Search results for: target gene database
1772 Multi-Temporal Cloud Detection and Removal in Satellite Imagery for Land Resources Investigation
Authors: Feng Yin
Abstract:
Clouds are inevitable contaminants in optical satellite imagery, and prevent the satellite imaging systems from acquiring clear view of the earth surface. The presence of clouds in satellite imagery bring negative influences for remote sensing land resources investigation. As a consequence, detecting the locations of clouds in satellite imagery is an essential preprocessing step, and further remove the existing clouds is crucial for the application of imagery. In this paper, a multi-temporal based satellite imagery cloud detection and removal method is proposed, which will be used for large-scale land resource investigation. The proposed method is mainly composed of four steps. First, cloud masks are generated for cloud contaminated images by single temporal cloud detection based on multiple spectral features. Then, a cloud-free reference image of target areas is synthesized by weighted averaging time-series images in which cloud pixels are ignored. Thirdly, the refined cloud detection results are acquired by multi-temporal analysis based on the reference image. Finally, detected clouds are removed via multi-temporal linear regression. The results of a case application in Hubei province indicate that the proposed multi-temporal cloud detection and removal method is effective and promising for large-scale land resource investigation.Keywords: cloud detection, cloud remove, multi-temporal imagery, land resources investigation
Procedia PDF Downloads 2781771 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification
Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine
Abstract:
Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.Keywords: convolution, feature extraction, image analysis, validation, precision agriculture
Procedia PDF Downloads 3151770 The MicroRNA-2110 Suppressed Cell Proliferation and Migration Capacity in Hepatocellular Carcinoma Cells
Authors: Pelin Balcik Ercin
Abstract:
Introduction: ZEB transcription factor family member ZEB2, has a role in epithelial to mesenchymal transition during development and metastasis. The altered circulating extracellular miRNAs expression is observed in diseases, and extracellular miRNAs have an important role in cancer cell microenvironment. In ChIP-Seq study, the expression of miR-2110 was found to be regulated by ZEB2. In this study, the effects of miR2110 on cell proliferation and migration of hepatocellular carcinoma (HCC) cells were examined. Material and Methods: SNU398 cells transfected with mimic miR2110 (20nM) (HMI0375, Sigma-Aldrich) and negative control miR (HMC0002, Sigma-Aldrich). MicroRNA isolation was accomplished with miRVANA isolation kit according to manufacturer instructions. cDNA synthesis was performed expression, respectively, and calibrated with Ct of controls. The real-time quantitative PCR (RT-qPCR) reaction was performed using the TaqMan Fast Advanced Master Mix (Thermo Sci.). Ct values of miR2110 were normalized to miR-186-5p and miR16-5p for the intracellular gene. Cell proliferation analysis was analyzed with the xCELLigence RTCA System. Wound healing assay was analyzed with the ImageJ program and relative fold change calculated. Results: The mimic-miR-2110 transfected SNU398 cells nearly nine-fold (log2) more miR-2110 expressed compared to negative control transfected cells. The mimic-miR-2110 transfected HCC cell proliferation significantly inhibited compared to the negative control cells. Furthermore, miR-2110-SNU398 cell migration capacity was relatively four-fold decreased compared to negative control-miR-SNU398 cells. Conclusion: Our results suggest the miR-2110 inhibited cell proliferation and also miR-2110 negatively affect cell migration compared to control groups in HCC cells. These data suggest the complexity of microRNA EMT transcription factors regulation. These initial results are pointed out the predictive biomarker capacity of miR-2110 in HCC.Keywords: epithelial to mesenchymal transition, EMT, hepatocellular carcinoma cells, micro-RNA-2110, ZEB2
Procedia PDF Downloads 1251769 The Safety Profile of Vilazodone: A Study on Post-Marketing Surveillance
Authors: Humraaz Kaja, Kofi Mensah, Frasia Oosthuizen
Abstract:
Background and Aim: Vilazodone was approved in 2011 as an antidepressant to treat the major depressive disorder. As a relatively new drug, it is not clear if all adverse effects have been identified. The aim of this study was to review the adverse effects reported to the WHO Programme for International Drug Monitoring (PIDM) in order to add to the knowledge about the safety profile and adverse effects caused by vilazodone. Method: Data on adverse effects reported for vilazodone was obtained from the database VigiAccess managed by PIDM. Data was extracted from VigiAccess using Excel® and analyzed using descriptive statistics. The data collected was compared to the patient information leaflet (PIL) of Viibryd® and the FDA documents to determine adverse drug reactions reported post-marketing. Results: A total of 9708 adverse events had been recorded on VigiAccess, of which 6054 were not recorded on the PIL and the FDA approval document. Most of the reports were received from the Americas and were for adult women aged 45-64 years (24%, n=1059). The highest number of adverse events reported were for psychiatric events (19%; n=1889), followed by gastro-intestinal effects (18%; n=1839). Specific psychiatric disorders recorded included anxiety (316), depression (208), hallucination (168) and agitation (142). The systematic review confirmed several psychiatric adverse effects associated with the use of vilazodone. The findings of this study suggested that these common psychiatric adverse effects associated with the use of vilazodone were not known during the time of FDA approval of the drug and is not currently recorded in the patient information leaflet (PIL). Conclusions: In summary, this study found several adverse drug reactions not recorded in documents emanating from clinical trials pre-marketing. This highlights the importance of continued post-marketing surveillance of a drug, as well as the need for further studies on the psychiatric adverse events associated with vilazodone in order to improve the safety profile.Keywords: adverse drug reactions, pharmacovigilance, post-marketing surveillance, vilazodone
Procedia PDF Downloads 1151768 Precipitation Intensity: Duration Based Threshold Analysis for Initiation of Landslides in Upper Alaknanda Valley
Authors: Soumiya Bhattacharjee, P. K. Champati Ray, Shovan L. Chattoraj, Mrinmoy Dhara
Abstract:
The entire Himalayan range is globally renowned for rainfall-induced landslides. The prime focus of the study is to determine rainfall based threshold for initiation of landslides that can be used as an important component of an early warning system for alerting stake holders. This research deals with temporal dimension of slope failures due to extreme rainfall events along the National Highway-58 from Karanprayag to Badrinath in the Garhwal Himalaya, India. Post processed 3-hourly rainfall intensity data and its corresponding duration from daily rainfall data available from Tropical Rainfall Measuring Mission (TRMM) were used as the prime source of rainfall data. Landslide event records from Border Road Organization (BRO) and some ancillary landslide inventory data for 2013 and 2014 have been used to determine Intensity Duration (ID) based rainfall threshold. The derived governing threshold equation, I= 4.738D-0.025, has been considered for prediction of landslides of the study region. This equation was validated with an accuracy of 70% landslides during August and September 2014. The derived equation was considered for further prediction of landslides of the study region. From the obtained results and validation, it can be inferred that this equation can be used for initiation of landslides in the study area to work as a part of an early warning system. Results can significantly improve with ground based rainfall estimates and better database on landslide records. Thus, the study has demonstrated a very low cost method to get first-hand information on possibility of impending landslide in any region, thereby providing alert and better preparedness for landslide disaster mitigation.Keywords: landslide, intensity-duration, rainfall threshold, TRMM, slope, inventory, early warning system
Procedia PDF Downloads 2731767 Stochastic Edge Based Anomaly Detection for Supervisory Control and Data Acquisitions Systems: Considering the Zambian Power Grid
Authors: Lukumba Phiri, Simon Tembo, Kumbuso Joshua Nyoni
Abstract:
In Zambia recent initiatives by various power operators like ZESCO, CEC, and consumers like the mines to upgrade power systems into smart grids target an even tighter integration with information technologies to enable the integration of renewable energy sources, local and bulk generation, and demand response. Thus, for the reliable operation of smart grids, its information infrastructure must be secure and reliable in the face of both failures and cyberattacks. Due to the nature of the systems, ICS/SCADA cybersecurity and governance face additional challenges compared to the corporate networks, and critical systems may be left exposed. There exist control frameworks internationally such as the NIST framework, however, there are generic and do not meet the domain-specific needs of the SCADA systems. Zambia is also lagging in cybersecurity awareness and adoption, therefore there is a concern about securing ICS controlling key infrastructure critical to the Zambian economy as there are few known facts about the true posture. In this paper, we introduce a stochastic Edged-based Anomaly Detection for SCADA systems (SEADS) framework for threat modeling and risk assessment. SEADS enables the calculation of steady-steady probabilities that are further applied to establish metrics like system availability, maintainability, and reliability.Keywords: anomaly, availability, detection, edge, maintainability, reliability, stochastic
Procedia PDF Downloads 1101766 The Risk of Post-stroke Pneumonia and Its One-Year Disability in Taiwan
Authors: Hui-Chi Huang, Su-Ju Yang, Ching-Wei Lin, Jui-Yao Tsai, Liang-Yiang
Abstract:
Background: Evidence exists that pneumonia is a frequently encountered complication after stroke which is associated with a higher rate of mortality and increased long-term disability Purpose: To determine the predictors associated with the risk of one-year disability in acute stroke. Methods: Data for this longitudinal follow-up study were extracted from a tertiary referral medical center’s stroke registry database in Northern Taipei. Eligible patients with acute stroke admitted to the hospital and completed a one-year follow up were recruited for analysis. Favorable outcome was defined as a modified Rankin Scale score ≤ 2. SAS version 9.2 was used for the multivariable regression analyses to examine the factors correlated with the one-year disability in stroke patients. Results: From January 2012 to December 2013, a total of 1373 (mean age: 70.49±15.4 years, 913(66.5%) males) consecutively administered acute stroke patients were recruited. Overall, the rate of one-year disability was 37.20%(404/1086) in those without post-stroke pneumonia. It increased to 82.93 %(238/287) in patients developed post-stroke pneumonia. Factors associated with increased risk of disability were age ≧ 75(OR= 4.845, p<.0001), female /gender (OR=1.568, p =.0062), previous stroke (OR= 1.868, p = <. 0001) ,dementia (OR= 2.872, p =.0047), ventilator use (OR= 4.653, p <. 0001),age ≧ 75 /pneumonia (OR=1.236, p <. 0001) , ICU admission (OR=3.314, p <.0001) , nasogastric tube insertion (OR= 4.28, p <.0001), speech therapy (OR= 1.79, p =.0142), urinary tract infection (OR= 1.865, p =.0018), estimated glomerular filtration rate (eGFR > 60 )(OR= 0.525, p= .0029), Admission NIHSS >11 (OR= 2.101, p = .0099), Length of hospitalization > 30(d) (OR= 5.182, p <.0001). Conclusion: Older age, severe neurological deficit, complications, rehabilitation intervention, length of hospitalization >30(d), and cognitive impairment were significantly associated with Post-stroke functional impairment, especially those with post-stroke pneumonia. These findings could open new avenues in the management of stroke patients.Keywords: stroke, risk, pneumonia, disability
Procedia PDF Downloads 2311765 Risk of Androgen Deprivation Therapy-Induced Metabolic Syndrome-Related Complications for Prostate Cancer in Taiwan
Authors: Olivia Rachel Hwang, Yu-Hsuan Joni Shao
Abstract:
Androgen Deprivation Therapy (ADT) has been a primary treatment for patients with advanced prostate cancer. However, it is associated with numerous adverse effects related to Metabolic Syndrome (MetS), including hypertension, diabetes, hyperlipidaemia, heart diseases and ischemic strokes. However, complications associated with ADT for prostate cancer in Taiwan is not well documented. The purpose of this study is to utilize the data from NHIRD (National Health Insurance Research Database) to examine the trajectory changes of MetS-related complications in men receiving ADT. The risks of developing complications after the treatment were analyzed with multivariate Cox regression model. Covariates including in the model were the complications before the diagnosis of prostate cancer, the age, and the year at cancer diagnosis. A total number of 17268 patients from 1997-2013 were included in this study. The exclusion criteria were patients with any other types of cancer or with the existing MetS-related complications. Changes in MetS-related complications were observed among two treatment groups: 1) ADT (n=9042), and 2) non-ADT (n=8226). The ADT group appeared to have an increased risk in hypertension (hazard ratio 1.08, 95% confidence interval 1.03-1.13, P = 0.001) and hyperlipidemia (hazard ratio 1.09, 95% confidence interval 1.01-1.17, P = 0.02) when compared with non-ADT group in the multivariate Cox regression analyses. In the risk of diabetes, heart diseases, and ischemic strokes, ADT group appeared to have an increased but not significant hazard ratio. In conclusion, ADT was associated with an increased risk in hypertension and hyperlipidemia in prostate cancer patients in Taiwan. The risk of hypertension and hyperlipidemia should be considered while deciding on ADT, especially those with the known history of hypertension and hyperlipidemia.Keywords: androgen deprivation therapy, ADT, complications, metabolic syndrome, MetS, prostate cancer
Procedia PDF Downloads 2881764 A Proteomic Approach for Discovery of Microbial Cellulolytic Enzymes
Authors: M. S. Matlala, I. Ignatious
Abstract:
Environmental sustainability has taken the center stage in human life all over the world. Energy is the most essential component of our life. The conventional sources of energy are non-renewable and have a detrimental environmental impact. Therefore, there is a need to move from conventional to non-conventional renewable energy sources to satisfy the world’s energy demands. The study aimed at screening for microbial cellulolytic enzymes using a proteomic approach. The objectives were to screen for microbial cellulases with high specific activity and separate the cellulolytic enzymes using a combination of zymography and two-dimensional (2-D) gel electrophoresis followed by tryptic digestion, Matrix-assisted Laser Desorption Ionisation-Time of Flight (MALDI-TOF) and bioinformatics analysis. Fungal and bacterial isolates were cultured in M9 minimal and Mandel media for a period of 168 hours at 60°C and 30°C with cellobiose and Avicel as carbon sources. Microbial cells were separated from supernatants through centrifugation, and the crude enzyme from the cultures was used for the determination of cellulase activity, zymography, SDS-PAGE, and two-dimensional gel electrophoresis. Five isolates, with lytic action on carbon sources studied, were a bacterial strain (BARK) and fungal strains (VCFF1, VCFF14, VCFF17, and VCFF18). Peak cellulase production by the selected isolates was found to be 3.8U/ml, 2.09U/ml, 3.38U/ml, 3.18U/ml, and 1.95U/ml, respectively. Two-dimensional gel protein maps resulted in the separation and quantitative expression of different proteins by the microbial isolates. MALDI-TOF analysis and database search showed that the expressed proteins in this study closely relate to different glycoside hydrolases produced by other microbial species with an acceptable confidence level of 100%.Keywords: cellulases, energy, two-dimensional gel electrophoresis, matrix-assisted laser desorption ionisation-time of flight, MALDI-TOF MS
Procedia PDF Downloads 1341763 Molecular Detection of Naegleria fowleri and Fecal Indicator Bacteria in Brackish Water of Lake Pontchartrain, Louisiana
Authors: Jia Xue, Frederica G. Lamar, Siyu Lin, Jennifer G. Lamori, Samendra Sherchan
Abstract:
Brackish water samples from Lake Pontchartrain in Louisiana were assessed for the presence of pathogenic amoeba Naegleria fowleri, which causes primary amoebic meningoencephalitis (PAM). In our study, quantitative polymerase chain reaction (qPCR) methods were used to determine N. fowleri, E. coli, and Enterococcus in water collected from Lake Pontchartrain. A total of 158 water samples were analyzed over the 10-month sampling period. Statistically significant positive correlation between water temperature and N. fowleri concentration was observed. N. fowleri target sequence was detected at 35.4% (56/158) of the water samples from ten sites around the Lake ranged from 11.6 GC/100 ml water to 457.8 GC/100 ml water. A single factor (ANOVA) analysis shows the average concentration of N. fowleri in summer (119.8 GC/100 ml) was significantly higher than in winter (58.6 GC/100 ml) (p < 0.01). Statistically significant positive correlations were found between N. fowleri and qPCR E. coli results and N. fowleri and colilert E. coli (culture method), respectively. A weak positive correlation between E. coli and Enterococcus was observed from both qPCR (r = 0.27, p < 0.05) and culture based method (r = 0.52, p < 0.05). Meanwhile, significant positive correlation between qPCR and culture based methods for E. coli (r = 0.30, p < 0.05) and Enterococcus concentration was observed (r = 0.26, p < 0.05), respectively. Future research is needed to determine whether sediment is a source of N. fowleri found in the water column.Keywords: brackish water, Escherichia coli, Enterococcus, Naegleria fowleri, primary amoebic meningoencephalitis (PAM), qPCR
Procedia PDF Downloads 1611762 Cryptocurrency Forensics: Analysis on Bitcoin E-Wallet from Computer Source Evidence
Authors: Muhammad Nooraiman bin Noorashid, Mohd Sharizuan bin Mohd Omar, Mohd Zabri Adil bin Talib, Aswami Fadillah bin Mohd Ariffin
Abstract:
Nowadays cryptocurrency has become a global phenomenon known to most people. People using this alternative digital money to do a transaction in many ways (e.g. Used for online shopping, wealth management, and fundraising). However, this digital asset also widely used in criminal activities since its use decentralized control as opposed to centralized electronic money and central banking systems and this makes a user, who used this currency invisible. The high-value exchange of these digital currencies also has been a target to criminal activities. The cryptocurrency crimes have become a challenge for the law enforcement to analyze and to proof the evidence as criminal devices. In this paper, our focus is more on bitcoin cryptocurrency and the possible artifacts that can be obtained from the different type of digital wallet, which is software and browser-based application. The process memory and physical hard disk are examined with the aims of identifying and recovering potential digital evidence. The stage of data acquisition divided by three states which are the initial creation of the wallet, transaction that consists transfer and receiving a coin and the last state is after the wallet is being deleted. Findings from this study suggest that both data from software and browser type of wallet process memory is a valuable source of evidence, and many of the artifacts found in process memory are also available from the application and wallet files on the client computer storage.Keywords: cryptocurrency, bitcoin, digital wallet, digital forensics
