Search results for: safe bearing pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6288

Search results for: safe bearing pressure

2508 Hydraulic Headloss in Plastic Drainage Pipes at Full and Partially Full Flow

Authors: Velitchko G. Tzatchkov, Petronilo E. Cortes-Mejia, J. Manuel Rodriguez-Varela, Jesus Figueroa-Vazquez

Abstract:

Hydraulic headloss, expressed by the values of friction factor f and Manning’s coefficient n, is an important parameter in designing drainage pipes. Their values normally are taken from manufacturer recommendations, many times without sufficient experimental support. To our knowledge, currently there is no standard procedure for hydraulically testing such pipes. As a result of research carried out at the Mexican Institute of Water Technology, a laboratory testing procedure was proposed and applied on 6 and 12 inches diameter polyvinyl chloride (PVC) and high-density dual wall polyethylene pipe (HDPE) drainage pipes. While the PVC pipe is characterized by naturally smooth interior and exterior walls, the dual wall HDPE pipe has corrugated exterior wall and, although considered smooth, a slightly wavy interior wall. The pipes were tested at full and partially full pipe flow conditions. The tests for full pipe flow were carried out on a 31.47 m long pipe at flow velocities between 0.11 and 4.61 m/s. Water was supplied by gravity from a 10 m-high tank in some of the tests, and from a 3.20 m-high tank in the rest of the tests. Pressure was measured independently with piezometer readings and pressure transducers. The flow rate was measured by an ultrasonic meter. For the partially full pipe flow the pipe was placed inside an existing 49.63 m long zero slope (horizontal) channel. The flow depth was measured by piezometers located along the pipe, for flow rates between 2.84 and 35.65 L/s, measured by a rectangular weir. The observed flow profiles were then compared to computer generated theoretical gradually varied flow profiles for different Manning’s n values. It was found that Manning’s n, that normally is assumed constant for a given pipe material, is in fact dependent on flow velocity and pipe diameter for full pipe flow, and on flow depth for partially full pipe flow. Contrary to the expected higher values of n and f for the HDPE pipe, virtually the same values were obtained for the smooth interior wall PVC pipe and the slightly wavy interior wall HDPE pipe. The explanation of this fact was found in Henry Morris’ theory for smooth turbulent conduit flow over isolated roughness elements. Following Morris, three categories of the flow regimes are possible in a rough conduit: isolated roughness (or semi smooth turbulent) flow, wake interference (or hyper turbulent) flow, and skimming (or quasi-smooth) flow. Isolated roughness flow is characterized by friction drag turbulence over the wall between the roughness elements, independent vortex generation, and dissipation around each roughness element. In this regime, the wake and vortex generation zones at each element develop and dissipate before attaining the next element. The longitudinal spacing of the roughness elements and their height are important influencing agents. Given the slightly wavy form of the HDPE pipe interior wall, the flow for this type of pipe belongs to this category. Based on that theory, an equation for the hydraulic friction factor was obtained. The obtained coefficient values are going to be used in the Mexican design standards.

Keywords: drainage plastic pipes, hydraulic headloss, hydraulic friction factor, Manning’s n

Procedia PDF Downloads 264
2507 Urban Regeneration of Historic Paths: A Case Study of Kom El Dekka Historic Path

Authors: Ahmed R. Ismail, Hatem A. El Tawil, Nevin G. Rezk

Abstract:

Historic paths in today's cities are facing the pressure of the urban development due to the rapid urban growth. Every new development is tearing the old urban fabric and the socio-economic character of the historic paths. Furthermore, in some cases historic paths suffer from negligence and decay. Kom El Dekka historic path was one of those deteriorated paths in the city of Alexandria, Egypt, in spite of its high heritage and socio-economic value. Therefore, there was a need to develop urban regeneration strategies as a part of a wider sustainable development vision, to handle the situation and revitalize the path as a livable space in the heart of the city. This study aims to develop a comprehensive assessment methodology to evaluate the different values of the path and to create community-oriented and economic-based analysis methodology for its socio-economic values. These analysis and assessments provide strategies for any regeneration action plan for Kom El Dekka historic path.

Keywords: community-oriented, economic-based, syntactical analysis, urban regeneration

Procedia PDF Downloads 404
2506 Single Phase Fluid Flow in Series of Microchannel Connected via Converging-Diverging Section with or without Throat

Authors: Abhishek Kumar Chandra, Kaushal Kishor, Wasim Khan, Dhananjay Singh, M. S. Alam

Abstract:

Single phase fluid flow through series of uniform microchannels connected via transition section (converging-diverging section with or without throat) was analytically and numerically studied to characterize the flow within the channel and in the transition sections. Three sets of microchannels of diameters 100, 184, and 249 μm were considered for investigation. Each set contains 10 numbers of microchannels of length 20 mm, connected to each other in series via transition sections. Transition section consists of either converging-diverging section with throat or without throat. The effect of non-uniformity in microchannels on pressure drop was determined by passing water/air through the set of channels for Reynolds number 50 to 1000. Compressibility and rarefaction effects in transition sections were also tested analytically and numerically for air flow. The analytical and numerical results show that these configurations can be used in enhancement of transport processes. However, converging-diverging section without throat shows superior performance over with throat configuration.

Keywords: contraction-expansion flow, integrated microchannel, microchannel network, single phase flow

Procedia PDF Downloads 266
2505 Horizontal Stress Magnitudes Using Poroelastic Model in Upper Assam Basin, India

Authors: Jenifer Alam, Rima Chatterjee

Abstract:

