Search results for: Marshall-Olkin distribution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5110

Search results for: Marshall-Olkin distribution

1300 Evolution of DNA-Binding With-One-Finger Transcriptional Factor Family in Diploid Cotton Gossypium raimondii

Authors: Waqas Shafqat Chattha, Muhammad Iqbal, Amir Shakeel

Abstract:

Transcriptional factors are proteins that play a vital role in regulating the transcription of target genes in different biological processes and are being widely studied in different plant species. In the current era of genomics, plant genomes sequencing has directed to the genome-wide identification, analyses and categorization of diverse transcription factor families and hence provide key insights into their structural as well as functional diversity. The DNA-binding with One Finger (DOF) proteins belongs to C2-C2-type zinc finger protein family. DOF proteins are plant-specific transcription factors implicated in diverse functions including seed maturation and germination, phytohormone signalling, light-mediated gene regulation, cotton-fiber elongation and responses of the plant to biotic as well as abiotic stresses. In this context, a genome-wide in-silico analysis of DOF TF family in diploid cotton species i.e. Gossypium raimondii has enabled us to identify 55 non-redundant genes encoding DOF proteins renamed as GrDofs (Gossypium raimondii Dof). Gene distribution studies have shown that all of the GrDof genes are unevenly distributed across 12 out of 13 G. raimondii chromosomes. The gene structure analysis illustrated that 34 out of 55 GrDof genes are intron-less while remaining 21 genes have a single intron. Protein sequence-based phylogenetic analysis of putative 55 GrDOFs has divided these proteins into 5 major groups with various paralogous gene pairs. Molecular evolutionary studies aided with the conserved domain as well as gene structure analysis suggested that segmental duplications were the principal contributors for the expansion of Dof genes in G. raimondii.

Keywords: diploid cotton , G. raimondii, phylogenetic analysis, transcription factor

Procedia PDF Downloads 149
1299 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling

Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed

Abstract:

The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.

Keywords: streamflow, neural network, optimisation, algorithm

Procedia PDF Downloads 154
1298 Dosimetric Comparison of Conventional Optimization Methods with Inverse Planning Simulated Annealing Technique

Authors: Shraddha Srivastava, N. K. Painuly, S. P. Mishra, Navin Singh, Muhsin Punchankandy, Kirti Srivastava, M. L. B. Bhatt

Abstract:

Various optimization methods used in interstitial brachytherapy are based on dwell positions and dwell weights alteration to produce dose distribution based on the implant geometry. Since these optimization schemes are not anatomy based, they could lead to deviations from the desired plan. This study was henceforth carried out to compare anatomy-based Inverse Planning Simulated Annealing (IPSA) optimization technique with graphical and geometrical optimization methods in interstitial high dose rate brachytherapy planning of cervical carcinoma. Six patients with 12 CT data sets of MUPIT implants in HDR brachytherapy of cervical cancer were prospectively studied. HR-CTV and organs at risk (OARs) were contoured in Oncentra treatment planning system (TPS) using GYN GEC-ESTRO guidelines on cervical carcinoma. Three sets of plans were generated for each fraction using IPSA, graphical optimization (GrOPT) and geometrical optimization (GOPT) methods. All patients were treated to a dose of 20 Gy in 2 fractions. The main objective was to cover at least 95% of HR-CTV with 100% of the prescribed dose (V100 ≥ 95% of HR-CTV). IPSA, GrOPT, and GOPT based plans were compared in terms of target coverage, OAR doses, homogeneity index (HI) and conformity index (COIN) using dose-volume histogram (DVH). Target volume coverage (mean V100) was found to be 93.980.87%, 91.341.02% and 85.052.84% for IPSA, GrOPT and GOPT plans respectively. Mean D90 (minimum dose received by 90% of HR-CTV) values for IPSA, GrOPT and GOPT plans were 10.19 ± 1.07 Gy, 10.17 ± 0.12 Gy and 7.99 ± 1.0 Gy respectively, while D100 (minimum dose received by 100% volume of HR-CTV) for IPSA, GrOPT and GOPT plans was 6.55 ± 0.85 Gy, 6.55 ± 0.65 Gy, 4.73 ± 0.14 Gy respectively. IPSA plans resulted in lower doses to the bladder (D₂

Keywords: cervical cancer, HDR brachytherapy, IPSA, MUPIT

Procedia PDF Downloads 188
1297 Population Dynamics and Diversity of Beneficial Arthropods in Pummelo (Citrus maxima) under Perennial Peanut, Arachis pintoi Cover Crop

Authors: Larry V. Aceres, Jesryl B. Paulite, Emelie M. Pelicano, J. B. Anciano, J. A. Esteban

Abstract:

Enhancing the population of beneficial arthropods under less diverse agroecosystem is the most sought by many researchers and plant growers. This strategy was done through the establishment of pintoi peanut, Arachis pintoi as live mulch or cover crop in pummelo orchard of the University of Southeastern Philippines (USeP), Mabini, Compostela Valley Province, Philippines. This study was conducted to compare and compute population dynamics and diversity of beneficial arthropods in pummelo in with and without Arachis pintoi cover crop. Data collections were done for the 12-month period (from June 2013 to May 2014) at the pummelo orchard of USeP Mabini Campus, COMVAL Province, Philippines and data were analyzed using the Independent Samples T-Test to compare the effect of the presence and absence of Arachis pintoi on beneficial arthropods incidence in pummelo orchard. Moreover, diversity and family richness analyses were computed using the Margalef’s diversity index for family richness; the Shannon index of general diversity and the evenness index; and the Simpson index of dominance. Results revealed numerically and statistically higher density of important beneficial arthropods such as microhymenopterans, macrohymenopterans, spiders, tachinid flies and ground beetles were recorded in pummelo orchard with Arachis pintoi than from without Arachis pintoi cover crop for the 12-month observation period. Further, the result of the study revealed the high family richness and diversity index with more or less even distribution of individuals within the family and low dominance index were documented in pummelo with Arachis pintoi cover crop than from pummelo without Arachis pintoi cover crop. The study revealed that planting A. pintoi in pummelo orchard could enhance natural enemy populations.

