil model and Soil Hardening Model was used to design the contiguous pile wall, the tieback anchor system, and the soil. The two soil clusters which are limestone and a filled soil were modelled with both Hardening soil and Mohr Coulomb models. According to the basic design, both soil clusters are modelled as drained condition. The simulation results show that the maximum horizontal movement of the walls and the maximum settlement of the ground are convenient with 300 individual case histories which are ranging between 1.2mm and 2.3mm for walls, and 15mm and 6.5mm for the settlements. It was concluded that tied-back contiguous pile wall can be satisfactorily modelled using Hardening soil model.

Keywords: deep excavation, finite element, pre-stressed tie back anchors, contiguous pile wall, PLAXIS, horizontal deflection, ground settlement

Procedia PDF Downloads 240
10117 Anthropomorphic Interfaces For User Trust in a Highly Automated Driving

Authors: Clarisse Lawson-Guidigbe, Nicolas Louveton, Kahina Amokrane-Ferka, Jean-Marc Andre

Abstract:

Trust in automated driving systems is receiving growing attention in the research community. Anthropomorphism has been identified by past research as a trust-building factor. In this paper, we consider three anthropomorphic interfaces integrating three versions of a virtual assistant. We attempt to measure the impact of each of these interfaces on trust in the automated driving system. An experiment following a between-subject design was conducted in a driving simulator (N = 36) to evaluate participants’ performance and experience in two handover situations (a simple one and a critical one). Perception of anthropomorphism and trust was measured using scales, while participants’ experience was measured during elicitation interviews. We found no significant difference between the three interfaces regarding the perception of anthropomorphism, trust levels, or experience. However, regarding participants’ performance, we found a significant difference between the three interfaces in the simple handover situations but not the critical one. Learnings from anthropomorphism and trust measurement scales are discussed and suggestions for further research are proposed.

Keywords: highly automated driving, trust, anthropomorphic design, mindful anthropomorphism, mindless anthropomorphism

Procedia PDF Downloads 128
10116 A Relationship Model That Illustrates the Effect of Humorous Packaging Designs on Brand Awareness and Brand Attitude

Authors: Shu-Yuan Lin, Tung-Chin Chou

Abstract:

As products become increasingly similar in competitive markets, achieving product segmentation and differentiation through packaging design has become the primary task when designing retail product packaging. When the main focus of brand marketing is no longer the product itself, emotional marketing, such as the use of humorous packaging designs, may be employed to successfully promote the brand. Such efforts will capture the hearts of consumers, generate discussions, and allow the brand to leave a deep impression in consumers. In this study, snack packaging was used to develop a relationship model that illustrated the effect of humorous packaging designs on brand awareness and brand attitude. The study was divided into three stages: In the first stage, in-depth interviews and focus group interviews were conducted with experts to construct 24 indicators for assessing humorous packaging designs. In the second stage, survey questionnaires were distributed to a young consumer group; the results showed that the group had a high and low product involvement with chocolate and dried shredded squid, respectively. Humorous packaging designs were subsequently created for two snack types to produce a study sample of 12 different packaging. In the third stage, packaging designs were evaluated by obtaining scores for the consumers’ brand awareness, brand attitude, and perceived effects of the packaging designs. Finally, a relationship model was developed to show the effect of humorous packaging designs on brand awareness and brand attitude, confirming that two perceived effects of humorous packaging designs (i.e., ‘pleasant and emotionally healing’ and ‘connected to people’s daily life’) exhibited a significant and positive effect on ‘perceived brand value,’ where the effect of ‘pleasant and emotionally healing’ was the most significant. In addition, ‘pleasant and emotionally healing’ exerted a significant and positive effect on ‘brand purchase intention.’ Furthermore, packaging designs with humorous elements helped foster brand awareness.