Upper Assam sedimentary basin is one of the oldest commercially producing basins of India. Being in a tectonically active zone, estimation of tectonic strain and stress magnitudes has vast application in hydrocarbon exploration and exploitation. This East North East –West South West trending shelf-slope basin encompasses the Bramhaputra valley extending from Mikir Hills in the southwest to the Naga foothills in the northeast. Assam Shelf lying between the Main Boundary Thrust (MBT) and Naga Thrust area is comparatively free from thrust tectonics and depicts normal faulting mechanism. The study area is bounded by the MBT and Main Central Thrust in the northwest. The Belt of Schuppen in the southeast, is bordered by Naga and Disang thrust marking the lower limit of the study area. The entire Assam basin shows low-level seismicity compared to other regions of northeast India. Pore pressure (PP), vertical stress magnitude (SV) and horizontal stress magnitudes have been estimated from two wells - N1 and T1 located in Upper Assam. N1 is located in the Assam gap below the Bramhaputra river while T1, lies in the Belt of Schuppen. N1 penetrates geological formations from top Alluvial through Dhekiajuli, Girujan, Tipam, Barail, Kopili, Sylhet and Langpur to the granitic basement while T1 in trusted zone crosses through Girujan Suprathrust, Tipam Suprathrust, Barail Suprathrust to reach Naga Thrust. Normal compaction trend is drawn through shale points through both wells for estimation of PP using the conventional Eaton sonic equation with an exponent of 1.0 which is validated with Modular Dynamic Tester and mud weight. Observed pore pressure gradient ranges from 10.3 MPa/km to 11.1 MPa/km. The SV has a gradient from 22.20 to 23.80 MPa/km. Minimum and maximum horizontal principal stress (Sh and SH) magnitudes under isotropic conditions are determined using poroelastic model. This approach determines biaxial tectonic strain utilizing static Young’s Modulus, Poisson’s Ratio, SV, PP, leak off test (LOT) and SH derived from breakouts using prior information on unconfined compressive strength. Breakout derived SH information is used for obtaining tectonic strain due to lack of measured SH data from minifrac or hydrofracturing. Tectonic strain varies from 0.00055 to 0.00096 along x direction and from -0.0010 to 0.00042 along y direction. After obtaining tectonic strains at each well, the principal horizontal stress magnitudes are calculated from linear poroelastic model. The magnitude of Sh and SH gradient in normal faulting region are 12.5 and 16.0 MPa/km while in thrust faulted region the gradients are 17.4 and 20.2 MPa/km respectively. Model predicted Sh and SH matches well with the LOT data and breakout derived SH data in both wells. It is observed from this study that the stresses SV>SH>Sh prevailing in the shelf region while near the Naga foothills the regime changes to SH≈SV>Sh area corresponds to normal faulting regime. Hence this model is a reliable tool for predicting stress magnitudes from well logs under active tectonic regime in Upper Assam Basin.

Keywords: Eaton, strain, stress, poroelastic model

Procedia PDF Downloads 192
2504 Performance of CO₂/N₂ Foam in Enhanced Oil Recovery

Authors: Mohamed Hassan, Rahul Gajbhiye

Abstract:

The high mobility and gravity override of CO₂ gas can be minimized by generating the CO₂ foam with the aid of surfactant. However, CO₂ is unable to generate the foam/stable foam above its supercritical point (1100 psi, 31°C). These difficulties with CO₂ foam is overcome by adding N₂ in small fraction to enhance the foam generation of CO₂ at supercritical conditions. This study shows how the addition of small quantity of N₂ helps in generating the CO₂ foam and performance of the CO₂/N₂ mixture foam in enhanced oil recovery. To investigate the performance of CO₂/N₂ foam, core-flooding experiments were conducted at elevated pressure and temperature condition (higher than supercritical CO₂ - 50°C and 1500 psi) in sandstone cores. Fluorosurfactant (FS-51) was used as a foaming agent, and n-decane was used as model oil in all the experiments. The selection of foam quality and N₂ fraction was optimized based on foam generation and stability tests. Every gas or foam flooding was preceded by seawater injection to simulate the behavior in the reservoir. The results from the core-flood experiments showed that the CO₂ and CO₂/N₂ foam flooding recovered an additional 34-40% of Original Initial Oil in Place (OIIP) indicating that foam flooding succeeded in producing more oil than pure CO₂ gas injection processes. Additionally, the performance CO₂/N₂ foam injection was better than CO₂ foam injection.

Keywords: CO₂/N₂ foam, enhanced oil recovery (EOR), supercritical CO₂, sweep efficiency

Procedia PDF Downloads 266
2503 Seismic History and Liquefaction Resistance: A Comparative Study of Sites in California

Authors: Tarek Abdoun, Waleed Elsekelly

Abstract:

Introduction: Liquefaction of soils during earthquakes can have significant consequences on the stability of structures and infrastructure. This study focuses on comparing two liquefaction case histories in California, namely the response of the Wildlife site in the Imperial Valley to the 2010 El-Mayor Cucapah earthquake (Mw = 7.2, amax = 0.15g) and the response of the Treasure Island Fire Station (F.S.) site in the San Francisco Bay area to the 1989 Loma Prieta Earthquake (Mw = 6.9, amax = 0.16g). Both case histories involve liquefiable layers of silty sand with non-plastic fines, similar shear wave velocities, low CPT cone penetration resistances, and groundwater tables at similar depths. The liquefaction charts based on shear wave velocity field predict liquefaction at both sites. However, a significant difference arises in their pore pressure responses during the earthquakes. The Wildlife site did not experience liquefaction, as evidenced by piezometer data, while the Treasure Island F.S. site did liquefy during the shaking. Objective: The primary objective of this study is to investigate and understand the reason for the contrasting pore pressure responses observed at the Wildlife site and the Treasure Island F.S. site despite their similar geological characteristics and predicted liquefaction potential. By conducting a detailed analysis of similarities and differences between the two case histories, the objective is to identify the factors that contributed to the higher liquefaction resistance exhibited by the Wildlife site. Methodology: To achieve this objective, the geological and seismic data available for both sites were gathered and analyzed. Then their soil profiles, seismic characteristics, and liquefaction potential as predicted by shear wave velocity-based liquefaction charts were analyzed. Furthermore, the seismic histories of both regions were examined. The number of previous earthquakes capable of generating significant excess pore pressures for each critical layer was assessed. This analysis involved estimating the total seismic activity that the Wildlife and Treasure Island F.S. critical layers experienced over time. In addition to historical data, centrifuge and large-scale experiments were conducted to explore the impact of prior seismic activity on liquefaction resistance. These findings served as supporting evidence for the investigation. Conclusions: The higher liquefaction resistance observed at the Wildlife site and other sites in the Imperial Valley can be attributed to preshaking by previous earthquakes. The Wildlife critical layer was subjected to a substantially greater number of seismic events capable of generating significant excess pore pressures over time compared to the Treasure Island F.S. layer. This crucial disparity arises from the difference in seismic activity between the two regions in the past century. In conclusion, this research sheds light on the complex interplay between geological characteristics, seismic history, and liquefaction behavior. It emphasizes the significant impact of past seismic activity on liquefaction resistance and can provide valuable insights for evaluating the stability of sandy sites in other seismic regions.