Keywords: Arachis pintoi, cover crop, beneficial arthropods, pummelo

Procedia PDF Downloads 324
1296 Assessing the Validity and Reliability of Neuromuscular Performance Tests in Professional Basketball Players

Authors: Álvaro de Pedro Múñez, Óscar García García, Tania Álvarez Yates, Virginia Serrano Gómez

Abstract:

This study aimed to analyze professional basketball player´s neuromuscular behaviour. The main goal was to describe the neuromuscular performance of elite male basketball players and to analyze the validity and reliability of different tests. The tests used were Squat Jump (SJ), Countermovement Free), and 5m, 10m, and 20m sprint tests. All these tests were carried out during the preseason. 100 professional basketball players participated in this study; we used 2 classification variables: performance level (Leb Gold, BBL, and BCL), as well as position (Bigs and Guards). The application of the Kolmogorov-Smirnov test, in conjunction with the Lilliefors test, showed that the sample distribution was normal, linear, and homoscedastic. The relative reliability analysis was carried out by calculating the Intraclass Correlation Index (ICC). We found all variables to have a high validity and reliability. The coefficient of variation (CV) was calculated for raw data and after log-transformed and used as an absolute reliability indicator. The intraclass correlation coefficients (ICC) and coefficient of variation (CV) for the various tests are the following. For the Countermovement Jump (CMJ), the right leg showed an ICC of 0.94 (CV: 7.8%), and the left leg had an ICC of 0.84 (CV: 11.2%). For the sprint tests, the 5m sprint demonstrated excellent reliability with an intraclass correlation coefficient (ICC) of 0.81 and a coefficient of variation (CV) of 3.2%. The 10m sprint exhibited an ICC of 0.91 and a CV of 1.0%, while the 20m sprint achieved the highest reliability with an ICC of 0.92 and a CV of 0.8%. Regarding jump performance, the Squat Jump (SJ) displayed an ICC of 0.96 with a CV of 2.8%, and the Countermovement Jump (CMJ) showed a slightly lower but still strong reliability with an ICC of 0.93 and a CV of 6.7%. Lastly, the "CMJ free" test exhibited an ICC of 0.97 (CV: 5.2%). The tests demonstrated high reliability, with ICC values ranging from 0.81 to 0.97. The 5m, 10m, and 20m sprints, as well as the CMJ and SJ tests, showed strong consistency, particularly the 10m and 20m sprints (ICC 0.91-0.92). Coefficients of variation were low, indicating precise and stable measurements suitable for performance assessment.

Keywords: neuromuscular performance, basketball players, validity and reliability, intraclass correlation coefficient, vertical jump, sprint tests

Procedia PDF Downloads 7
1295 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores

Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan

Abstract:

Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.

Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics

Procedia PDF Downloads 130
1294 Influence of Distribution of Body Fat on Cholesterol Non-HDL and Its Effect on Kidney Filtration

Authors: Magdalena B. Kaziuk, Waldemar Kosiba

Abstract:

Background: In the XXI century we have to deal with the epidemic of obesity which is important risk factor for the cardiovascular and kidney diseases. Lipo proteins are directly involved in the atherosclerotic process. Non-high-density lipo protein (non-HDL) began following widespread recognition of its superiority over LDL as a measurement of vascular event risk. Non-HDL includes residual risk which persists in patients after achieved recommended level of LDL. Materials and Methods: The study covered 111 patients (52 females, 59 males, age 51,91±14 years), hospitalized on the intern department. Body composition was assessed using the bioimpendance method and anthropometric measurements. Physical activity data were collected during the interview. The nutritional status and the obesity type were determined with the Waist to Height Ratio and the Waist to Hip Ratio. A function of the kidney was evaluated by calculating the estimated glomerular filtration rate (eGFR) using MDRD formula. Non-HDL was calculated as a difference between concentration of the Total and HDL cholesterol. Results: 10% of patients were found to be underweight; 23.9 % had correct body weight; 15,08 % had overweight, while the remaining group had obesity: 51,02 %. People with the android shape have higher non-HDL cholesterol versus with the gynoid shape (p=0.003). The higher was non-HDL, the lower eGFR had studied subjects (p < 0.001). Significant correlation was found between high non-HDL and incorrect dietary habits in patients avoiding eating vegetables, fruits and having low physical activity (p < 0.005). Conclusions: Android type of figure raises the residual risk of the heart disease associated with higher levels of non-HDL. Increasing physical activity in these patients reduces the level of non-HDL. Non-HDL seems to be the best predictor among all cholesterol measures for the cardiovascular events and worsening eGFR.

Keywords: obesity, non-HDL cholesterol, glomerular filtration rate, lifestyle

Procedia PDF Downloads 373
1293 Impact of Massive Weight Loss Body Contouring Surgery in the Patient’s Quality of Life

Authors: Maria Albuquerque, Miguel Matias, Ângelo Sá, Juliana Sousa, Maria Manuel Mouzinho

Abstract:

Obesity is a frequent disease in Portugal. The surgical treatment is very effective and has an indication when there is a failure of the medical treatment. Although massive weight loss is associated with considerable health gains, these patients are characterized by a variable degree of dermolipodistrophy. In some cases, there is even the development of physical symptoms such as intertriginous, and some degree of psychological distress is present. In almost all cases, a desire for a better body contour, which inhibits some aspects of social life, is a fact. A prospective study was made to access the impact of body contouring surgery in the quality of life of patients who underwent a massive weight lost correction surgical procedure at Centro Hospitalar de Lisboa Central between January 2020 and December 2021. The patients were submitted to the Body Q subjective questionnaire adapted for the Portuguese language and accessed for the following categories: Anguish with Appearance, Contempt with Body Image, Satisfaction with the Abdomen, and Overall Satisfaction with the Body. The questionnaire was repeated at the 6 months mark. A total of 80 patients were sampled. The sex distribution was 79 female and 1 male. The median BMI index before surgery was inferior to 28%. The pre operatory questionnaire showed high scores for Anguish with Appearance and low scores for the body image self-evaluation. Overall, there was an improvement of at least 50% in all the evaluated scores. Additionally, a correlation was found between abdominoplasty and the contempt with body image and satisfaction with the abdomen (p-value <0.05). Massive weight loss is associated with important body deformities that have a significant impact on the patient’s personal and social life. Body contouring surgery is then vital for these patients as it implicates major aesthetic and functional benefits.