Keywords: brand awareness, brand attitude, humorous design, packaging design

Procedia PDF Downloads 207
10115 Identification of Successful Criteria for Measuring Large Infrastructure Projects Performance in Malaysia

Authors: M. A. N. Masrom, M. H. I. A. Rahim, G. K. Chen, S. Mohamed

Abstract:

Large infrastructure project is one of significant category in the development of Malaysian construction industry. This type of project has been recognized as a high complexity project with numerous construction risks, large cost involvement, highly technical requirements and divers of resources. Besides, the development of large infrastructure such as highway, railway, Mass Rapid Transit (MRT) and airport are also needed a large investment of public and private sector. To accomplish the development successfully, several challenges has to be determined prior the project commencement. To date, a comprehensive assessment of key success criteria particularly for large infrastructure in developing country such as Malaysia, is still not systematically defined and therefore, it needs further investigation. This paper aims to explore the potential success criteria that would be useful in gauging overall performance of large infrastructure implementation particularly in developing country. Previous successful criteria studies were used to develop a conceptual framework that possibly suitable for measuring large infrastructure performance. The findings show that successful criteria of infrastructure projects implementation could be grouped according to several key elements as it seems significant to the participants in prioritizing project challenges more systematically.

Keywords: successful criteria, performance, large infrastructure, Malaysia

Procedia PDF Downloads 389
10114 Co-design Workshop Approach: Barriers and Facilitators of Using IV Iron in Anaemic Pregnant Women in Malawi - A Qualitative Study

Authors: Elisabeth Mamani-Mategula

Abstract:

Background: Anaemia has significant consequences on both the mother and child's health as it results in maternal haemorrhage, low childbirth weight, premature delivery, poor organ development, and infections at birth and hence the need for treatment. In low-middle income countries, anaemic pregnant women are recommended to take 30 mg to 60 mg of elemental iron daily throughout pregnancy which are often poorly tolerated and adhered to. A potential alternative to oral iron is intravenous (IV) iron which allows the saturation of the body’s iron stores quickly. Currently, a randomised controlled trial on the Effect of intravenous iron on Anaemia in Malawian Pregnant women (REVAMP) is underway. Since this is new in Africa and Malawi is the second country to implement it, its acceptability to both the providers and end-users is not known. Suppose the use of IV iron during pregnancy would be acceptable in Malawi, it could change how we treat and manage pregnant women with anaemia and be scaled up throughout Malawi to improve maternal and child health. Objectives: To identify the barriers and facilitators of implementing IV iron in the Malawian healthcare system and identify ‘touchpoints’ and co-develop strategies to support and inform the implementation of the trial Methodology: A qualitative study was conducted with policymakers, government partners, and health managers through in-depth interviews to identify barriers and facilitators relating to the implementation of IV iron in the health system of Malawi. From the interviews, touchpoints were identified that formed the basis of the discussion in further discussing the barriers and suggested solutions in the co-design workshops with the community members and the health workers, respectively. We purposively recruited 20 health workers (10 male, 10 Female). 20 community members (10 male, 10 female) were recruited randomly. Data was collected through group discussions and interactive sessions and was recorded through audios, flip charts, and sticky notes. We familiarized ourselves with the data and identified themes. Results: Two co-design workshops were conducted with different community members and different health worker carders. Identified individual factors included lack of knowledge about anaemia, lack of male involvement, the attitude of health workers and patient non-compliance with appointments. Community factors included myths and misconceptions about IV iron, including associating the use of IV iron with vampirism and covid 19 vaccination. Health system factors identified were a shortage of staff and equipment, unfamiliarity with IV iron and its cost. Discussion: The use of IV iron, as suggested by the community members and health workers, demands civic education through bringing awareness to end-users and training to providers. Through these co-design workshops, community sensitization and awareness, briefing and training of health workers and creation of educational materials were done.