Keywords: liquefaction, case histories, centrifuge, preshaking

Procedia PDF Downloads 62
2502 Simulation to Detect Virtual Fractional Flow Reserve in Coronary Artery Idealized Models

Authors: Nabila Jaman, K. E. Hoque, S. Sawall, M. Ferdows

Abstract:

Coronary artery disease (CAD) is one of the most lethal diseases of the cardiovascular diseases. Coronary arteries stenosis and bifurcation angles closely interact for myocardial infarction. We want to use computer-aided design model coupled with computational hemodynamics (CHD) simulation for detecting several types of coronary artery stenosis with different locations in an idealized model for identifying virtual fractional flow reserve (vFFR). The vFFR provides us the information about the severity of stenosis in the computational models. Another goal is that we want to imitate patient-specific computed tomography coronary artery angiography model for constructing our idealized models with different left anterior descending (LAD) and left circumflex (LCx) bifurcation angles. Further, we want to analyze whether the bifurcation angles has an impact on the creation of narrowness in coronary arteries or not. The numerical simulation provides the CHD parameters such as wall shear stress (WSS), velocity magnitude and pressure gradient (PGD) that allow us the information of stenosis condition in the computational domain.

Keywords: CAD, CHD, vFFR, bifurcation angles, coronary stenosis

Procedia PDF Downloads 144
2501 The Response of Mammal Populations to Abrupt Changes in Fire Regimes in Montane Landscapes of South-Eastern Australia

Authors: Jeremy Johnson, Craig Nitschke, Luke Kelly

Abstract:

Fire regimes, climate and topographic gradients interact to influence ecosystem structure and function across fire-prone, montane landscapes worldwide. Biota have developed a range of adaptations to historic fire regime thresholds, which allow them to persist in these environments. In south-eastern Australia, a signal of fire regime changes is emerging across these landscapes, and anthropogenic climate change is likely to be one of the main drivers of an increase in burnt area and more frequent wildfire over the last 25 years. This shift has the potential to modify vegetation structure and composition at broad scales, which may lead to landscape patterns to which biota are not adapted, increasing the likelihood of local extirpation of some mammal species. This study aimed to address concerns related to the influence of abrupt changes in fire regimes on mammal populations in montane landscapes. It first examined the impact of climate, topography, and vegetation on fire patterns and then explored the consequences of these changes on mammal populations and their habitats. Field studies were undertaken across diverse vegetation, fire severity and fire frequency gradients, utilising camera trapping and passive acoustic monitoring methodologies and the collection of fine-scale vegetation data. Results show that drought is a primary contributor to fire regime shifts at the landscape scale, while topographic factors have a variable influence on wildfire occurrence at finer scales. Frequent, high severity wildfire influenced forest structure and composition at broad spatial scales, and at fine scales, it reduced occurrence of hollow-bearing trees and promoted coarse woody debris. Mammals responded differently to shifts in forest structure and composition depending on their habitat requirements. This study highlights the complex interplay between fire regimes, environmental gradients, and biotic adaptations across temporal and spatial scales. It emphasizes the importance of understanding complex interactions to effectively manage fire-prone ecosystems in the face of climate change.

Keywords: fire, ecology, biodiversity, landscape ecology

Procedia PDF Downloads 52
2500 Exposure Assessment to Airborne Particulate Matter in Agriculture

Authors: K. Rumchev, S. Gilbey

Abstract:

Airborne particulate matter is a known hazard to human health, with a considerable body of evidence linking agricultural dust exposures to adverse human health effects in exposed populations. It is also known that agricultural workers are exposed to high levels of soil dust and other types of airborne particulate matter within the farming environment. The aim of this study was to examine exposure to agricultural dust among farm workers during the seeding season. Twenty-one wheat-belt farms consented to participate in the study with 30 workers being monitored for dust exposure whilst seeding or undertaking seeding associated tasks. Each farm was visited once and farmers’ were asked to wear a personal air sampler for a 4-hour sampling period. Simultaneous, real-time, tractor cabin air quality monitoring was also undertaken. Data for this study was collected using real-time aerosol dust monitors to determine in-tractor cabin PM exposure to five size fractions (total, PM10, respirable, PM2.5 and PM1), and personal sampling was undertaken to establish individual exposure to inhalable and respirable dust concentrations. The study established a significant difference between personal exposures and simultaneous real-time in-cabin exposures for both inhalable and respirable fractions. No significant difference was shown between in-cabin and personal inhalable dust concentrations during seeding and spraying tasks, although both in-cabin and personal concentrations were two times greater for seeding than spraying. Future research should focus on educating and providing farm owners and workers with more information on adopting safe work practices to minimise harmful exposures to agricultural dust.

Keywords: agriculture, air quality, Australia, particulate matter

Procedia PDF Downloads 203
2499 Theoretical Stress-Strain Model for Confined Concrete by Rectangular Reinforcement

Authors: Mizam Dogan, Hande Gökdemir

Abstract:

In reinforced concrete elements, reinforcement steel bars are placed in concrete both longitudinal and lateral directions. The lateral reinforcement (called as confinement) which is used for confining circular RC elements is in a spiral shape. If the cross section of RC element is rectangular, stirrups should be rectangular too. At very high compressive stresses concrete will reach its limit strain value and therefore concrete outside the lateral reinforcement, which is not confined, will crush and start to spell. At this stage, concrete core of the RC element tries to expand laterally as a reason of high Poisson’s ratio value of concrete. Such a deformation is prevented by the lateral reinforcement which applies lateral passive pressure on concrete. At very high compressive stresses, the strength of reinforced column member rises to four times σ 2. This increase in strength of member is related to the properties of rectangular stirrups. In this paper, effect of stirrup step spacing to column behavior is calculated and presented confined concrete model is proved by numerical solutions.