Keywords: abdominoplasty, cruroplasty, obesity, massive weight loss

Procedia PDF Downloads 158
1292 Research on the Role of Platelet Derived Growth Factor Receptor Beta in Promoting Dedifferentiation and Pulmonary Metastasis of Osteosarcoma Under Hypoxic Microenvironment

Authors: Enjie Xu, Zhen Huang, Kunpeng Zhu, Jianping Hu, Xiaolong Ma, Yongjie Wang, Jiazhuang Zhu, Chunlin Zhang

Abstract:

Abstract: Hypoxia and dedifferentiation of osteosarcoma (OS) cells leads to poor prognosis. We plan to identify the role of hypoxia on dedifferentiation and the associated signaling pathways. We performed a sphere formation assay and determined spheroid cells as dedifferentiated cells by detecting stem cell-like markers. RNAi assay was used to explore the expression relationship between hypoxia inducible factor 1 subunit alpha (HIF1A) and platelet derived growth factor receptor beta (PDGFRB). We obtained PDGFRB knockdown and overexpression cells through lentiviral infection experiments and the effects of PDGFRB on cytoskeleton rearrangement and cell adhesion were explored by immunocytochemistry. Wound-healing experiments, transwell assays, and animal trials were employed to investigate the effect of PDGFRB on OS metastasis. Dedifferentiated OS cells were found to exhibit high expression of HIF1A and PDGFRB, and HIF1A promoted the expression of PDGFRB, subsequently activated ras homolog family member A (RhoA), and increased the phosphorylation of myosin light chain (MLC). PDGFRB also enhanced the phosphorylation of focal adhesion kinase (FAK). The OS cell morphology and vinculin distribution were altered by PDGFRB. PDGFRB also promoted cell dedifferentiation and had a significant impact on the metastasis of OS cells both in vitro and in vivo. Our results demonstrated that HIF1A up-regulated PDGFRB under hypoxic conditions, and PDGFRB regulated the actin cytoskeleton by activating RhoA and subsequently phosphorylating MLC, thereby promoting OS dedifferentiation and pulmonary metastasis.

Keywords: osteosarcoma, dedifferentiation, metastasis, cytoskeleton rearrangement, PDGFRB, hypoxia

Procedia PDF Downloads 47
1291 Design, Development and Analysis of Combined Darrieus and Savonius Wind Turbine

Authors: Ashish Bhattarai, Bishnu Bhatta, Hem Raj Joshi, Nabin Neupane, Pankaj Yadav

Abstract:

This report concerns the design, development, and analysis of the combined Darrieus and Savonius wind turbine. Vertical Axis Wind Turbines (VAWT's) are of two type's viz. Darrieus (lift type) and Savonius (drag type). The problem associated with Darrieus is the lack of self-starting while Savonius has low efficiency. There are 3 straight Darrieus blades having the cross-section of NACA(National Advisory Committee of Aeronautics) 0018 placed circumferentially and a helically twisted Savonius blade to get even torque distribution. This unique design allows the use of Savonius as a method of self-starting the wind turbine, which the Darrieus cannot achieve on its own. All the parts of the wind turbine are designed in CAD software, and simulation data were obtained via CFD(Computational Fluid Dynamics) approach. Also, the design was imported to FlashForge Finder to 3D print the wind turbine profile and finally, testing was carried out. The plastic material used for Savonius was ABS(Acrylonitrile Butadiene Styrene) and that for Darrieus was PLA(Polylactic Acid). From the data obtained experimentally, the hybrid VAWT so fabricated has been found to operate at the low cut-in speed of 3 m/s and maximum power output has been found to be 7.5537 watts at the wind speed of 6 m/s. The maximum rpm of the rotor blade is recorded to be 431 rpm(rotation per minute) at the wind velocity of 6 m/s, signifying its potentiality of wind power production. Besides, the data so obtained from both the process when analyzed through graph plots has shown the similar nature slope wise. Also, the difference between the experimental and theoretical data obtained has shown mechanical losses. The objective is to eliminate the need for external motors for self-starting purposes and study the performance of the model. The testing of the model was carried out for different wind velocities.

Keywords: VAWT, Darrieus, Savonius, helical blades, CFD, flash forge finder, ABS, PLA

Procedia PDF Downloads 210
1290 Influence of Hygro-Thermo-Mechanical Loading on Buckling and Vibrational Behavior of FG-CNT Composite Beam with Temperature Dependent Characteristics

Authors: Puneet Kumar, Jonnalagadda Srinivas

Abstract:

The authors report here vibration and buckling analysis of functionally graded carbon nanotube-polymer composite (FG-CNTPC) beams under hygro-thermo-mechanical environments using higher order shear deformation theory. The material properties of CNT and polymer matrix are often affected by temperature and moisture content. A micromechanical model with agglomeration effect is employed to compute the elastic, thermal and moisture properties of the composite beam. The governing differential equation of FG-CNTRPC beam is developed using higher-order shear deformation theory to account shear deformation effects. The elastic, thermal and hygroscopic strain terms are derived from variational principles. Moreover, thermal and hygroscopic loads are determined by considering uniform, linear and sinusoidal variation of temperature and moisture content through the thickness. Differential equations of motion are formulated as an eigenvalue problem using appropriate displacement fields and solved by using finite element modeling. The obtained results of natural frequencies and critical buckling loads show a good agreement with published data. The numerical illustrations elaborate the dynamic as well as buckling behavior under uniaxial load for different environmental conditions, boundary conditions and volume fraction distribution profile, beam slenderness ratio. Further, comparisons are shown at different boundary conditions, temperatures, degree of moisture content, volume fraction as well as agglomeration of CNTs, slenderness ratio of beam for different shear deformation theories.