Procedia PDF Downloads 3411761 Learning English from Movies: An Exploratory Study
Authors: Yasamiyan Alolaywi
Abstract:
The sources of second language acquisition vary and depend on a learner’s preferences and choices; however, undoubtedly, the most effective methods provide authentic language input. This current study explores the effectiveness of watching movies as a means of English language acquisition. It explores university students’ views on the impact of this method in improving English language skills. The participants in this study were 74 students (25 males and 49 females) from the Department of English Language and Translation at Qassim University, Saudi Arabia. Data for this research were collected from questionnaires and individual interviews with several selected students. The findings of this study showed that many students watch movies frequently and for various purposes, the most important of which is entertainment. The students also admitted that movies help them acquire a great deal of vocabulary and develop their listening and writing skills. Also, the participants believed that exposure to a target language by native speakers helps enhance language fluency and proficiency. The students learn not only linguistic aspects from films but also other aspects, such as culture, lifestyle, and ways of thinking, in addition to learning other languages such as Spanish. In light of these results, some recommendations are proposed, such as verifying the feasibility of integrating media into a foreign language classroom. While this study covers aspects of the relationship between watching movies and English language acquisition, knowledge gaps remain that need to be filled by further research, such as on incorporating media into the educational process and how movie subtitles can improve learners’ language skills.Keywords: language acquisition, English movies, EFL learners, perceptions
Procedia PDF Downloads 1011760 Observed Changes in Constructed Precipitation at High Resolution in Southern Vietnam
Authors: Nguyen Tien Thanh, Günter Meon
Abstract:
Precipitation plays a key role in water cycle, defining the local climatic conditions and in ecosystem. It is also an important input parameter for water resources management and hydrologic models. With spatial continuous data, a certainty of discharge predictions or other environmental factors is unquestionably better than without. This is, however, not always willingly available to acquire for a small basin, especially for coastal region in Vietnam due to a low network of meteorological stations (30 stations) on long coast of 3260 km2. Furthermore, available gridded precipitation datasets are not fine enough when applying to hydrologic models. Under conditions of global warming, an application of spatial interpolation methods is a crucial for the climate change impact studies to obtain the spatial continuous data. In recent research projects, although some methods can perform better than others do, no methods draw the best results for all cases. The objective of this paper therefore, is to investigate different spatial interpolation methods for daily precipitation over a small basin (approximately 400 km2) located in coastal region, Southern Vietnam and find out the most efficient interpolation method on this catchment. The five different interpolation methods consisting of cressman, ordinary kriging, regression kriging, dual kriging and inverse distance weighting have been applied to identify the best method for the area of study on the spatio-temporal scale (daily, 10 km x 10 km). A 30-year precipitation database was created and merged into available gridded datasets. Finally, observed changes in constructed precipitation were performed. The results demonstrate that the method of ordinary kriging interpolation is an effective approach to analyze the daily precipitation. The mixed trends of increasing and decreasing monthly, seasonal and annual precipitation have documented at significant levels.Keywords: interpolation, precipitation, trend, vietnam
Procedia PDF Downloads 2751759 Machine Learning Techniques in Bank Credit Analysis
Authors: Fernanda M. Assef, Maria Teresinha A. Steiner
Abstract:
The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines
Procedia PDF Downloads 1031758 Dispersion Rate of Spilled Oil in Water Column under Non-Breaking Water Waves
Authors: Hanifeh Imanian, Morteza Kolahdoozan
Abstract:
The purpose of this study is to present a mathematical phrase for calculating the dispersion rate of spilled oil in water column under non-breaking waves. In this regard, a multiphase numerical model is applied for which waves and oil phase were computed concurrently, and accuracy of its hydraulic calculations have been proven. More than 200 various scenarios of oil spilling in wave waters were simulated using the multiphase numerical model and its outcome were collected in a database. The recorded results were investigated to identify the major parameters affected vertical oil dispersion and finally 6 parameters were identified as main independent factors. Furthermore, some statistical tests were conducted to identify any relationship between the dependent variable (dispersed oil mass in the water column) and independent variables (water wave specifications containing height, length and wave period and spilled oil characteristics including density, viscosity and spilled oil mass). Finally, a mathematical-statistical relationship is proposed to predict dispersed oil in marine waters. To verify the proposed relationship, a laboratory example available in the literature was selected. Oil mass rate penetrated in water body computed by statistical regression was in accordance with experimental data was predicted. On this occasion, it was necessary to verify the proposed mathematical phrase. In a selected laboratory case available in the literature, mass oil rate penetrated in water body computed by suggested regression. Results showed good agreement with experimental data. The validated mathematical-statistical phrase is a useful tool for oil dispersion prediction in oil spill events in marine areas.Keywords: dispersion, marine environment, mathematical-statistical relationship, oil spill
Procedia PDF Downloads 2331757 Photobiomodulation Activates WNT/β-catenin Signaling for Wound Healing in an in Vitro Diabetic Wound Model
Authors: Dimakatso B. Gumede, Nicolette N. Houreld
Abstract:
Diabetic foot ulcers (DFUs) are a complication of diabetes mellitus (DM), a metabolic disease caused by insulin resistance or insufficiency, resulting in hyperglycaemia and low-grade chronic inflammation. Current therapies for treating DFUs include wound debridement, glycaemic control, and wound dressing. However, these therapies are moderately effective as there is a recurrence of these ulcers and an increased risk of lower limb amputations. Photobiomodulation (PBM), which is the application of non-invasive low-level light for wound healing at the spectrum of 660-1000 nm, has shown great promise in accelerating the healing of chronic wounds. However, its underlying mechanisms are not clearly defined. Studies have indicated that PBM induces wound healing via the activation of signaling pathways that are involved in tissue repair, such as the transforming growth factor-β (TGF-β). However, other signaling pathways, such as the WNT/β-catenin pathway, which is also critical for wound repair, have not been investigated. This study aimed to elucidate if PBM at 660 nm and a fluence of 5 J/cm² activates the WNT/β-catenin signaling pathway for wound healing in a diabetic cellular model. Human dermal fibroblasts (WS1) were continuously cultured high-glucose (26.5 mM D-glucose) environment to create a diabetic cellular model. A central scratch was created in the diabetic model to ‘wound’ the cells. The diabetic wounded (DW) cells were thereafter irradiated at 660 nm and a fluence of 5 J/cm². Cell migration, gene expression and protein assays were conducted at 24- and 48-h post-PBM. The results showed that PBM at 660 nm and a fluence of 5 J/cm² significantly increased cell migration in diabetic wounded cells at 24-h post-PBM. The expression of CTNNB1, ACTA2, COL1A1 and COL3A1 genes was also increased in DW cells post-PBM. Furthermore, there was increased cytoplasmic accumulation and nuclear localization of β-catenin at 24 h post-PBM. The findings in this study demonstrate that PBM activates the WNT/β-catenin signaling pathway by inducing the accumulation of β-catenin in diabetic wounded cells, leading to increased cell migration and expression of wound repair markers. These results thus indicate that PBM has the potential to improve wound healing in diabetic ulcers via activation of the WNT/β-catenin signaling pathway.Keywords: wound healing, diabetic ulcers, photobiomodulation, WNT/β-catenin, signalling pathway
Procedia PDF Downloads 401756 TutorBot+: Automatic Programming Assistant with Positive Feedback based on LLMs
Authors: Claudia Martínez-Araneda, Mariella Gutiérrez, Pedro Gómez, Diego Maldonado, Alejandra Segura, Christian Vidal-Castro
Abstract:
The purpose of this document is to showcase the preliminary work in developing an EduChatbot-type tool and measuring the effects of its use aimed at providing effective feedback to students in programming courses. This bot, hereinafter referred to as tutorBot+, was constructed based on chatGPT and is tasked with assisting and delivering timely positive feedback to students in the field of computer science at the Universidad Católica de Concepción. The proposed working method consists of four stages: (1) Immersion in the domain of Large Language Models (LLMs), (2) Development of the tutorBot+ prototype and integration, (3) Experiment design, and (4) Intervention. The first stage involves a literature review on the use of artificial intelligence in education and the evaluation of intelligent tutors, as well as research on types of feedback for learning and the domain of chatGPT. The second stage encompasses the development of tutorBot+, and the final stage involves a quasi-experimental study with students from the Programming and Database labs, where the learning outcome involves the development of computational thinking skills, enabling the use and measurement of the tool's effects. The preliminary results of this work are promising, as a functional chatBot prototype has been developed in both conversational and non-conversational versions integrated into an open-source online judge and programming contest platform system. There is also an exploration of the possibility of generating a custom model based on a pre-trained one tailored to the domain of programming. This includes the integration of the created tool and the design of the experiment to measure its utility.Keywords: assessment, chatGPT, learning strategies, LLMs, timely feedback
Procedia PDF Downloads 681755 Ensuring Safe Operation by Providing an End-To-End Field Monitoring and Incident Management Approach for Autonomous Vehicle Based on ML/Dl SW Stack
Authors: Lucas Bublitz, Michael Herdrich
Abstract:
By achieving the first commercialization approval in San Francisco the Autonomous Driving (AD) industry proves the technology maturity of the SAE L4 AD systems and the corresponding software and hardware stack. This milestone reflects the upcoming phase in the industry, where the focus is now about scaling and supervising larger autonomous vehicle (AV) fleets in different operation areas. This requires an operation framework, which organizes and assigns responsibilities to the relevant AV technology and operation stakeholders from the AV system provider, the Remote Intervention Operator, the MaaS provider and regulatory & approval authority. This holistic operation framework consists of technological, processual, and organizational activities to ensure safe operation for fully automated vehicles. Regarding the supervision of large autonomous vehicle fleets, a major focus is on the continuous field monitoring. The field monitoring approach must reflect the safety and security criticality of incidents in the field during driving operation. This includes an automatic containment approach, with the overall goal to avoid safety critical incidents and reduce downtime by a malfunction of the AD software stack. An End-to-end (E2E) field monitoring approach detects critical faults in the field, uses a knowledge-based approach for evaluating the safety criticality and supports the automatic containment of these E/E faults. Applying such an approach will ensure the scalability of AV fleets, which is determined by the handling of incidents in the field and the continuous regulatory compliance of the technology after enhancing the Operational Design Domain (ODD) or the function scope by Functions on Demand (FoD) over the entire digital product lifecycle.Keywords: field monitoring, incident management, multicompliance management for AI in AD, root cause analysis, database approach
Procedia PDF Downloads 751754 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 1671753 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanismsKeywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 1591752 The Untold Story of the Importance of ‘Insignia Imprinted’ for the Heritage Clay Roof Tiles in Malaysia
Authors: M. S. Sulaiman, N. Hassan, M. A. Aziz, M. S. A. Haron, J. H. A. Halim
Abstract:
The classic profile of heritage clay roof tiles gives unique characteristics and timeless style to the almost historical building. It is not only designed to meet basic construction needs, offering great performance and durability but also highlights unnoticed stamp impressions, known as ‘insignia imprinted.’ It seems that the insignia imprinted is not significant to all stakeholders, especially in preserving heritage clay roof tiles in Malaysia. They are not even realized the existence and importance of that element, where it represents the cognitive and social character of that particular era. It creates a sense of belongings for the manufacturers regarding their most elementary features, such as a fortress, crown, fauna and etc. This research aims to identify and analyze the late stamp marks on heritage interlocking clay roof tiles in a government heritage building in Malaysia. The methodology used is literature reviews (desktop study), observation on sites, and interviews. Initial findings from the preliminary observation on-site in Peninsular Malaysia show some evidence that the stamp marks appear on the front and back sides of the tile that indicates the year, manufacturer, code numbers, and logos. Almost more than 30 samples of different types of stamp marks were found and collected. Some of which had been described Guichard & Carvin Cie Marsielle St Andre France, Pierre Sacoman St Henry Marsielle, Tuileries Aixoises Les Milles B.D.R France, The Calicut Tile Co Feroke, And B. Pinto & Co Mangalore dated 1865, 1919 and 1936. In view of this abundance of materials, it will lead to the establishment of a comprehensive database consisting of detailed specifications and material performance for future conservation works and maintenance purposes that will sustain for future references.Keywords: clay roof tiles, insignia imprinted, interlocking, stamp mark
Procedia PDF Downloads 711751 SIM (Subscriber Identity Module) Banking
Authors: Okanta Andrew, Richmond Kweku Frempong
Abstract:
As mobile networks are upgraded with technologies like WAP, GPRS and UMTS to deliver next-generation multimedia services, so are the banks and other financial institutions also getting ready to unleash the financial products on the mobile platform to meet growing demand for mobile based application services. Hence, the onset of Unstructured Supplementary Services (USSD) Banking which would make banking services available at anywhere, anytime through a string of interactive SMS sessions between a mobile device and an application server of a service provider. The aim of this studies was to find out whether the public will accept the sim banking service when it is implemented. Our target group includes: Working class. E. g. Businessmen/women, office workers, fishermen, market women, teachers etc. Nonworking class. E. g. Students (Tertiary, Senior High School), housewives. etc. The survey was in the form of a questionnaire and a verbal interview (video) which was to investigate their idea about the current banking system and the yet to be introduced sim banking concept. Meanwhile, some challenges accompanied the progression of data gathering because some populace showed reluctance in freeing their information. One other suggestion was that government should put measures against foremost challenges obstructing sim banking in Ghana counter to computers hackers. Government and individual have a key role to undertake to give suitable support to facelift the sim banking industry in the country. It was also suggested that Government put strong regulations on the use of sim banking products and services to streamline all the activities and also create awareness of the need for sim banking and emphasize its relevance in the aspect of national GDP.Keywords: banking, mobile banking, SIM banking, mobile banking in Ghana
Procedia PDF Downloads 4841750 The Effects of Zinc Oxide Nanoparticles Loaded with Indole-3-Acetic Acid and Indole-3-Butyric Acid on in vitro Rooting of Apple Microcuttings
Authors: Shabnam Alizadeh, Hatice Dumanoglu
Abstract:
Plant tissue culture is a substantial plant propagation technique for mass clonal production throughout the year, regardless of time in fruit species. However, the rooting achievement must be enhanced in the difficult-to-root genotypes. Classical auxin applications in clonal propagation of these genotypes are inadequate to solve the rooting problem. Nanoparticles having different physical and chemical properties from bulk material could enhance the rooting success of controlled release of these substances when loaded with auxin due to their ability to reach the active substance up to the target cells as a carrier system.The purpose of this study is to investigate the effects of zinc oxide nanoparticles loaded with indole-3-acetic acid (IAA-nZnO) and indole-3-butyric acid (IBA-nZnO) on in vitro rooting of microcuttings in a difficult-to-root apple genotype (Malus domestica Borkh.). Rooting treatments consisted of IBA or IAA at concentrations of 0.5, 1.0, 2.0, 3.0 mg/L; nZnO, IAA-nZnO and IBA-nZnO at doses of 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 mg/L were used. All components were added to the Murashige and Skoog (MS) basal medium at strength ½ with 2% sucrose and 0.7% agar before autoclaving. In the study, no rooting occurred in control and nZnO applications. Especially, 1.0 mg/L and 2.0 mg/L IBA-nZnO nanoparticle applications (containing 0.5 mg/L and 0.9 mg/L IBA), respectively with rooting rates of 40.3% and 70.4%, rooting levels of 2.0±0.4 and 2.3±0.4, 2.6±0.7 and 2.5±0.6 average root numbers and 20.4±1.6 mm and 20.2±3.4 mm average root lengths put forward as effective applications.Keywords: Auxin, Malus, nanotechnology, zinc oxide nanoparticles
Procedia PDF Downloads 1441749 In Vitro and in Vivo Evaluation of Nano Collagen Molecules to Enhance Mesenchymal Stem Cells Differentiate into Insulin Producing Cells
Authors: Chin-Tsu Ma, Yi-Jhen Wu, Hsia Ying Cheng, Han Hsiang Huang, Shyh Ming Kuo
Abstract:
The use of specific molecules including nutrients and pharmacological agents has been tried in modulation of stem cells differentiation (MSCs) to insulin producing cells. The aim of this study is to investigate the ability of nano collagen molecules (nutrient or scaffold) to enhance the MSCs differentiation into insulin-producing cells in combination with nicotinamide and exendin-4 (pharmacological agents) in vitro and in vivo. The results demonstrated that the cells exhibit morphologically islet-like clusters after treatment with nano collagen molecules, nicotinamide and exendin-4. MSCs extra treated with nano collagen molecules showed significant increases in Nkx6.1 and insulin mRNA expression at 14-d and 21-d culture compared with those merely treated with nicotinamide and exendin-4. Early 7-day elevation in PDX-1 mRNA expression was observed. Furthermore, the MSCs exposed to nano collagen molecules produced the highest secretion of insulin (p < 0.05). Type-2 diabetes induced by high-fat diet and low dose of streptozotocin in rat model was built in this study. This rat exhibited higher food intake, water intake, lower glucose tolerance, lower-insulin tolerance, and higher HbA1C (significant increases, p < 0.01) as compared with the normal rat that demonstrated the model of type-2 diabetes was successfully built. Biopsy examinations also showed that obvious destruction of islet. After injection of differentiated MSCs into the destructed pancreas of diabetes rat, more regenerated islet were observed at the rats that treated with nano collagen molecules and exhibited much lower HbA1C as compared with the normal rat and diabetes rat after 4 weeks (significant deceases, p < 0.001). These results indicate that the culturing MSCs with nano collagen molecules, nicotinamide, and exendin-4 are beneficial for MSCs differentiation into islet-like cells. These nano collagen molecules may lead to alternations or up-regulation of gene expression and influence the differentiated outcomes induced by nicotinamide and exendin-4.Keywords: nano collagen molecules, nicotinamide, MSCs, diabetes