Keywords: confined concrete, concrete column, stress-strain, stirrup, solid, frame

Procedia PDF Downloads 438
2498 Cross Ventilation in Waterfront Urban Canyons: The Case Study of Alexandria

Authors: Bakr Gomaa

Abstract:

Cross ventilation is an important and practical mean to achieve thermal comfort and conserve energy. This is especially true in the breezy waterfront settings. However, due to a number of factors, cross ventilation in buildings is usually studied by using oversimplified scenarios. It is then reasonable to study the impact of complex set of factors on the accuracy of predicting air flow rate because of wind driven cross ventilation. The objective of this paper is to provide architects with the tools necessary to achieve natural ventilation for cooling purposes in a waterfront urban canyon context. Also, urban canyons have not received much attention in terms of their impact on cross ventilation, and while we know how the wind flows between buildings in different urban canyon settings, the effect of the parallel-to-the-wind urban canyon on cross ventilation in buildings remains unclear. For this, we use detailed weather data, boundary layer correction factor, and CFD simulations to study the pressure patterns that form on the canyons surfaces in the case study of Alexandria. We found that the simplified numerical methods of calculating the cross ventilation in buildings can lead to inaccurate design decisions.

Keywords: cross ventilation, Alexandria, CFD, urban canyon

Procedia PDF Downloads 237
2497 Modelling Pest Immigration into Rape Seed Crops under Past and Future Climate Conditions

Authors: M. Eickermann, F. Ronellenfitsch, J. Junk

Abstract:

Oilseed rape (Brassica napus L.) is one of the most important crops throughout Europe, but pressure due to pest insects and pathogens can reduce yield amount substantially. Therefore, the usage of pesticide applications is outstanding in this crop. In addition, climate change effects can interact with phenology of the host plant and their pests and can apply additional pressure on the yield. Next to the pollen beetle, Meligethes aeneus L., the seed-damaging pest insects, cabbage seed weevil (Ceutorhynchus obstrictus Marsham) and the brassica pod midge (Dasineura brassicae Winn.) are of main economic impact to the yield. While females of C. obstrictus are infesting oilseed rape by depositing single eggs into young pods, the females of D. brassicae are using this local damage in the pod for their own oviposition, while depositing batches of 20-30 eggs. Without a former infestation by the cabbage seed weevil, a significant yield reduction by the brassica pod midge can be denied. Based on long-term, multisided field experiments, a comprehensive data-set on pest migration to crops of B. napus has been built up in the last ten years. Five observational test sides, situated in different climatic regions in Luxembourg were controlled between February until the end of May twice a week. Pest migration was recorded by using yellow water pan-traps. Caught insects were identified in the laboratory according to species specific identification keys. By a combination of pest observations and corresponding meteorological observations, the set-up of models to predict the migration periods of the seed-damaging pests was possible. This approach is the basis for a computer-based decision support tool, to assist the farmer in identifying the appropriate time point of pesticide application. In addition, the derived algorithms of that decision support tool can be combined with climate change projections in order to assess the future potential threat caused by the seed-damaging pest species. Regional climate change effects for Luxembourg have been intensively studied in recent years. Significant changes to wetter winters and drier summers, as well as a prolongation of the vegetation period mainly caused by higher spring temperature, have also been reported. We used the COSMO-CLM model to perform a time slice experiment for Luxembourg with a spatial resolution of 1.3 km. Three ten year time slices were calculated: The reference time span (1991-2000), the near (2041-2050) and the far future (2091-2100). Our results projected a significant shift of pest migration to an earlier onset of the year. In addition, a prolongation of the possible migration period could be observed. Because D. brassiace is depending on the former oviposition activity by C. obstrictus to infest its host plant successfully, the future dependencies of both pest species will be assessed. Based on this approach the future risk potential of both seed-damaging pests is calculated and the status as pest species is characterized.

Keywords: CORDEX projections, decision support tool, Brassica napus, pests

Procedia PDF Downloads 368
2496 Empirical Superpave Mix-Design of Rubber-Modified Hot-Mix Asphalt in Railway Sub-Ballast

Authors: Fernando M. Soto, Gaetano Di Mino

Abstract:

The design of an unmodified bituminous mixture and three rubber-aggregate mixtures containing rubber-aggregate by a dry process (RUMAC) was evaluated, using an empirical-analytical approach based on experimental findings obtained in the laboratory with the volumetric mix design by gyratory compaction. A reference dense-graded bituminous sub-ballast mixture (3% of air voids and a bitumen 4% over the total weight of the mix), and three rubberized mixtures by dry process (1,5 to 3% of rubber by total weight and 5-7% of binder) were used applying the Superpave mix-design for a level 3 (high-traffic) design rail lines. The railway trackbed section analyzed was a granular layer of 19 cm compacted, while for the sub-ballast a thickness of 12 cm has been used. In order to evaluate the effect of increasing the specimen density (as a percent of its theoretical maximum specific gravity), in this article, are illustrated the results obtained after different comparative analysis into the influence of varying the binder-rubber percentages under the sub-ballast layer mix-design. This work demonstrates that rubberized blends containing crumb and ground rubber in bituminous asphalt mixtures behave at least similar or better than conventional asphalt materials. By using the same methodology of volumetric compaction, the densification curves resulting from each mixture have been studied. The purpose is to obtain an optimum empirical parameter multiplier of the number of gyrations necessary to reach the same compaction energy as in conventional mixtures. It has provided some experimental parameters adopting an empirical-analytical method, evaluating the results obtained from the gyratory-compaction of bituminous mixtures with an HMA and rubber-aggregate blends. An extensive integrated research has been carried out to assess the suitability of rubber-modified hot mix asphalt mixtures as a sub-ballast layer in railway underlayment trackbed. Design optimization of the mixture was conducted for each mixture and the volumetric properties analyzed. Also, an improved and complete manufacturing process, compaction and curing of these blends are provided. By adopting this increase-parameters of compaction, called 'beta' factor, mixtures modified with rubber with uniform densification and workability are obtained that in the conventional mixtures. It is found that considering the usual bearing capacity requirements in rail track, the optimal rubber content is 2% (by weight) or 3.95% (by volumetric substitution) and a binder content of 6%.