Keywords: hygrothermal effect, free vibration, buckling load, agglomeration

Procedia PDF Downloads 264
1289 High-Resolution Flood Hazard Mapping Using Two-Dimensional Hydrodynamic Model Anuga: Case Study of Jakarta, Indonesia

Authors: Hengki Eko Putra, Dennish Ari Putro, Tri Wahyu Hadi, Edi Riawan, Junnaedhi Dewa Gede, Aditia Rojali, Fariza Dian Prasetyo, Yudhistira Satya Pribadi, Dita Fatria Andarini, Mila Khaerunisa, Raditya Hanung Prakoswa

Abstract:

Catastrophe risk management can only be done if we are able to calculate the exposed risks. Jakarta is an important city economically, socially, and politically and in the same time exposed to severe floods. On the other hand, flood risk calculation is still very limited in the area. This study has calculated the risk of flooding for Jakarta using 2-Dimensional Model ANUGA. 2-Dimensional model ANUGA and 1-Dimensional Model HEC-RAS are used to calculate the risk of flooding from 13 major rivers in Jakarta. ANUGA can simulate physical and dynamical processes between the streamflow against river geometry and land cover to produce a 1-meter resolution inundation map. The value of streamflow as an input for the model obtained from hydrological analysis on rainfall data using hydrologic model HEC-HMS. The probabilistic streamflow derived from probabilistic rainfall using statistical distribution Log-Pearson III, Normal and Gumbel, through compatibility test using Chi Square and Smirnov-Kolmogorov. Flood event on 2007 is used as a comparison to evaluate the accuracy of model output. Property damage estimations were calculated based on flood depth for 1, 5, 10, 25, 50, and 100 years return period against housing value data from the BPS-Statistics Indonesia, Centre for Research and Development of Housing and Settlements, Ministry of Public Work Indonesia. The vulnerability factor was derived from flood insurance claim. Jakarta's flood loss estimation for the return period of 1, 5, 10, 25, 50, and 100 years, respectively are Rp 1.30 t; Rp 16.18 t; Rp 16.85 t; Rp 21.21 t; Rp 24.32 t; and Rp 24.67 t of the total value of building Rp 434.43 t.

Keywords: 2D hydrodynamic model, ANUGA, flood, flood modeling

Procedia PDF Downloads 277
1288 Modeling of Glycine Transporters in Mammalian Using the Probability Approach

Authors: K. S. Zaytsev, Y. R. Nartsissov

Abstract:

Glycine is one of the key inhibitory neurotransmitters in Central nervous system (CNS) meanwhile glycinergic transmission is highly dependable on its appropriate reuptake from synaptic cleft. Glycine transporters (GlyT) of types 1 and 2 are the enzymes providing glycine transport back to neuronal and glial cells along with Na⁺ and Cl⁻ co-transport. The distribution and stoichiometry of GlyT1 and GlyT2 differ in details, and GlyT2 is more interesting for the research as it reuptakes glycine to neuron cells, whereas GlyT1 is located in glial cells. In the process of GlyT2 activity, the translocation of the amino acid is accompanied with binding of both one chloride and three sodium ions consequently (two sodium ions for GlyT1). In the present study, we developed a computer simulator of GlyT2 and GlyT1 activity based on known experimental data for quantitative estimation of membrane glycine transport. The trait of a single protein functioning was described using the probability approach where each enzyme state was considered separately. Created scheme of transporter functioning realized as a consequence of elemental steps allowed to take into account each event of substrate association and dissociation. Computer experiments using up-to-date kinetic parameters allowed receiving the number of translocated glycine molecules, Na⁺ and Cl⁻ ions per time period. Flexibility of developed software makes it possible to evaluate glycine reuptake pattern in time under different internal characteristics of enzyme conformational transitions. We investigated the behavior of the system in a wide range of equilibrium constant (from 0.2 to 100), which is not determined experimentally. The significant influence of equilibrium constant in the range from 0.2 to 10 on the glycine transfer process is shown. The environmental conditions such as ion and glycine concentrations are decisive if the values of the constant are outside the specified range.

Keywords: glycine, inhibitory neurotransmitters, probability approach, single protein functioning

Procedia PDF Downloads 119
1287 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model

Authors: A. Clementking, C. Jothi Venkateswaran

Abstract:

Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.

Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining

Procedia PDF Downloads 478
1286 Comparison of Two Neural Networks To Model Margarine Age And Predict Shelf-Life Using Matlab

Authors: Phakamani Xaba, Robert Huberts, Bilainu Oboirien

Abstract:

The present study was aimed at developing & comparing two neural-network-based predictive models to predict shelf-life/product age of South African margarine using free fatty acid (FFA), water droplet size (D3.3), water droplet distribution (e-sigma), moisture content, peroxide value (PV), anisidine valve (AnV) and total oxidation (totox) value as input variables to the model. Brick margarine products which had varying ages ranging from fresh i.e. week 0 to week 47 were sourced. The brick margarine products which had been stored at 10 & 25 °C and were characterized. JMP and MATLAB models to predict shelf-life/ margarine age were developed and their performances were compared. The key performance indicators to evaluate the model performances were correlation coefficient (CC), root mean square error (RMSE), and mean absolute percentage error (MAPE) relative to the actual data. The MATLAB-developed model showed a better performance in all three performance indicators. The correlation coefficient of the MATLAB model was 99.86% versus 99.74% for the JMP model, the RMSE was 0.720 compared to 1.005 and the MAPE was 7.4% compared to 8.571%. The MATLAB model was selected to be the most accurate, and then, the number of hidden neurons/ nodes was optimized to develop a single predictive model. The optimized MATLAB with 10 neurons showed a better performance compared to the models with 1 & 5 hidden neurons. The developed models can be used by margarine manufacturers, food research institutions, researchers etc, to predict shelf-life/ margarine product age, optimize addition of antioxidants, extend shelf-life of products and proactively troubleshoot for problems related to changes which have an impact on shelf-life of margarine without conducting expensive trials.

Keywords: margarine shelf-life, predictive modelling, neural networks, oil oxidation

Procedia PDF Downloads 200
1285 Characterization of Chest Pain in Patients Consulting to the Emergency Department of a Health Institution High Level of Complexity during 2014-2015, Medellin, Colombia

Authors: Jorge Iván Bañol-Betancur, Lina María Martínez-Sánchez, María de los Ángeles Rodríguez-Gázquez, Estefanía Bahamonde-Olaya, Ana María Gutiérrez-Tamayo, Laura Isabel Jaramillo-Jaramillo, Camilo Ruiz-Mejía, Natalia Morales-Quintero

Abstract:

Acute chest pain is a distressing sensation between the diaphragm and the base of the neck and it represents a diagnostic challenge for any physician in the emergency department. Objective: To establish the main clinical and epidemiological characteristics of patients who present with chest pain to the emergency department in a private clinic from the city of Medellin, during 2014-2015. Methods: Cross-sectional retrospective observational study. Population and sample were patients who consulted for chest pain in the emergency department who met the eligibility criteria. The information was analyzed in SPSS program vr.21; qualitative variables were described through relative frequencies, and the quantitative through mean and standard deviation ‬or medians according to their distribution in the study population. Results: A total of 231 patients were evaluated, the mean age was 49.5 ± 19.9 years, 56.7% were females. The most frequent pathological antecedents were hypertension 35.5%, diabetes 10,8%, dyslipidemia 10.4% and coronary disease 5.2%. Regarding pain features, in 40.3% of the patients the pain began abruptly, in 38.2% it had a precordial location, for 20% of the cases physical activity acted as a trigger, and 60.6% was oppressive. Costochondritis was the most common cause of chest pain among patients with an established etiologic diagnosis, representing the 18.2%. Conclusions: Although the clinical features of pain reported coincide with the clinical presentation of an acute coronary syndrome, the most common cause of chest pain in study population was costochondritis instead, indicating that it is a differential diagnostic in the approach of patients with pain acute chest.