Keywords: acceptability, IV iron, barriers, facilitators, co-design

Procedia PDF Downloads 116
10113 Material Properties Evolution Affecting Demisability for Space Debris Mitigation

Authors: Chetan Mahawar, Sarath Chandran, Sridhar Panigrahi, V. P. Shaji

Abstract:

The ever-growing advancement in space exploration has led to an alarming concern for space debris removal as it restricts further launch operations and adventurous space missions; hence numerous studies have come up with technologies for re-entry predictions and material selection processes for mitigating space debris. The selection of material and operating conditions is determined with the objective of lightweight structure and ability to demise faster subject to spacecraft survivability during its mission. Since the demisability of spacecraft depends on evolving thermal material properties such as emissivity, specific heat capacity, thermal conductivity, radiation intensity, etc. Therefore, this paper presents the analysis of evolving thermal material properties of spacecraft, which affect the demisability process and thus estimate demise time using the demisability model by incorporating evolving thermal properties for sensible heating followed by the complete or partial break-up of spacecraft. The demisability analysis thus concludes the best suitable spacecraft material is based on the least estimated demise time, which fulfills the criteria of design-for-survivability and as well as of design-for-demisability.

Keywords: demisability, emissivity, lightweight, re-entry, survivability

Procedia PDF Downloads 98
10112 Optimization of Lean Methodologies in the Textile Industry Using Design of Experiments

Authors: Ahmad Yame, Ahad Ali, Badih Jawad, Daw Al-Werfalli Mohamed Nasser, Sabah Abro

Abstract:

Industries in general have a lot of waste. Wool textile company, Baniwalid, Libya has many complex problems that led to enormous waste generated due to the lack of lean strategies, expertise, technical support and commitment. To successfully address waste at wool textile company, this study will attempt to develop a methodical approach that integrates lean manufacturing tools to optimize performance characteristics such as lead time and delivery. This methodology will utilize Value Stream Mapping (VSM) techniques to identify the process variables that affect production. Once these variables are identified, Design of Experiments (DOE) Methodology will be used to determine the significantly influential process variables, these variables are then controlled and set at their optimal to achieve optimal levels of productivity, quality, agility, efficiency and delivery to analyze the outputs of the simulation model for different lean configurations. The goal of this research is to investigate how the tools of lean manufacturing can be adapted from the discrete to the continuous manufacturing environment and to evaluate their benefits at a specific industrial.

Keywords: lean manufacturing, DOE, value stream mapping, textiles

Procedia PDF Downloads 438
10111 An Integrated Power Generation System Design Developed between Solar Energy-Assisted Dual Absorption Cycles

Authors: Asli Tiktas, Huseyin Gunerhan, Arif Hepbasli

Abstract:

Solar energy, with its abundant and clean features, is one of the prominent renewable energy sources in multigeneration energy systems where various outputs, especially power generation, are produced together. In the literature, concentrated solar energy systems, which are an expensive technology, are mostly used in solar power plants where medium-high capacity production outputs are achieved. In addition, although different methods have been developed and proposed for solar energy-supported integrated power generation systems by different investigators, absorption technology, which is one of the key points of the present study, has been used extensively in cooling systems in these studies. Unlike these common uses mentioned in the literature, this study designs a system in which a flat plate solar collector (FPSC), Rankine cycle, absorption heat transformer (AHT), and cooling systems (ACS) are integrated. The system proposed within the scope of this study aims to produce medium-high-capacity electricity, heating, and cooling outputs using a technique different from the literature, with lower production costs than existing systems. With the proposed integrated system design, the average production costs based on electricity, heating, and cooling load production for similar scale systems are 5-10% of the average production costs of 0.685 USD/kWh, 0.247 USD/kWh, and 0.342 USD/kWh. In the proposed integrated system design, this will be achieved by increasing the outlet temperature of the AHT and FPSC system first, expanding the high-temperature steam coming out of the absorber of the AHT system in the turbine up to the condenser temperature of the ACS system, and next directly integrating it into the evaporator of this system and then completing the AHT cycle. Through this proposed system, heating and cooling will be carried out by completing the AHT and ACS cycles, respectively, while power generation will be provided because of the expansion of the turbine. Using only a single generator in the production of these three outputs together, the costs of additional boilers and the need for a heat source are also saved. In order to demonstrate that the system proposed in this study offers a more optimum solution, the techno-economic parameters obtained based on energy, exergy, economic, and environmental analysis were compared with the parameters of similar scale systems in the literature. The design parameters of the proposed system were determined through a parametric optimization study to exceed the maximum efficiency and effectiveness and reduce the production cost rate values of the compared systems.