Keywords: empirical approach, rubber-asphalt, sub-ballast, superpave mix-design

Procedia PDF Downloads 353
2495 Inter-Departmental Survey to Check the Impact of Bio-Safety Training Sessions among Lab Employees

Authors: Noorulaine Maqsood, Saeed Khan

Abstract:

Background: Concern regarding incident reporting and bio-safety training in clinical laboratories in Pakistan has increased remarkably in the last few years due to rapid increase in diagnosis and research on infectious organisms. In order to ensure the safety of employees, this issue needs to be addressed immediately. Bio-safety training sessions and lectures are necessary for the protection of laboratory workers in order to ensure safe practices and minimize the count of incident reporting in the lab. Objective: To carry out an inter-departmental survey in lab regarding the awareness of bio-safety practices among lab employees before and after conducting bio-safety training sessions. Methodology: We conducted a 30 questions survey of laboratory workers in June 2013 (before training session) to gather information related to bio-safety awareness. Afterwards, we conducted another survey after training sessions and workshops related to bio-safety. Result: The survey regarding bio-safety level showed that before the training session 32% of the participants were aware of bio-safety level being used in their lab whereas after the session this percentage increased to 72%. 48% of the participants had information about the proper usage of PPE which increased to 76%. Awareness regarding proper management of hazardous waste increased from 32% to 64%. The incident reporting practice, sample handling and hand hygiene awareness was previously reported to be 40%, 65%, and 52% that increased to 80%, 85% and 88% respectively after the training session was completed. Conclusion: The first survey results showed lack of awareness that suggest nearly all senior scientists, faculty, medical technologist, lab attendant and housekeeping staff working in laboratories are required to have bio-safety training, and required inspection at least twice a year by a bio-safety officer and also required to renew their bio-safety training. After the training session, significant changes in awareness level and attitude of the participants regarding biosafety practices were observed. Therefore, such bio-safety sessions should be carried out regularly in clinical laboratories.

Keywords: biosafety practices, clinical laboratory, Pakistan, survey

Procedia PDF Downloads 416
2494 Numerical Simulations of the Transition Flow of Model Propellers for Predicting Open Water Performance

Authors: Huilan Yao, Huaixin Zhang

Abstract:

Simulations of the transition flow of model propellers are important for predicting hydrodynamic performance and studying scale effects. In this paper, the transition flow of a model propeller under different loadings are simulated using a transition model provided by STAR-CCM+, and the influence of turbulence intensity (TI) on the transition, especially friction and pressure components of propeller performance, was studied. Before that, the transition model was applied to simulate the transition flow of a flat plate and an airfoil. Predicted transitions agree well with experimental results. Then, the transition model was applied for propeller simulations in open water, and the influence of TI was studied. Under the heavy and moderate loadings, thrust and torque of the propeller predicted by the transition model (different TI) and two turbulence models are very close and agree well with measurements. However, under the light loading, only the transition model with low TI predicts the most accurate results. Above all, the friction components of propeller performance predicted by the transition model with different TI have obvious difference.

Keywords: transition flow, model propellers, hydrodynamic performance, numerical simulation

Procedia PDF Downloads 247
2493 Experiences of Homophobia, Machismo and Misogyny in Tourist Destinations: A Netnography in a Facebook Community of LGBT Backpackers

Authors: Renan De Caldas Honorato, Ana Augusta Ferreira De Freitas

Abstract:

Homosexuality is still criminalized in a large number of countries. In some of them, being gay or lesbian can even be punished by death. Added to this context, the experiences of social discrimination faced by the LGBT population, including homophobia, machismo and misogyny, cause numerous restrictions throughout their lives. The possibility of confronting these challenges in moments that should be pleasant, such as on a trip or on vacation, is unpleasant, to say the least. In the current scenario of intensifying the use of Social network sites (SNSs) to search for information, including in the tourist area, this work aims to analyze the sharing of tourist experiences with situations of confrontation and perceptions of homophobia, machismo and misogyny, and restrictions suffered in tourist destinations. The fieldwork is a community of LGBT backpackers based on Facebook. Netnography was the core method adopted. A qualitative approach was conducted and 463 publications posted from January to December 2020 were assessed through the computer-mediated discourse analysis (CMDA). The results suggest that these publications exist to identify the potential exposure to these offensive behaviors while traveling. Individuals affirm that the laws, positive or not, in relation to the LGBT public are not the only factors for a place to be defined as safe or not for gay travelers. The social situation of a country and its laws are quite different and this is the main target of these publications. The perception of others about the chosen destination is more important than knowing your rights and the legal status of each country and it also lessens uncertainty, even when they are never totally confident when choosing a travel destination. In certain circumstances, sexual orientation also needs to be protected from the judgment of hosts and residents. The systemic treatment of homophobic behavior and the construction of a more inclusive society are urgent.

Keywords: homophobia, hospitality, machismo, misogyny

Procedia PDF Downloads 177
2492 Artificial Intelligent Methodology for Liquid Propellant Engine Design Optimization

Authors: Hassan Naseh, Javad Roozgard

Abstract:

This paper represents the methodology based on Artificial Intelligent (AI) applied to Liquid Propellant Engine (LPE) optimization. The AI methodology utilized from Adaptive neural Fuzzy Inference System (ANFIS). In this methodology, the optimum objective function means to achieve maximum performance (specific impulse). The independent design variables in ANFIS modeling are combustion chamber pressure and temperature and oxidizer to fuel ratio and output of this modeling are specific impulse that can be applied with other objective functions in LPE design optimization. To this end, the LPE’s parameter has been modeled in ANFIS methodology based on generating fuzzy inference system structure by using grid partitioning, subtractive clustering and Fuzzy C-Means (FCM) clustering for both inferences (Mamdani and Sugeno) and various types of membership functions. The final comparing optimization results shown accuracy and processing run time of the Gaussian ANFIS Methodology between all methods.