Keywords: acute coronary syndrome, chest pain, epidemiology, osteochondritis

Procedia PDF Downloads 344
1284 Brain Stem Posterior Reversible Encephalopathy Syndrome in Nephrotic Syndrome

Authors: S. H. Jang

Abstract:

Posterior reversible encephalopathy syndrome (PRES) is characterized by acute neurologic symptoms (visual loss, headache, altered mentality and seizures) and by typical imaging findings (bilateral subcortical and cortical edema with predominatly posterior distribution). Nephrotic syndrome is a syndrome comprising signs of proteinuria, hypoalbuminemia, and edema. It is well known that hypertension predispose patient with nephrotic syndrome to PRES. A 45-year old male was referred for suddenly developed vertigo, disequilibrium. He had previous history of nephrotic syndrome. His medical history included diabetes controlled with medication. He was hospitalized because of generalized edema a few days ago. His vital signs were stable. On neurologic examination, his mental state was alert. Horizontal nystagmus to right side on return to primary position was observed. He showed good grade motor weakness and ataxia in right upper and lower limbs without other sensory abnormality. Brain MRI showed increased signal intensity in FLAIR image, decreased signal intensity in T1 image and focal enhanced lesion in T1 contrast image at whole midbrain, pons and cerebellar peduncle symmetrically, which was compatible with vasogenic edema. Laboratory findings showed severe proteinuria and hypoalbuminemia. He was given intravenous dexamethasone and diuretics to reduce vasogenic edema and raise the intra-vascular osmotic pressure. Nystagmus, motor weakness and limb ataxia improved gradually over 2 weeks; He recovered without any neurologic symptom and sign. Follow-up MRI showed decreased vasogenic edema fairly. We report a case of brain stem PRES in normotensive, nephrotic syndrome patient.

Keywords: posterior reversible encephalopathy syndrome, MRI, nephrotic syndrome, vasogenic brain edema

Procedia PDF Downloads 276
1283 The Biomechanical Analysis of Pelvic Osteotomies Applied for Developmental Dysplasia of the Hip Treatment in Pediatric Patients

Authors: Suvorov Vasyl, Filipchuk Viktor

Abstract:

Developmental Dysplasia of the Hip (DDH) is a frequent pathology in pediatric orthopedist’s practice. Neglected or residual cases of DDH in walking patients are usually treated using pelvic osteotomies. Plastic changes take place in hinge points due to acetabulum reorientation during surgery. Classically described hinge points and a traditional division of pelvic osteotomies on reshaping and reorientation are currently debated. The purpose of this article was to evaluate biomechanical changes during the most commonly used pelvic osteotomies (Salter, Dega, Pemberton) for DDH treatment in pediatric patients. Methods: virtual pelvic models of 2- and 6-years old patients were created, material properties were assigned, pelvic osteotomies were simulated and biomechanical changes were evaluated using finite element analysis (FEA). Results: it was revealed that the patient's age has an impact on pelvic bones and cartilages density (in younger patients the pelvic elements are more pliable - p<0.05). Stress distribution after each of the abovementioned pelvic osteotomy was assessed in 2- and 6-years old patients’ pelvic models; hinge points were evaluated. The new term "restriction point" was introduced, which means a place where restriction of acetabular deformity correction occurs. Pelvic ligaments attachment points were mainly these restriction points. Conclusions: it was found out that there are no purely reshaping and reorientation pelvic osteotomies as previously believed; the pelvic ring acts as a unit in carrying out the applied load. Biomechanical overload of triradiate cartilage during Salter osteotomy in 2-years old patient and in 2- and 6-years old patients during Pemberton osteotomy was revealed; overload of the posterior cortical layer in the greater sciatic notch in 2-years old patient during Dega osteotomy was revealed. Level of Evidence – Level IV, prognostic.

Keywords: developmental dysplasia of the hip, pelvic osteotomy, finite element analysis, hinge point, biomechanics

Procedia PDF Downloads 102
1282 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa

Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam

Abstract:

Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.

Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines

Procedia PDF Downloads 515
1281 Alternating Expectation-Maximization Algorithm for a Bilinear Model in Isoform Quantification from RNA-Seq Data

Authors: Wenjiang Deng, Tian Mou, Yudi Pawitan, Trung Nghia Vu

Abstract:

Estimation of isoform-level gene expression from RNA-seq data depends on simplifying assumptions, such as uniform reads distribution, that are easily violated in real data. Such violations typically lead to biased estimates. Most existing methods provide a bias correction step(s), which is based on biological considerations, such as GC content–and applied in single samples separately. The main problem is that not all biases are known. For example, new technologies such as single-cell RNA-seq (scRNA-seq) may introduce new sources of bias not seen in bulk-cell data. This study introduces a method called XAEM based on a more flexible and robust statistical model. Existing methods are essentially based on a linear model Xβ, where the design matrix X is known and derived based on the simplifying assumptions. In contrast, XAEM considers Xβ as a bilinear model with both X and β unknown. Joint estimation of X and β is made possible by simultaneous analysis of multi-sample RNA-seq data. Compared to existing methods, XAEM automatically performs empirical correction of potentially unknown biases. XAEM implements an alternating expectation-maximization (AEM) algorithm, alternating between estimation of X and β. For speed XAEM utilizes quasi-mapping for read alignment, thus leading to a fast algorithm. Overall XAEM performs favorably compared to other recent advanced methods. For simulated datasets, XAEM obtains higher accuracy for multiple-isoform genes, particularly for paralogs. In a differential-expression analysis of a real scRNA-seq dataset, XAEM achieves substantially greater rediscovery rates in an independent validation set.