Keywords: solar energy, absorption technology, Rankine cycle, multigeneration energy system

Procedia PDF Downloads 39
10110 Assessment of Designed Outdoor Playspaces as Learning Environments and Its Impact on Child’s Wellbeing: A Case of Bhopal, India

Authors: Richa Raje, Anumol Antony

Abstract:

Playing is the foremost stepping stone for childhood development. Play is an essential aspect of a child’s development and learning because it creates meaningful enduring environmental connections and increases children’s performance. The children’s proficiencies are ever varying in their course of growth. There is innovation in the activities, as it kindles the senses, surges the love for exploration, overcomes linguistic barriers and physiological development, which in turn allows them to find their own caliber, spontaneity, curiosity, cognitive skills, and creativity while learning during play. This paper aims to comprehend the learning in play which is the most essential underpinning aspect of the outdoor play area. It also assesses the trend of playgrounds design that is merely hammered with equipment's. It attempts to derive a relation between the natural environment and children’s activities and the emotions/senses that can be evoked in the process. One of the major concerns with our outdoor play is that it is limited to an area with a similar kind of equipment, thus making the play highly regimented and monotonous. This problem is often lead by the strict timetables of our education system that hardly accommodates play. Due to these reasons, the play areas remain neglected both in terms of design that allows learning and wellbeing. Poorly designed spaces fail to inspire the physical, emotional, social and psychological development of the young ones. Currently, the play space has been condensed to an enclosed playground, driveway or backyard which confines the children’s capability to leap the boundaries set for him. The paper emphasizes on study related to kids ranging from 5 to 11 years where the behaviors during their interactions in a playground are mapped and analyzed. The theory of affordance is applied to various outdoor play areas, in order to study and understand the children’s environment and how variedly they perceive and use them. A higher degree of affordance shall form the basis for designing the activities suitable in play spaces. It was observed during their play that, they choose certain spaces of interest majority being natural over other artificial equipment. The activities like rolling on the ground, jumping from a height, molding earth, hiding behind tree, etc. suggest that despite equipment they have an affinity towards nature. Therefore, we as designers need to take a cue from their behavior and practices to be able to design meaningful spaces for them, so the child gets the freedom to test their precincts.

Keywords: children, landscape design, learning environment, nature and play, outdoor play

Procedia PDF Downloads 109
10109 Design of Control Systems for Grid Interconnection and Power Control of a Grid Tie Inverter for Micro-Grid Application

Authors: Deepak Choudhary

Abstract:

COEP-Microgrid, a project by the students of College of Engineering Pune aims at establishing a micro grid in the college campus serving as a living laboratory for research and development of novel grid technologies. Proposed micro grid has an AC-bus and DC-bus, interconnected together with a tie line DC-AC converter. In grid-connected mode AC bus of microgrid is synchronized with utility grid. Synchronization with utility grid requires grid and AC bus to have synchronism in frequency, phase sequence and voltage. Power flow requires phase difference between grid and AC bus. Control System is required to effectively regulate power flow between the grid and AC bus. The grid synchronizing control system is composed of frequency and phase control for regulated power flow and voltage control system for reduction of reactive power flow. The control system involves automatic active power flow control. It takes the feedback of DC link Capacitor and changes the power angle accordingly. Control system incorporating voltage, phase and power control was developed for grid-tie inverter. This paper discusses the design, simulation and practical implementation of control system described in various micro grid scenarios.