Keywords: ANFIS methodology, artificial intelligent, liquid propellant engine, optimization

Procedia PDF Downloads 562
2491 Evaluation of Entomopathogenic Fungi Strains for Field Persistence and Its Relationship to in Vitro Heat Tolerance

Authors: Mulue Girmay Gebreslasie

Abstract:

Entomopathogenic fungi are naturally safe and eco-friendly biological agents. Their potential of host specificity and ease handling made them appealing options to substitute synthetic pesticides in pest control programs. However, they are highly delicate and unstable under field conditions. Therefore, the current experiment was held to search out persistent fungal strains by defining the relationship between invitro heat tolerance and field persistence. Current results on leaf and soil persistence assay revealed that strains of Metarhizium species, M. pingshaense (F2685), M. pingshaense (MS2) and M. brunneum (F709) exhibit maximum cumulative CFUs count, relative survival rate and least percent of CFUs reductions showed significant difference at 7 days and 28 days post inoculations (dpi) in hot seasons from sampled soils and leaves and in cold season from soil samples. Whereas relative survival of B. brongniartii (TNO6) found significantly higher in cold weather leaf treatment application as compared to hot season and found as persistent as other fungal strains, while higher deterioration of fungal conidia seen with M. pingshaense (MS2). In the current study, strains of Beauveria brongniartii (TNO6) and Cordyceps javanica (Czy-LP) were relatively vulnerable in field condition with utmost colony forming units (CFUs) reduction and least survival rates. Further, the relationship of the two parameters (heat tolerance and field persistence) was seen with strong linear positive correlations elucidated that heat test could be used in selection of field persistent fungal strains for hot season applications.

Keywords: integrated pest management, biopesticides, Insect pathology and microbial control, entomology

Procedia PDF Downloads 70
2490 Disordered Eating Behaviors Among Sorority Women

Authors: Andrea J. Kirk-Jenkins

Abstract:

Women in late adolescence and young adulthood are particularly vulnerable to disordered eating, and prior research indicates that those within the college and sorority communities may be especially susceptible. Research has primarily involved comparing eating disorder symptoms between sorority women and non-sorority members using formal eating disorder assessments. This phenomenological study examined sorority members’ (N = 10) perceptions of and lived experiences with various disordered eating behaviors within the sorority culture. Data from individual interviews and photographs indicated two structural themes and 11 textural themes related to factors associated with disordered eating behaviors. These findings point to the existence of both positive and negative aspects of sorority culture, normalization of disordered eating behaviors, and pressure to attain or maintain an ideal body image. Implications for university stakeholders, including college counselors, health center staff, and extracurricular program leaders, are discussed. Further research on the identified textural themes as well as a longitudinal study exploring how perceptions change from rush to alumnae status is suggested.

Keywords: eating disorders, disorder eating behaviors, sorority women, sorority culture, college women

Procedia PDF Downloads 107
2489 Transit-Oriented Development as a Tool for Building Social Capital

Authors: Suneet Jagdev

Abstract:

Rapid urbanization has resulted in informal settlements on the periphery of nearly all big cities in the developing world due to lack of affordable housing options in the city. Residents of these communities have to travel long distances to get to work or search for jobs in these cities, and women, children and elderly people are excluded from urban opportunities. Affordable and safe public transport facilities can help them expand their possibilities. The aim of this research is to identify social capital as another important element of livable cities that can be protected and nurtured through transit-oriented development, as a tool to provide real resources that can help these transit-oriented communities become self-sustainable. Social capital has been referred to the collective value of all social networks and the inclinations that arise from these networks to do things for each other. It is one of the key component responsible to build and maintain democracy. Public spaces, pedestrian amenities and social equity are the other essential part of Transit Oriented Development models that will be analyzed in this research. The data has been collected through the analysis of several case studies, the urban design strategies implemented and their impact on the perception and on the community´s experience, and, finally, how these focused on the social capital. Case studies have been evaluated on several metrics, namely ecological, financial, energy consumption, etc. A questionnaire and other tools were designed to collect data to analyze the research objective and reflect the dimension of social capital. The results of the questionnaire indicated that almost all the participants have a positive attitude towards this dimensions of building a social capital with the aid of transit-oriented development. Statistical data of the identified key motivators against against demographic characteristics have been generated based on the case studies used for the paper. The findings suggested that there is a direct relation between urbanization, transit-oriented developments, and social capital.

Keywords: better opportunities, low-income settlements, social capital, social inclusion, transit oriented development

Procedia PDF Downloads 320
2488 Energy Potential of Salinity Gradient Mixing: Case Study of Mixing Energies of Rivers of Goa with the Arabian Sea

Authors: Arijit Chakraborty, Anirban Roy

Abstract:

The Indian peninsula is strategically located in the Asian subcontinent with the Himalayas to the North and Oceans surrounding the other three directions with annual monsoons which takes care of water supply to the rivers. The total river water discharge into the Bay of Bengal and the Arabian Sea is 628 km³/year and 274 km³/year, respectively. Thus huge volumes of fresh water meet saline water, and this mixing of two streams of dissimilar salinity gives rise to tremendous mixing energies which can be harvested for various purposes like energy generation using pressure retarded osmosis or reverse electrodialysis. The present paper concentrates on analyzing the energy of mixing for the rivers in Goa. Goa has 10 rivers of various sizes all which meet the Arabian Sea. In the present work, the 8 rivers and their salinity (NaCl concentrations) have been analyzed along with their seasonal fluctuations. Next, a Gibbs free energy formulation has been implemented to analyze the energy of mixing of the selected rivers. The highest and lowest energies according to the seasonal fluctuations have been evaluated, and this provides two important insights into (i) amount of energy that can be harvested and (ii) decision on the location of such systems.

Keywords: Gibbs energy, mixing energy, salinity gradient energy, thermodynamics

Procedia PDF Downloads 194
2487 Comparative Study Between Two Different Techniques for Postoperative Analgesia in Cesarean Section Delivery

Authors: Nermeen Elbeltagy, Sara Hassan, Tamer Hosny, Mostafa Abdelaziz

Abstract:

Introduction: Adequate postoperative analgesia after caesarean section (CS) is crucial as it impacts the distinct surgical recovery needs of the parturient. Over recent years, there has been increased interest in regional nerve block techniques with promising results on efficacy. These techniques reduce the need for additional analgesia, thereby lowering the incidence of drug-related side effects. As postoperative pain after cesarean is mainly due to abdominal incision, the transverses abdomenis plane ( TAP ) block is a relatively new abdominal nerve block with excellent efficacy after different abdominal surgeries, including cesarean section. Objective: The main objective is to compare ultrasound-guided TAP block provided by the anesthesiologist with TAP provided by the surgeon through a caesarean incision regarding the duration of postoperative analgesia, intensity of analgesia, timing of mobilization, and easiness of the procedure. Method: Ninety pregnant females at term who were scheduled for delivery by elective cesarean section were randomly distributed into two groups. The first group (45) received spinal anesthesia and postoperative ultrasound guided TAP block using 20ml on each side of 0.25% bupivacaine which was provided by the anesthesiologist. The second group (45) received spinal anesthesia plus a TAP block using 20ml on each side of 0.25% bupivacaine, which was provided by the surgeon through the cesarean incision. Visual Analogue Scale (VAS) was used for the comparison between the two groups. Results: VAS score after four hours was higher among the TAP block group provided by the surgeon through the surgical incision than the postoperative analgesic profile using ultrasound-guided TAP block provided by the anesthesiologist (P=0.011). On the contrary, there was no statistical difference in the patient’s dose of analgesia after four hours of the TAP block (P=0.228). Conclusion: TAP block provided through the surgical incision is safe and enhances early patient’s mobilization.