Keywords: alternating EM algorithm, bias correction, bilinear model, gene expression, RNA-seq

Procedia PDF Downloads 143
1280 Preparation, Characterisation, and Measurement of the in vitro Cytotoxicity of Mesoporous Silica Nanoparticles Loaded with Cytotoxic Pt(II) Oxadiazoline Complexes

Authors: G. Wagner, R. Herrmann

Abstract:

Cytotoxic platinum compounds play a major role in the chemotherapy of a large number of human cancers. However, due to the severe side effects for the patient and other problems associated with their use, there is a need for the development of more efficient drugs and new methods for their selective delivery to the tumours. One way to achieve the latter could be in the use of nanoparticular substrates that can adsorb or chemically bind the drug. In the cell, the drug is supposed to be slowly released, either by physical desorption or by dissolution of the particle framework. Ideally, the cytotoxic properties of the platinum drug unfold only then, in the cancer cell and over a longer period of time due to the gradual release. In this paper, we report on our first steps in this direction. The binding properties of a series of cytotoxic Pt(II) oxadiazoline compounds to mesoporous silica particles has been studied by NMR and UV/vis spectroscopy. High loadings were achieved when the Pt(II) compound was relatively polar, and has been dissolved in a relatively nonpolar solvent before the silica was added. Typically, 6-10 hours were required for complete equilibration, suggesting the adsorption did not only occur to the outer surface but also to the interior of the pores. The untreated and Pt(II) loaded particles were characterised by C, H, N combustion analysis, BET/BJH nitrogen sorption, electron microscopy (REM and TEM) and EDX. With the latter methods we were able to demonstrate the homogenous distribution of the Pt(II) compound on and in the silica particles, and no Pt(II) bulk precipitate had formed. The in vitro cytotoxicity in a human cancer cell line (HeLa) has been determined for one of the new platinum compounds adsorbed to mesoporous silica particles of different size, and compared with the corresponding compound in solution. The IC50 data are similar in all cases, suggesting that the release of the Pt(II) compound was relatively fast and possibly occurred before the particles reached the cells. Overall, the platinum drug is chemically stable on silica and retained its activity upon prolonged storage.

Keywords: cytotoxicity, mesoporous silica, nanoparticles, platinum compounds

Procedia PDF Downloads 321
1279 Incorporation of Growth Factors onto Hydrogels via Peptide Mediated Binding for Development of Vascular Networks

Authors: Katie Kilgour, Brendan Turner, Carly Catella, Michael Daniele, Stefano Menegatti

Abstract:

In vivo, the extracellular matrix (ECM) provides biochemical and mechanical properties that are instructional to resident cells to form complex tissues with characteristics to develop and support vascular networks. In vitro, the development of vascular networks can be guided by biochemical patterning of substrates via spatial distribution and display of peptides and growth factors to prompt cell adhesion, differentiation, and proliferation. We have developed a technique utilizing peptide ligands that specifically bind vascular endothelial growth factor (VEGF), erythropoietin (EPO), or angiopoietin-1 (ANG1) to spatiotemporally distribute growth factors to cells. This allows for the controlled release of each growth factor, ultimately enhancing the formation of a vascular network. Our engineered tissue constructs (ETCs) are fabricated out of gelatin methacryloyl (GelMA), which is an ideal substrate for tailored stiffness and bio-functionality, and covalently patterned with growth factor specific peptides. These peptides mimic growth factor receptors, facilitating the non-covalent binding of the growth factors to the ETC, allowing for facile uptake by the cells. We have demonstrated in the absence of cells the binding affinity of VEGF, EPO, and ANG1 to their respective peptides and the ability for each to be patterned onto a GelMA substrate. The ability to organize growth factors on an ETC provides different functionality to develop organized vascular networks. Our results demonstrated a method to incorporate biochemical cues into ETCs that enable spatial and temporal control of growth factors. Future efforts will investigate the cellular response by evaluating gene expression, quantifying angiogenic activity, and measuring the speed of growth factor consumption.

Keywords: growth factor, hydrogel, peptide, angiogenesis, vascular, patterning

Procedia PDF Downloads 165
1278 Simulation of GAG-Analogue Biomimetics for Intervertebral Disc Repair

Authors: Dafna Knani, Sarit S. Sivan

Abstract:

Aggrecan, one of the main components of the intervertebral disc (IVD), belongs to the family of proteoglycans (PGs) that are composed of glycosaminoglycan (GAG) chains covalently attached to a core protein. Its primary function is to maintain tissue hydration and hence disc height under the high loads imposed by muscle activity and body weight. Significant PG loss is one of the first indications of disc degeneration. A possible solution to recover disc functions is by injecting a synthetic hydrogel into the joint cavity, hence mimicking the role of PGs. One of the hydrogels proposed is GAG-analogues, based on sulfate-containing polymers, which are responsible for hydration in disc tissue. In the present work, we used molecular dynamics (MD) to study the effect of the hydrogel crosslinking (type and degree) on the swelling behavior of the suggested GAG-analogue biomimetics by calculation of cohesive energy density (CED), solubility parameter, enthalpy of mixing (ΔEmix) and the interactions between the molecules at the pure form and as a mixture with water. The simulation results showed that hydrophobicity plays an important role in the swelling of the hydrogel, as indicated by the linear correlation observed between solubility parameter values of the copolymers and crosslinker weight ratio (w/w); this correlation was found useful in predicting the amount of PEGDA needed for the desirable hydration behavior of (CS)₄-peptide. Enthalpy of mixing calculations showed that all the GAG analogs, (CS)₄ and (CS)₄-peptide are water-soluble; radial distribution function analysis revealed that they form interactions with water molecules, which is important for the hydration process. To conclude, our simulation results, beyond supporting the experimental data, can be used as a useful predictive tool in the future development of biomaterials, such as disc replacement.