Keywords: microgrid, Grid-tie inverter, voltage control, automatic power control

Procedia PDF Downloads 643
10108 Proposal of Methodology Based on Technical Characterization and Quantitative Contrast of Co₂ Emissions for the Migration to Electric Mobility of the Vehicle Fleet: Case Study of Electric Companies in Ecuador

Authors: Rodrigo I. Ullauri, Santiago E. Tinajero, Omar O. Ramos, Paola R. Quintana

Abstract:

The increase of CO₂ emissions in the atmosphere and its impact on climate change is a global concern. The transportation sector is a significant consumer of fossil fuels and contributes significantly to greenhouse gas emissions. The current challenge is to find ways to reduce the use of fossil fuels in transportation. In Ecuador, where 92% of electricity is generated from clean sources, the concept of e-mobility is considered an attractive alternative to address the challenge of sustainable mobility. The proposal is to migrate from combustion-powered vehicles to electric vehicles in the electric companies of Ecuador, using a methodology to standardize criteria, determine specific requirements, contrast technical characteristics, and estimate emission reductions. The results showed that there are three categories of vehicles that have electric counterparts suitable for performing activities under certain operation parameters inherent to current technology limitations but with a significant contribution to the reduction of annual CO₂ emissions.

Keywords: climate change, electro mobility, energy, sustainable transportation

Procedia PDF Downloads 75
10107 Techno-Economic Analysis of Solar Energy for Cathodic Protection of Oil and Gas Buried Pipelines in Southwestern of Iran

Authors: M. Goodarzi, M. Mohammadi, A. Gharib

Abstract:

Solar energy is a renewable energy which has attracted special attention in many countries. Solar cathodic protectionsystems harness the sun’senergy to protect underground pipelinesand tanks from galvanic corrosion. The object of this study is to design and the economic analysis a cathodic protection system by impressed current supplied with solar energy panels applied to underground pipelines. In the present study, the technical and economic analysis of using solar energy for cathodic protection system in southwestern of Iran (Khuzestan province) is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The economic analyses were done using computer code to investigate the feasibility analysis from the using of various energy sources in order to cathodic protection system. The overall research methodology is divided into four components: Data collection, design of elements, techno economical evaluation, and output analysis. According to the results, solar renewable energy systems can supply adequate power for cathodic protection system purposes.

Keywords: renewable energy, solar energy, solar cathodic protection station, lifecycle cost method

Procedia PDF Downloads 521
10106 Colour Recognition Pen Technology in Dental Technique and Dental Laboratories

Authors: M. Dabirinezhad, M. Bayat Pour, A. Dabirinejad

Abstract:

Recognition of the color spectrum of the teeth plays a significant role in the dental laboratories to produce dentures. Since there are various types and colours of teeth for each patient, there is a need to specify the exact and the most suitable colour to produce a denture. Usually, dentists utilize pallets to identify the color that suits a patient based on the color of the adjacent teeth. Consistent with this, there can be human errors by dentists to recognize the optimum colour for the patient, and it can be annoying for the patient. According to the statistics, there are some claims from the patients that they are not satisfied by the colour of their dentures after the installation of the denture in their mouths. This problem emanates from the lack of sufficient accuracy during the colour recognition process of denture production. The colour recognition pen (CRP) is a technology to distinguish the colour spectrum of the intended teeth with the highest accuracy. CRP is equipped with a sensor that is capable to read and analyse a wide range of spectrums. It is also connected to a database that contains all the spectrum ranges, which exist in the market. The database is editable and updatable based on market requirements. Another advantage of this invention can be mentioned as saving time for the patients since there is no need to redo the denture production in case of failure on the first try.

Keywords: colour recognition pen, colour spectrum, dental laboratory, denture

Procedia PDF Downloads 183
10105 Compact, Lightweight, Low Cost, Rectangular Core Power Transformers

Authors: Abidin Tortum, Kubra Kocabey

Abstract:

One of the sectors where the competition is experienced at the highest level in the world is the transformer sector, and sales can be made with a limited profit margin. For this reason, manufacturers must develop cost-cutting designs to achieve higher profits. The use of rectangular cores and coils in transformer design is one of the methods that can be used to reduce costs. According to the best knowledge we have obtained, we think that we are the first company producing rectangular core power transformers in our country. BETA, to reduce the cost of this project, more compact products to reveal, as we know it to increase the alleviate and competitiveness of the product, will perform cored coil design and production rectangle for the first-time power transformers in Turkey. The transformer to be designed shall be 16 MVA, 33/11 kV voltage level. With the rectangular design of the transformer core and windings, no-load losses can be reduced. Also, the least costly transformer type is rectangular. However, short-circuit forces on rectangular windings do not affect every point of the windings in the same way. Whereas more force is applied inwards to the mid-points of the low-voltage winding, the opposite occurs in the high-voltage winding. Therefore, the windings tend to deteriorate in the event of a short circuit. While trying to reach the project objectives, the difficulties in the design should be overcome. Rectangular core transformers to be produced in our country offer a more compact structure than conventional transformers. In other words, both height and width were smaller. Thus, the reducer takes up less space in the center. Because the transformer boiler is smaller, less oil is used, and its weight is lower. Biotemp natural ester fluid is used in rectangular transformer and the cooling performance of this oil is analyzed. The cost was also reduced with the reduction of dimensions. The decrease in the amount of oil used has also increased the environmental friendliness of the developed product. Transportation costs have been reduced by reducing the total weight. The amount of carbon emissions generated during the transportation process is reduced. Since the low-voltage winding is wound with a foil winding technique, a more resistant structure is obtained against short circuit forces. No-load losses were lower due to the use of a rectangular core. The project was handled in three phases. In the first stage, preliminary research and designs were carried out. In the second stage, the prototype manufacturing of the transformer whose designs have been completed has been started. The prototype developed in the last stage has been subjected to routine, type and special tests.

Keywords: rectangular core, power transformer, transformer, productivity

Procedia PDF Downloads 108
10104 Design, Control and Autonomous Trajectory Tracking of an Octorotor Rotorcraft

Authors: Seyed Jamal Haddadi, M. Reza Mehranpour, Roya Sadat Mortazavi, Zahra Sadat Mortazavi

Abstract:

Principal aim of this research is trajectory tracking, attitude and position control scheme in real flight mode by an Octorotor helicopter. For more stability, in this Unmanned Aerial Vehicle (UAV), number of motors is increased to eight motors which end of each arm installed two coaxial counter rotating motors. Dynamic model of this Octorotor includes of motion equation for translation and rotation. Utilized controller is proportional-integral-derivative (PID) control loop. The proposed controller is designed such that to be able to attenuate an effect of external wind disturbance and guarantee stability in this condition. The trajectory is determined by a Global Positioning System (GPS). Also an ARM CortexM4 is used as microprocessor. Electronic board of this UAV designed as able to records all of the sensors data, similar to an aircraft black box in external memory. Finally after auto landing of Octorotor, flight data is shown in MATLAB software and Experimental results of the proposed controller show the effectiveness of our approach on the Autonomous Quadrotor in real conditions.

Keywords: octorotor, design, PID controller, autonomous, trajectory tracking

Procedia PDF Downloads 285
10103 Formulation of Optimal Shifting Sequence for Multi-Speed Automatic Transmission

Authors: Sireesha Tamada, Debraj Bhattacharjee, Pranab K. Dan, Prabha Bhola

Abstract:

The most important component in an automotive transmission system is the gearbox which controls the speed of the vehicle. In an automatic transmission, the right positioning of actuators ensures efficient transmission mechanism embodiment, wherein the challenge lies in formulating the number of actuators associated with modelling a gearbox. Data with respect to actuation and gear shifting sequence has been retrieved from the available literature, including patent documents, and has been used in this proposed heuristics based methodology for modelling actuation sequence in a gear box. This paper presents a methodological approach in designing a gearbox for the purpose of obtaining an optimal shifting sequence. The computational model considers factors namely, the number of stages and gear teeth as input parameters since these two are the determinants of the gear ratios in an epicyclic gear train. The proposed transmission schematic or stick diagram aids in developing the gearbox layout design. The number of iterations and development time required to design a gearbox layout is reduced by using this approach.