Keywords: TAP block, CS, VAS, analgesia

Procedia PDF Downloads 32
2486 Systematic Review and Meta-Analysis of Mid-Term Survival, and Recurrent Mitral Regurgitation for Robotic-Assisted Mitral Valve Repair

Authors: Ramanen Sugunesegran, Michael L. Williams

Abstract:

Over the past two decades surgical approaches for mitral valve (MV) disease have evolved with the advent of minimally invasive techniques. Robotic mitral valve repair (RMVr) safety and efficacy has been well documented, however, mid- to long-term data are limited. The aim of this review was to provide a comprehensive analysis of the available mid- to long-term term data for RMVr. Electronic searches of five databases were performed to identify all relevant studies reporting minimum 5-year data on RMVr. Pre-defined primary outcomes of interest were overall survival, freedom from MV reoperation and freedom from moderate or worse mitral regurgitation (MR) at 5-years or more post-RMVr. A meta-analysis of proportions or means was performed, utilizing a random effects model, to present the data. Kaplan-Meier curves were aggregated using reconstructed individual patient data. Nine studies totaling 3,300 patients undergoing RMVr were identified. Rates of overall survival at 1-, 5- and 10-years were 99.2%, 97.4% and 92.3%, respectively. Freedom from MV reoperation at 8-years post RMVr was 95.0%. Freedom from moderate or worse MR at 7-years was 86.0%. Rates of early post-operative complications were low with only 0.2% all-cause mortality and 1.0% cerebrovascular accident. Reoperation for bleeding was low at 2.2% and successful RMVr was 99.8%. Mean intensive care unit and hospital stay were 22.4 hours and 5.2 days, respectively. RMVr is a safe procedure with low rates of early mortality and other complications. It can be performed with low complication rates in high volume, experienced centers. Evaluation of available mid-term data post-RMVr suggests favorable rates of overall survival, freedom from MV reoperation and freedom from moderate or worse MR recurrence.

Keywords: mitral valve disease, mitral valve repair, robotic cardiac surgery, robotic mitral valve repair

Procedia PDF Downloads 71
2485 Software Development for AASHTO and Ethiopian Roads Authority Flexible Pavement Design Methods

Authors: Amare Setegn Enyew, Bikila Teklu Wodajo

Abstract:

The primary aim of flexible pavement design is to ensure the development of economical and safe road infrastructure. However, failures can still occur due to improper or erroneous structural design. In Ethiopia, the design of flexible pavements relies on doing calculations manually and selecting pavement structure from catalogue. The catalogue offers, in eight different charts, alternative structures for combinations of traffic and subgrade classes, as outlined in the Ethiopian Roads Authority (ERA) Pavement Design Manual 2001. Furthermore, design modification is allowed in accordance with the structural number principles outlined in the AASHTO 1993 Guide for Design of Pavement Structures. Nevertheless, the manual calculation and design process involves the use of nomographs, charts, tables, and formulas, which increases the likelihood of human errors and inaccuracies, and this may lead to unsafe or uneconomical road construction. To address the challenge, a software called AASHERA has been developed for AASHTO 1993 and ERA design methods, using MATLAB language. The software accurately determines the required thicknesses of flexible pavement surface, base, and subbase layers for the two methods. It also digitizes design inputs and references like nomographs, charts, default values, and tables. Moreover, the software allows easier comparison of the two design methods in terms of results and cost of construction. AASHERA's accuracy has been confirmed through comparisons with designs from handbooks and manuals. The software can aid in reducing human errors, inaccuracies, and time consumption as compared to the conventional manual design methods employed in Ethiopia. AASHERA, with its validated accuracy, proves to be an indispensable tool for flexible pavement structure designers.

Keywords: flexible pavement design, AASHTO 1993, ERA, MATLAB, AASHERA

Procedia PDF Downloads 47
2484 Qualitative Study of Organizational Variables Affecting Nurses’ Resilience in Pandemic Condition

Authors: Zahra Soltani Shal

Abstract:

Introduction: The COVID-19 pandemic marks an extraordinary global public health crisis unseen in the last century, with its rapid spread worldwide and associated mortality burden. Healthcare resilience during a pandemic is crucial not only for continuous and safe patients care but also for control of any outbreak. Aim: The present study was conducted to discover the organizational variables effective in increasing resilience and continuing the work of nurses in critical and stressful pandemic conditions. Method: The study population is nurses working in hospitals for patients with coronavirus. Sampling was done purposefully and information was collected from 15 nurses through In-depth semi-structured interviews. The interview was conducted to analyze the data using the framework analysis method consisting of five steps and is classified in the table. Results: According to the findings through semi-structural interviews, among organizational variables, organizational commitment (Affective commitment, continuous commitment, normative commitment) has played a prominent role in nurses' resilience. Discussion: despite the non-withdrawal of nurses and their resilience, due to the negative quality of their working life, the mentioned variable has affected their level of performance and ability and leads to fatigue and physical and mental exhaustion. Implications for practice: By equipping hospitals and improving the facilities of nurses, their organizational commitment can be increased and lead to their resilience in critical situations. Supervisors and senior officials at the hospitals should be responsible for nurses' health and safety. A clear and codified program in critical situations and comprehensive management is effective in improving the quality of the work-life of nurses. Creating an empathetic and interactive environment can help promote nurses' mental health.