Keywords: molecular dynamics, proteoglycans, enthalpy of mixing, swelling

Procedia PDF Downloads 75
1277 The Chemical Composition and Larvicidal Activity of Essential Oils Derived from Piper Longepetiolatum and Piper Brachypetiolatum (Piperaceae) Against Aedes Aegypti Larvae (Culicidae) Were Investigated

Authors: Suelen C. Lima, André C. de Oliveira, Rosemary A. Roque

Abstract:

Dengue is fatal arboviruses transmitted by the A. aegypti mosquito to more than 100 countries, for which the WHO estimates that 2.5 million people will be infected by these disease. The widespread of these diseases is due, among other factors, to the resistance that A. aegypti has to several commercial insecticides. On the other hand, natural products based on plants of the genus Piper (Piperaceae) are characterized by their insecticidal activities against mosquitoes. Piper longepetiolatum and Piper brachypetiolatum are species with wide distribution in the State of Amazonas. However, there is no investigation of phytochemical or biological of these plants against mosquitoes such as A. aegypti. The main of this study was to identify the chemical composition of the essential oil (EOs) from P. longepetiolatum and P. brachypetiolatum and to evaluate the biological activity against A. aegypti. The EOs were extracted by hydrodistillation from leaves (200 g) of P. longepetiolatum and P. brachypetiolatum and analyzed by GC-MS and GC-FID. The main compounds β-caryophyllene (99.9% of purity) and E-nerolidol (99.4% of purity) were purchased from Sigma-Aldrich® Brazil. The larvicidal activity of EOs (20 to 100 ppm), β-caryophyllene and E-nerolidol (10 to 50 ppm) was performed according to WHO protocol against A. aegypti larvae. The GC-MS and GC-FID analysis of EOs from P. longepetiolatum and P. brachypetiolatum indicated the majority presence of β-caryophyllene (35.42%) and E-nerolidol (49.79%), respectively. The results showed that all natural products presented larvicidal activity against A. aegypti. In this aspect, the OE from P. brachypetiolatum (LC50 of 15.51 ppm and LC90 of 22.79 ppm) was more active than the OE from P. longepetiolatum (LC50 of 47.17 ppm and LC90 of 69.60 ppm) (p < 0.05). Regarding of main compounds, E-nerolidol (LC50 of 9.50 ppm and LC90 of 23.89 ppm) showed higher larvicidal activity than the β-caryophyllene compound (LC50 of 79.00 ppm and LC90 of 230.91 ppm) (p < 0.05). The larvae treated with these natural products showed tremors and lethargic movements, suggesting that these natural products have neurotoxic action. These observations support studies to investigate the mechanism of action. This is the first record of the chemical composition and larvicidal activity of the EO from P. longepetiolatum and P. brachypetiolatum rich in β-caryophyllene and E-nerolidol against A. aegypti larvae.

Keywords: piperaceae, aedes, sesquiterpenes, biological control

Procedia PDF Downloads 77
1276 Effect of Volute Tongue Shape and Position on Performance of Turbo Machinery Compressor

Authors: Anuj Srivastava, Kuldeep Kumar

Abstract:

This paper proposes a numerical study of volute tongue design, which affects the centrifugal compressor operating range and pressure recovery. Increased efficiency has been the traditional importance of compressor design. However, the increased operating range has become important in an age of ever-increasing productivity and energy costs in the turbomachinery industry. Efficiency and overall operating range are the two most important parameters studied to evaluate the aerodynamic performance of centrifugal compressor. Volute is one of the components that have significant effect on these two parameters. Choice of volute tongue geometry has major role in compressor performance, also affects performance map. The author evaluates the trade-off on using pull-back tongue geometry on centrifugal compressor performance. In present paper, three different tongue positions and shapes are discussed. These designs are compared in terms of pressure recovery coefficient, pressure loss coefficient, and stable operating range. The detailed flow structures for various volute geometries and pull back angle near tongue are studied extensively to explore the fluid behavior. The viscous Navier-Stokes equations are used to simulate the flow inside the volute. The numerical calculations are compared with thermodynamic 1-D calculations. Author concludes that the increment in compression ratio accompanies with more uniform pressure distribution in the modified tongue shape and location, a uniform static pressure around the circumferential which build a more uniform flow in the impeller and diffuser. Also, the blockage at the tongue of the volute was causing circumferentially nonuniformed pressure along the volute. This nonuniformity may lead impeller and diffuser to operate unstably. However, it is not the volute that directly controls the stall.

Keywords: centrifugal compressor volute, tongue geometry, pull-back, compressor performance, flow instability

Procedia PDF Downloads 163
1275 Synthesis of PVA/γ-Fe2O3 Used in Cancer Treatment by Hyperthermia

Authors: Sajjad Seifi Mofarah, S. K. Sadrnezhaad, Shokooh Moghadam, Javad Tavakoli

Abstract:

In recent years a new method of combination treatment for cancer has been developed and studied that has led to significant advancements in the field of cancer therapy. Hyperthermia is a traditional therapy that, along with a creation of a medically approved level of heat with the help of an alternating magnetic AC current, results in the destruction of cancer cells by heat. This paper gives details regarding the production of the spherical nanocomposite PVA/γ-Fe2O3 in order to be used for medical purposes such as tumor treatment by hyperthermia. To reach a suitable and evenly distributed temperature, the nanocomposite with core-shell morphology and spherical form within a 100 to 200 nanometer size was created using phase separation emulsion, in which the magnetic nano-particles γ-Fe2O3 with an average particle size of 20 nano-meters and with different percentages of 0.2, 0.4, 0.5, and 0.6 were covered by polyvinyl alcohol. The main concern in hyperthermia and heat treatment is achieving desirable specific absorption rate (SAR) and one of the most critical factors in SAR is particle size. In this project all attempts has been done to reach minimal size and consequently maximum SAR. The morphological analysis of the spherical structure of the nanocomposite PVA/γ-Fe2O3 was achieved by SEM analyses and the study of the chemical bonds created was made possible by FTIR analysis. To investigate the manner of magnetic nanocomposite particle size distribution a DLS experiment was conducted. Moreover, to determine the magnetic behavior of the γ-Fe2O3 particle and the nanocomposite PVA/γ-Fe2O3 in different concentrations a VSM test was conducted. To sum up, creating magnetic nanocomposites with a spherical morphology that would be employed for drug loading opens doors to new approaches in developing nanocomposites that provide efficient heat and a controlled release of drug simultaneously inside the magnetic field, which are among their positive characteristics that could significantly improve the recovery process in patients.