Procedia PDF Downloads 4101748 Role of P53 Codon 72 Polymorphism and miR-146a Rs2910164 Polymorphism in Breast Cancer
Authors: Marjan Moradi fard, Hossein Rassi, Masoud Houshmand
Abstract:
Aim: Breast cancer is one of the most common cancers affecting the morbidity and mortality of Iranian women. This disease is a result of collective alterations of oncogenes and tumor suppressor genes. Studies have produced conflicting results concerning the role of p53 codon 72 polymorphism (G>C) and miR-146a rs2910164 polymorphism (G>C) on the risk of several cancers; therefore, a research was performed to estimate the association between the p53 codon 72 polymorphism and miR-146a rs2910164 polymorphism in breast cancer. Methods and Materials: A total of 45 archival breast cancer samples from Khatam hospital and 40 healthy samples were collected. Verification of each cancer reported in a relative was sought through the pathology reports of the hospital records. Then, DNA extracted from all samples by standard methods and p53 codon 72 polymorphism genotypes and miR-146a rs2910164 polymorphism genotypes were analyzed using multiplex PCR. The tubules, mitotic activity, necrosis, polymorphism and grade of breast cancer were staged by Nottingham histological grading and immunohistochemical staining of the sections from the paraffin wax embedded tissues for the expression of ER, PR and p53 was carried out using a standard method. Finally, data analysis was performed using the 7 version of the Epi Info(TM) 2012 software and test chi-square(x2) for trend. Results: Successful DNA extraction was assessed by PCR amplification of b-actin gene (99 bp). According to the results, p53 GG genotype and miR-146a rs2910164 CC genotype was significantly associated with increased risk of breast cancer in the study population. In this study, we established that tumors of p53 GG genotype and miR-146a rs2910164 CC genotype exhibited higher mitotic activity, higher polymorphism, lower necrosis, lower tubules, higher ER- and PR-negatives and lower TP53-positives than the other genotypes. Conclusion: The present study provided preliminary evidence that a p53 GG genotype may effect breast cancer risk in the study population, interacting synergistically with miR-146a rs2910164 CC genotype. Our results demonstrate that the testing of p53 codon 72 polymorphism genotypes and miR-146a rs2910164 polymorphism genotypes in combination with clinical parameters can serve as major risk factors in the early identification of breast cancers.Keywords: breast cancer, miR-146a rs2910164 polymorphism, p53 codon 72 polymorphism, tumors, pathology reports
Procedia PDF Downloads 3721747 Perceiving Casual Speech: A Gating Experiment with French Listeners of L2 English
Authors: Naouel Zoghlami
Abstract:
Spoken-word recognition involves the simultaneous activation of potential word candidates which compete with each other for final correct recognition. In continuous speech, the activation-competition process gets more complicated due to speech reductions existing at word boundaries. Lexical processing is more difficult in L2 than in L1 because L2 listeners often lack phonetic, lexico-semantic, syntactic, and prosodic knowledge in the target language. In this study, we investigate the on-line lexical segmentation hypotheses that French listeners of L2 English form and then revise as subsequent perceptual evidence is revealed. Our purpose is to shed further light on the processes of L2 spoken-word recognition in context and better understand L2 listening difficulties through a comparison of skilled and unskilled reactions at the point where their working hypothesis is rejected. We use a variant of the gating experiment in which subjects transcribe an English sentence presented in increments of progressively greater duration. The spoken sentence was “And this amazing athlete has just broken another world record”, chosen mainly because it included common reductions and phonetic features in English, such as elision and assimilation. Our preliminary results show that there is an important difference in the manner in which proficient and less-proficient L2 listeners handle connected speech. Less-proficient listeners delay recognition of words as they wait for lexical and syntactic evidence to appear in the gates. Further statistical results are currently being undertaken.Keywords: gating paradigm, spoken word recognition, online lexical segmentation, L2 listening
Procedia PDF Downloads 4641746 Bacterial Diversity Reports Contamination around the Ichkeul Lake in Tunisia
Authors: Zeina Bourhane, Anders Lanzen, Christine Cagnon, Olfa Ben Said, Cristiana Cravo-Laureau, Robert Duran
Abstract:
The anthropogenic pressure in coastal areas increases dramatically with the exploitation of environmental resources. Biomonitoring coastal areas are crucial to determine the impact of pollutants on bacterial communities in soils and sediments since they provide important ecosystem services. However, relevant biomonitoring tools allowing fast determination of the ecological status are yet to be defined. Microbial ecology approaches provide useful information for developing such microbial monitoring tools reporting on the effect of environmental stressors. Chemical and microbial molecular approaches were combined in order to determine microbial bioindicators for assessing the ecological status of soil and river ecosystems around the Ichkeul Lake (Tunisia), an area highly impacted by human activities. Samples were collected along soil/river/lake continuums in three stations around the Ichkeul Lake influenced by different human activities at two seasons (summer and winter). Contaminant pressure indexes (PI), including PAHs (Polycyclic aromatic hydrocarbons), alkanes, and OCPs (Organochlorine pesticides) contents, showed significant differences in the contamination level between the stations with seasonal variation. Bacterial communities were characterized by 16S ribosomal RNAs (rRNA) gene metabarcoding. Although microgAMBI indexes, determined from the sequencing data, were in accordance with contaminant contents, they were not sufficient to fully explain the PI. Therefore, further microbial indicators are still to be defined. The comparison of bacterial communities revealed the specific microbial assemblage for soil, river, and lake sediments, which were significantly correlated with contaminant contents and PI. Such observation offers the possibility to define a relevant set of bioindicators for reporting the effects of human activities on the microbial community structure. Such bioindicators might constitute useful monitoring tools for the management of microbial communities in coastal areas.Keywords: bacterial communities, biomonitoring, contamination, human impacts, microbial bioindicators