Keywords: automatic transmission, gear-shifting, multi-stage planetary gearbox, rank ordered clustering

Procedia PDF Downloads 306
10102 Community Integration: Post-Secondary Education (PSE) and Library Programming

Authors: Leah Plocharczyk, Matthew Conner

Abstract:

This paper analyzes the relatively new trend of PSE programs which seek to provide education, vocational training, and a college experience to individuals with an intellectual and developmental disability (IDD). Specifically, the paper examines the degree of interaction between PSE programs and the libraries of their college campuses. Using ThinkCollege, a clearinghouse and advocate for PSE programs, the researchers identified 293 programs throughout the country. These were all contacted with an email survey asking them about the nature of their involvement, if any, with the academic libraries on their campus. Where indicated by the responses, the libraries of PSE programs were contacted for additional information about their programming. Responses to the survey questions were tabulated and analyzed quantitatively. Written comments were analyzed for themes which were then tabulated. This paper presents the results of this study. They show obvious preferences for library programming, such as group formal instruction, individual liaisons, embedded reference, and various instructional designs. These are discussed in terms of special education principles of mainstreaming, level of restriction, training demands and cost effectiveness. The work serves as a foundation for best practices that can advance the field.

Keywords: disability studies, instructional design, universal design for learning, assessment methodology

Procedia PDF Downloads 57
10101 Analysis of Pavement Lifespan - Cost and Emissions of Greenhouse Gases: A Comparative Study of 10-year vs 30-year Design

Authors: Claudeny Simone Alves Santana, Alexandre Simas De Medeiros, Marcelino Aurélio Vieira Da Silva

Abstract:

The aim of the study was to assess the performance of pavements over time, considering the principles of Life Cycle Assessment (LCA) and the ability to withstand vehicle loads and associated environmental impacts. Within the study boundary, pavement design was conducted using the Mechanistic-Empirical Method, adopting criteria based on pavement cracking and wheel path rutting while also considering factors such as soil characteristics, material thickness, and the distribution of forces exerted by vehicles. The Ecoinvent® 3.6 database and SimaPro® software were employed to calculate emissions, and SICRO 3 information was used to estimate costs. Consequently, the study sought to identify the service that had the greatest impact on greenhouse gas emissions. The results were compared for design life periods of 10 and 30 years, considering structural performance and load-bearing capacity. Additionally, environmental impacts in terms of CO2 emissions per standard axle and construction costs in dollars per standard axle were analyzed. Based on the conducted analyses, it was possible to determine which pavement exhibited superior performance over time, considering technical, environmental, and economic criteria. One of the findings indicated that the mechanical characteristics of the soils used in the pavement layer directly influence the thickness of the pavement and the quantity of greenhouse gases, with a difference of approximately 7000 Kg CO2 Eq. The transportation service was identified as having the most significant negative impact. Other notable observations are that the study can contribute to future project guidelines and assist in decision-making regarding the selection of the most suitable pavement in terms of durability, load-bearing capacity, and sustainability.

Keywords: life cycle assessment, greenhouse gases, urban paving, service cost

Procedia PDF Downloads 55
10100 Investigation of Steel-Concrete Composite Bridges under Blasting Loads Based on Slope Reflection

Authors: Yuan Li, Yitao Han, Zhao Zhu

Abstract:

In this paper, the effect of blasting loads on steel-concrete composite bridges has been investigated considering the slope reflection effect. Reasonable values of girder size, plate thickness, stiffening rib, and other design parameters were selected according to design specifications. Modified RHT (Riedel-Hiermaier-Thoma) was used as constitutive relation in analyses. In order to simulate the slope reflection effect, the slope of the bridge was precisely built in the model. Different blasting conditions, including top, middle, and bottom explosions, were simulated. The multi-Euler domain method based on fully coupled Lagrange and Euler models was adopted for the structural analysis of the explosion process using commercial software AUTODYN. The obtained results showed that explosion overpressure was increased by 3006, 879, and 449kPa, corresponding to explosions occurring at the top, middle, and bottom of the slope, respectively. At the same time, due to energy accumulation and transmission dissipation caused by slope reflection, the corresponding yield lengths of steel beams were increased by 8, 0, and 5m, respectively.

Keywords: steel-concrete composite bridge, explosion damage, slope reflection, blasting loads, RHT

Procedia PDF Downloads 81