Keywords: organizational commitment, quality of work life, nurses resilience, pandemic, coronavirus

Procedia PDF Downloads 139
2483 Demographic Impact on Wastewater: A Systemic Analysis of Human Impact on Wastewater Quality in Dhaka, Bangladesh

Authors: Dewan Hasin Mahtab, Farzana Sadia

Abstract:

At present, wastewater treatment has become essential to maintain a constant supply of safe water as well as to protect the environment. Due to overpopulation and overconsumption, the water quality from various surface water sources is degrading every day. Being one of the megacities in the world, Dhaka City, is going through rapid industrialization and urbanization. The effluents from these industries and factories are mostly discharged directly into the rivers without any treatment. As such, the quality of water of Buriganga is being afflicted with a noisome problem of pollution. The water of the Buriganga River has become detrimental to humans, animals, and the environment. It has become crucial to conserve the environment so that we can save both ourselves and the environment. The first step towards it should be analyzing the wastewater to decide the further steps of the treatment process. Increased population and increased consumption both contribute to water pollution. Mohammadpur is a developing area of Dhaka City, and Kamrangirchar is one of the largest slum areas in Dhaka City. The total study area is 6.13 sq. Km of Dhaka city with a population of 4,73,310 people. Of them, 86.47% had their own latrine, 47% were directly connected to the drain, 55% had septic tanks, and 70.09% of them cleaned their septic tank once a year. The pH, Dissolved Oxygen, Chemical Oxygen Demand, Biochemical Oxygen Demand, Total Dissolved Solid, Total Suspended and total coliforms of wastewater from two samples of both Mohammadpur and Kamrangirchar was analyzed. The DO level from the water bodies of Kamrangirchar was found very low, making the water bodies inhabitable for aquatic plants and animals. The BOD and COD level was extremely high from samples collected from Mohammadpur. The total coliforms count was found too high during the wet season, making it a potential health concern in the wet season in these two areas.

Keywords: Dhaka, environmental conservation rule, sanitation, wastewater

Procedia PDF Downloads 115
2482 Global Pandemic of Chronic Diseases: Public Health Challenges to Reduce the Development

Authors: Benjamin Poku

Abstract:

Purpose: The purpose of the research is to conduct systematic reviews and synthesis of existing knowledge that addresses the growing incidence and prevalence of chronic diseases across the world and its impact on public health in relation to communicable diseases. Principal results: A careful compilation and summary of 15-20 peer-reviewed publications from reputable databases such as PubMed, MEDLINE, CINAHL, and other peer-reviewed journals indicate that the Global pandemic of Chronic diseases (such as diabetes, high blood pressure, etc.) have become a greater public health burden in proportion as compared to communicable diseases. Significant conclusions: Given the complexity of the situation, efforts and strategies to mitigate the negative effect of the Global Pandemic on chronic diseases within the global community must include not only urgent and binding commitment of all stakeholders but also a multi-sectorial long-term approach to increase the public health educational approach to meet the increasing world population of over 8 billion people and also the aging population as well to meet the complex challenges of chronic diseases.

Keywords: pandemic, chronic disease, public health, health challenges

Procedia PDF Downloads 510
2481 A Survey on Speech Emotion-Based Music Recommendation System

Authors: Chirag Kothawade, Gourie Jagtap, PreetKaur Relusinghani, Vedang Chavan, Smitha S. Bhosale

Abstract:

Psychological research has proven that music relieves stress, elevates mood, and is responsible for the release of “feel-good” chemicals like oxytocin, serotonin, and dopamine. It comes as no surprise that music has been a popular tool in rehabilitation centers and therapy for various disorders, thus with the interminably rising numbers of people facing mental health-related issues across the globe, addressing mental health concerns is more crucial than ever. Despite the existing music recommendation systems, there is a dearth of holistically curated algorithms that take care of the needs of users. Given that, an undeniable majority of people turn to music on a regular basis and that music has been proven to increase cognition, memory, and sleep quality while reducing anxiety, pain, and blood pressure, it is the need of the hour to fashion a product that extracts all the benefits of music in the most extensive and deployable method possible. Our project aims to ameliorate our users’ mental state by building a comprehensive mood-based music recommendation system called “Viby”.

Keywords: language, communication, speech recognition, interaction

Procedia PDF Downloads 44
2480 First Principle Calculations of the Structural and Optoelectronic Properties of Cubic Perovskite CsSrF3

Authors: Meriem Harmel, Houari Khachai

Abstract:

We have investigated the structural, electronic and optical properties of a compound perovskite CsSrF3 using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, both the local density approximation (LDA) and the generalized gradient approximation (GGA) were used for exchange-correlation potential calculation. The ground state properties such as lattice parameter, bulk modulus and its pressure derivative were calculated and the results are compared whit experimental and theoretical data. Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density, where the fundamental energy gap is direct under ambient conditions. The contribution of the different bands was analyzed from the total and partial density of states curves. The optical properties (namely: the real and the imaginary parts of the dielectric function ε(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 35.0 eV. This is the first quantitative theoretical prediction of the optical properties for the investigated compound and still awaits experimental confirmations.

Keywords: DFT, fluoroperovskite, electronic structure, optical properties

Procedia PDF Downloads 446
2479 LES Investigation of the Natural Vortex Length in a Small-Scale Gas Cyclone

Authors: Dzmitry Misiulia, Sergiy Antonyuk

Abstract:

Small-scale cyclone separators are widely used in aerosol sampling. The flow field in a cyclone sampler is very complex, especially the vortex behavior. Most of the existing models for calculating cyclone efficiency use the same stable vortex structure while the vortex demonstrates dynamic variations rather than the steady-state picture. It can spontaneously ‘end’ at some point within the body of the separator. Natural vortex length is one of the most critical issues when designing and operating gas cyclones and is crucial to proper cyclone performance. The particle transport along the wall to the grid pot is not effective beyond this point. The flow field and vortex behavior inside the aerosol sampler have been investigated for a wide range of Reynolds numbers using Large Eddy Simulations. Two characteristics types of vortex behavior have been found with simulations. At low flow rates the vortex created in the cyclone dissipates in free space (without attaching to a surface) while at higher flow rates it attaches to the cyclone wall. The effects of the Reynolds number on the natural vortex length and the rotation frequency of the end of the vortex have been revealed.

Keywords: cyclone, flow field, natural vortex length, pressure drop

Procedia PDF Downloads 142