Keywords: nanocomposite, hyperthermia, cancer therapy, drug releasing

Procedia PDF Downloads 305
1274 Sustainable Adaptation: Social Equity and Local-Level Climate Adaptation Planning in U.S. Cities

Authors: Duran Fiack, Jeremy Cumberbatch, Michael Sutherland, Nadine Zerphey

Abstract:

Civic leaders have increasingly relied upon local climate adaptation plans to identify vulnerabilities, prioritize goals, and implement actions in order to prepare cities for the present and projected effects of global climate change. The concept of sustainability is central to these efforts, as climate adaptation discussions are often framed within the context of economic resilience, environmental protection, and the distribution of climate change impacts across various socioeconomic groups. For urban centers, the climate change issue presents unique challenges for each of these dimensions; however, its potential impacts on marginalized populations are extensive. This study draws from the ‘just sustainabilities’ framework to perform a qualitative analysis of climate adaptation plans prepared by 22 of the 100 largest U.S. cities and examine whether, and to what extent, such initiatives prioritize social equity improvements. Past research has found that the integration of sustainability in urban policy and planning often produces outcomes that favor environmental and economic objectives over social equity improvements. We find that social equity is a particularly prominent theme in local-level climate adaptation efforts, relative to environmental quality and economic development. The findings contribute to the literature on climate adaptation and sustainability within the urban context and offer practical insight for local-level stakeholders concerning potential obstacles and opportunities for the integration of social equity initiatives into climate adaptation planning. Given the likelihood that climate changes will continue to impose unique challenges for marginalized communities in urban areas, advancing our understanding of how social equity concerns are integrated into adaptation efforts is likely to become an increasingly critical area of inquiry.

Keywords: climate adaptation plan, climate change, social equity, sustainability

Procedia PDF Downloads 152
1273 Monodisperse Quaternary Cobalt Chromium Ferrite Nanoparticles Synthesised from a Single Source Precursor

Authors: Khadijat O. Abdulwahab, Mohammad A. Malik, Paul O’Brien, Grigore A. Timco, Floriana Tuna

Abstract:

The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe2O4 (M = Fe, Co, Mn, Ni, Zn etc.) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Herein, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O2CtBu)6(HO2CtBu)3] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO4) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at its boiling point (260°C). The effect of concentration on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained at both concentrations were matched with cubic iron cobalt chromium ferrite (FeCoCrO4). TEM showed that a more monodispersed spherical ferrite nanoparticles of average diameter 4.0 ± 0.4 nm were obtained at higher precursor concentration. Magnetic measurements revealed that all the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), Electron Probe Microanalysis (EPMA), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).

Keywords: quaternary ferrite nanoparticles, single source precursor, monodisperse, cobalt chromium ferrite, colloidal, hot injection thermolysis

Procedia PDF Downloads 276
1272 Breeding Cotton for Annual Growth Habit: Remobilizing End-of-season Perennial Reserves for Increased Yield

Authors: Salman Naveed, Nitant Gandhi, Grant Billings, Zachary Jones, B. Todd Campbell, Michael Jones, Sachin Rustgi

Abstract:

Cotton (Gossypium spp.) is the primary source of natural fiber in the U.S. and a major crop in the Southeastern U.S. Despite constant efforts to increase the cotton fiber yield, the yield gain has stagnated. Therefore, we undertook a novel approach to improve the cotton fiber yield by altering its growth habit from perennial to annual. In this effort, we identified genotypes with high-expression alleles of five floral induction and meristem identity genes (FT, SOC1, FUL, LFY, and AP1) from an upland cotton mini-core collection and crossed them in various combinations to develop cotton lines with annual growth habit, optimal flowering time and enhanced productivity. To facilitate the characterization of genotypes with the desired combinations of stacked alleles, we identified markers associated with the gene expression traits via genome-wide association analysis using a 63K SNP Array (Hulse-Kemp et al. 2015 G3 5:1187). Over 14,500 SNPs showed polymorphism and were used for association analysis. A total of 396 markers showed association with expression traits. Out of these 396 markers, 159 mapped to genes, 50 to untranslated regions, and 187 to random genomic regions. Biased genomic distribution of associated markers was observed where more trait-associated markers mapped to the cotton D sub-genome. Many quantitative trait loci coincided at specific genomic regions. This observation has implications as these traits could be bred together. The analysis also allowed the identification of candidate regulators of the expression patterns of these floral induction and meristem identity genes whose functions will be validated via virus-induced gene silencing.

Keywords: cotton, GWAS, QTL, expression traits

Procedia PDF Downloads 152
1271 Geometric Imperfections in Lattice Structures: A Simulation Strategy to Predict Strength Variability

Authors: Xavier Lorang, Ahmadali Tahmasebimoradi, Chetra Mang, Sylvain Girard

Abstract:

The additive manufacturing processes (e.g. selective laser melting) allow us to produce lattice structures which have less weight, higher impact absorption capacity, and better thermal exchange property compared to the classical structures. Unfortunately, geometric imperfections (defects) in the lattice structures are by-products results of the manufacturing process. These imperfections decrease the lifetime and the strength of the lattice structures and alternate their mechanical responses. The objective of the paper is to present a simulation strategy which allows us to take into account the effect of the geometric imperfections on the mechanical response of the lattice structure. In the first part, an identification method of geometric imperfection parameters of the lattice structure based on point clouds is presented. These point clouds are based on tomography measurements. The point clouds are fed into the platform LATANA (LATtice ANAlysis) developed by IRT-SystemX to characterize the geometric imperfections. This is done by projecting the point clouds of each microbeam along the beam axis onto a 2D surface. Then, by fitting an ellipse to the 2D projections of the points, the geometric imperfections are characterized by introducing three parameters of an ellipse; semi-major/minor axes and angle of rotation. With regard to the calculated parameters of the microbeam geometric imperfections, a statistical analysis is carried out to determine a probability density law based on a statistical hypothesis. The microbeam samples are randomly drawn from the density law and are used to generate lattice structures. In the second part, a finite element model for the lattice structure with the simplified geometric imperfections (ellipse parameters) is presented. This numerical model is used to simulate the generated lattice structures. The propagation of the uncertainties of geometric imperfections is shown through the distribution of the computed mechanical responses of the lattice structures.

Keywords: additive manufacturing, finite element model, geometric imperfections, lattice structures, propagation of uncertainty

Procedia PDF Downloads 187