Procedia PDF Downloads 1641745 NprRX Regulation on Surface Spreading Motility in Bacillus cereus
Authors: Yan-Shiang Chiou, Yi-Huang Hsueh
Abstract:
Bacillus cereus is a foodborne pathogen that causes two types of foodborne illness, the emetic and diarrheal syndromes. B. cereus consistently ranks among the top three among bacterial foodborne outbreaks in the ten years of 2001 to 2010 in Taiwan. Foodborne outbreak caused by B. cereus has been increased, and recently it ranks second foodborne pathogen after Vibrio parahaemolyticus. This pathogen is difficult to control due to its ubiquitousness in the environment, the psychrotrophic nature of many strains, and the heat resistance of their spores. Because complete elimination of biofilms is difficult, a better understanding of the molecular mechanisms of biofilm formation by B. cereus will help to develop better strategies to control this pathogen. Surface translocation can be an important factor in biofilm formation. In B. cereus, NprR is a quorum sensor, and its apo NprR is a dimer and changes to a tetramer in the presence of NprX. The small peptide NprX may induce conformational change allowing the apo dimer to switch to an active tetramer specifically recognizing target DNA sequences. Our result showed that mutation of nprRX causes surface spreading deficiency. Mutation of flagella, pili and surfactant genes (flgAB, bcpAB, krsABC), did not abolish spreading motility. Under nprRX mutant, mutation of spo0A restored the spreading deficiency. This suggests that spreading motility is not related surfactant, pili and flagella but other unknown mechanism and Spo0A, a sporulation initiation protein, inhibits spreading motility.Keywords: Bacillus cereus, nprRX, spo0A, spreading motility
Procedia PDF Downloads 2561744 Marker-Controlled Level-Set for Segmenting Breast Tumor from Thermal Images
Authors: Swathi Gopakumar, Sruthi Krishna, Shivasubramani Krishnamoorthy
Abstract:
Contactless, painless and radiation-free thermal imaging technology is one of the preferred screening modalities for detection of breast cancer. However, poor signal to noise ratio and the inexorable need to preserve edges defining cancer cells and normal cells, make the segmentation process difficult and hence unsuitable for computer-aided diagnosis of breast cancer. This paper presents key findings from a research conducted on the appraisal of two promising techniques, for the detection of breast cancer: (I) marker-controlled, Level-set segmentation of anisotropic diffusion filtered preprocessed image versus (II) Segmentation using marker-controlled level-set on a Gaussian-filtered image. Gaussian-filtering processes the image uniformly, whereas anisotropic filtering processes only in specific areas of a thermographic image. The pre-processed (Gaussian-filtered and anisotropic-filtered) images of breast samples were then applied for segmentation. The segmentation of breast starts with initial level-set function. In this study, marker refers to the position of the image to which initial level-set function is applied. The markers are generally placed on the left and right side of the breast, which may vary with the breast size. The proposed method was carried out on images from an online database with samples collected from women of varying breast characteristics. It was observed that the breast was able to be segmented out from the background by adjustment of the markers. From the results, it was observed that as a pre-processing technique, anisotropic filtering with level-set segmentation, preserved the edges more effectively than Gaussian filtering. Segmented image, by application of anisotropic filtering was found to be more suitable for feature extraction, enabling automated computer-aided diagnosis of breast cancer.Keywords: anisotropic diffusion, breast, Gaussian, level-set, thermograms
Procedia PDF Downloads 3801743 Examining the Presence of Heterotrophic Aerobic Bacteria (HAB), and Sulphate Reducing Bacteria (SRB) in Some Types of Water from the City of Tripoli, Libya
Authors: Abdulsalam. I. Rafida, Marwa. F. Elalem, Hasna. E. Alemam
Abstract:
This study aimed at testing the various types of water in some areas of the city of Tripoli, Libya for the presence of Heterotrophic Aerobic Bacteria (HAB), and anaerobic Sulphate Reducing Bacteria (SRB). The water samples under investigation included rainwater accumulating on the ground, sewage water (from the city sewage treatment station, sulphate water from natural therapy swimming sites), and sea water (i.e. sea water exposed to pollution by untreated sewage water, and unpolluted sea water from specific locations). A total of 20 samples have been collected distributed as follows: rain water (8 samples), sewage water (6 samples), and sea water (6 samples). An up-to-date method for estimation has been used featuring readymade solutions i.e. (BARTTM test for HAB and BARTTM test for SRB). However, with the exception of one rain water sample, the results have indicated that the target bacteria have been present in all samples. Regarding HAB bacteria the samples have shown a maximum average of 7.0 x 106 cfu/ml featuring sewage and rain water and a minimum average of 1.8 x 104 cuf/ml featuring unpolluted sea water collected from a specific location. As for SRB bacteria; a maximum average of 7.0 x 105 cfu/ml has been shown by sewage and rain water and a minimum average of 1.8 x 104 cfu/ml by sewage and sea water. The above results highlight the relationship between pollution and the presence of bacteria in water particularly water collected from specific locations, and also the presence of bacteria as the result of the use of water provided that a suitable environment exists for its growth.Keywords: heterotrophic aerobic bacteria (HAB), sulphate reducing bacteria (SRB), water, environmental sciences
Procedia PDF Downloads 491