Search results for: problem-based learning approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19178

Search results for: problem-based learning approach

15398 Development and Application of the Proctoring System with Face Recognition for User Registration on the Educational Information Portal

Authors: Meruyert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova, Madina Ermaganbetova

Abstract:

This research paper explores the process of creating a proctoring system by evaluating the implementation of practical face recognition algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As an outcome, a proctoring system will be created, enabling the conduction of tests and ensuring academic integrity checks within the system. Due to the correct operation of the system, test works are carried out. The result of the creation of the proctoring system will be the basis for the automation of the informational, educational portal developed by machine learning.

Keywords: artificial intelligence, education portal, face recognition, machine learning, proctoring

Procedia PDF Downloads 130
15397 A Highly Accurate Computer-Aided Diagnosis: CAD System for the Diagnosis of Breast Cancer by Using Thermographic Analysis

Authors: Mahdi Bazarganigilani

Abstract:

Computer-aided diagnosis (CAD) systems can play crucial roles in diagnosing crucial diseases such as breast cancer at the earliest. In this paper, a CAD system for the diagnosis of breast cancer was introduced and evaluated. This CAD system was developed by using spatio-temporal analysis of data on a set of consecutive thermographic images by employing wavelet transformation. By using this analysis, a very accurate machine learning model using random forest was obtained. The final results showed a promising accuracy of 91% in terms of the F1 measure indicator among 200 patients' sample data. The CAD system was further extended to obtain a detailed analysis of the effect of smaller sub-areas of each breast on the occurrence of cancer.

Keywords: computer-aided diagnosis systems, thermographic analysis, spatio-temporal analysis, image processing, machine learning

Procedia PDF Downloads 214
15396 Unsupervised Learning with Self-Organizing Maps for Named Entity Recognition in the CONLL2003 Dataset

Authors: Assel Jaxylykova, Alexnder Pak

Abstract:

This study utilized a Self-Organizing Map (SOM) for unsupervised learning on the CONLL-2003 dataset for Named Entity Recognition (NER). The process involved encoding words into 300-dimensional vectors using FastText. These vectors were input into a SOM grid, where training adjusted node weights to minimize distances. The SOM provided a topological representation for identifying and clustering named entities, demonstrating its efficacy without labeled examples. Results showed an F1-measure of 0.86, highlighting SOM's viability. Although some methods achieve higher F1 measures, SOM eliminates the need for labeled data, offering a scalable and efficient alternative. The SOM's ability to uncover hidden patterns provides insights that could enhance existing supervised methods. Further investigation into potential limitations and optimization strategies is suggested to maximize benefits.

Keywords: named entity recognition, natural language processing, self-organizing map, CONLL-2003, semantics

Procedia PDF Downloads 51
15395 Hybridized Approach for Distance Estimation Using K-Means Clustering

Authors: Ritu Vashistha, Jitender Kumar

Abstract:

Clustering using the K-means algorithm is a very common way to understand and analyze the obtained output data. When a similar object is grouped, this is called the basis of Clustering. There is K number of objects and C number of cluster in to single cluster in which k is always supposed to be less than C having each cluster to be its own centroid but the major problem is how is identify the cluster is correct based on the data. Formulation of the cluster is not a regular task for every tuple of row record or entity but it is done by an iterative process. Each and every record, tuple, entity is checked and examined and similarity dissimilarity is examined. So this iterative process seems to be very lengthy and unable to give optimal output for the cluster and time taken to find the cluster. To overcome the drawback challenge, we are proposing a formula to find the clusters at the run time, so this approach can give us optimal results. The proposed approach uses the Euclidian distance formula as well melanosis to find the minimum distance between slots as technically we called clusters and the same approach we have also applied to Ant Colony Optimization(ACO) algorithm, which results in the production of two and multi-dimensional matrix.

Keywords: ant colony optimization, data clustering, centroids, data mining, k-means

Procedia PDF Downloads 129
15394 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack

Authors: Varun Agarwal

Abstract:

Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.

Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images

Procedia PDF Downloads 132
15393 Accessible Sustainability Assessment Tools and Approach of the University level Academic Programs

Authors: S. K. Ashiquer Rahman

Abstract:

The innovative knowledge threshold significantly shifted education from traditional to an online version which was an emergent state of arts for academic programs of any higher education institutions; the substantive situation thus raises the importance of deliberative integration of education, Knowledge, technology and sustainability as well as knowledge platforms, e.g., ePLANETe. In fact, the concept of 'ePLANETe' an innovative knowledge platform and its functionalities as an experimental digitized platform for contributing sustainable assessment of academic programs of higher education institution(HEI). Besides, this paper assessed and define the common sustainable development challenges of higher education(HE) and identified effective approach and tools of 'ePLANETe’ that is enable to practices sustainability assessment of academic programs through the deliberation methodologies. To investigate the effectiveness of knowledge tools and approach of 'ePLANETe’, I have studied sustainable challenges digitized pedagogical content as well as evaluation of academic programs of two public universities in France through the 'ePLANETe’ evaluation space. The investigation indicated that the effectiveness of 'ePLANETe’s tools and approach perfectly fit for the quality assessment of academic programs, implementation of sustainable challenges, and dynamic balance of ecosystem within the university communities and academic programs through 'ePLANETe’ evaluation process and space. The study suggests to the relevant higher educational institution’s authorities and policymakers could use this approach and tools for assessing sustainability and enhancing the sustainability competencies of academic programs for quality education

Keywords: ePLANETe, deliberation, evaluation, competencies

Procedia PDF Downloads 118
15392 Developing and Enacting a Model for Institutional Implementation of the Humanizing Pedagogy: Case Study of Nelson Mandela University

Authors: Mukhtar Raban

Abstract:

As part of Nelson Mandela University’s journey of repositioning its learning and teaching agenda, the university adopted and foregrounded a humanizing pedagogy-aligning with institutional goals of critically transforming the academic project. The university established the Humanizing Pedagogy Praxis and Research Niche (HPPRN) as a centralized hub for coordinating institutional work exploring and advancing humanizing pedagogies and tasked the unit with developing and enacting a model for humanizing pedagogy exploration. This investigation endeavored to report on the development and enactment of a model that sought to institutionalize a humanizing pedagogy at a South African university. Having followed a qualitative approach, the investigation presents the case study of Nelson Mandela University’s HPPRN and the model it subsequently established and enacted for the advancement towards a more common institutional understanding, interpretation and application of the humanizing pedagogy. The study adopted an interpretive lens for analysis, complementing the qualitative approach of the investigation. The primary challenge that confronted the HPPRN was the development of a ‘living model’ that had to complement existing institutional initiatives while accommodating a renewed spirit of critical reflection, innovation and research of continued and new humanizing pedagogical exploration and applications. The study found that the explicit consideration of tenets of humanizing and critical pedagogies in underpinning and framing the HPPRN Model contributed to the sense of ‘lived’ humanizing pedagogy experiences during enactment. The multi-leveled inclusion of critical reflection in the development and enactment stages was found to further the processes of praxis employed at the university, which is integral to the advancement of humanizing and critical pedagogies. The development and implementation of a model that seeks to institutionalize the humanizing pedagogy at a university rely not only on sound theoretical conceptualization but also on the ‘richness of becoming more human’ explicitly expressed and encountered in praxes and application.

Keywords: humanizing pedagogy, critical pedagogy, institutional implementation, praxis

Procedia PDF Downloads 169
15391 Using the Smith-Waterman Algorithm to Extract Features in the Classification of Obesity Status

Authors: Rosa Figueroa, Christopher Flores

Abstract:

Text categorization is the problem of assigning a new document to a set of predetermined categories, on the basis of a training set of free-text data that contains documents whose category membership is known. To train a classification model, it is necessary to extract characteristics in the form of tokens that facilitate the learning and classification process. In text categorization, the feature extraction process involves the use of word sequences also known as N-grams. In general, it is expected that documents belonging to the same category share similar features. The Smith-Waterman (SW) algorithm is a dynamic programming algorithm that performs a local sequence alignment in order to determine similar regions between two strings or protein sequences. This work explores the use of SW algorithm as an alternative to feature extraction in text categorization. The dataset used for this purpose, contains 2,610 annotated documents with the classes Obese/Non-Obese. This dataset was represented in a matrix form using the Bag of Word approach. The score selected to represent the occurrence of the tokens in each document was the term frequency-inverse document frequency (TF-IDF). In order to extract features for classification, four experiments were conducted: the first experiment used SW to extract features, the second one used unigrams (single word), the third one used bigrams (two word sequence) and the last experiment used a combination of unigrams and bigrams to extract features for classification. To test the effectiveness of the extracted feature set for the four experiments, a Support Vector Machine (SVM) classifier was tuned using 20% of the dataset. The remaining 80% of the dataset together with 5-Fold Cross Validation were used to evaluate and compare the performance of the four experiments of feature extraction. Results from the tuning process suggest that SW performs better than the N-gram based feature extraction. These results were confirmed by using the remaining 80% of the dataset, where SW performed the best (accuracy = 97.10%, weighted average F-measure = 97.07%). The second best was obtained by the combination of unigrams-bigrams (accuracy = 96.04, weighted average F-measure = 95.97) closely followed by the bigrams (accuracy = 94.56%, weighted average F-measure = 94.46%) and finally unigrams (accuracy = 92.96%, weighted average F-measure = 92.90%).

Keywords: comorbidities, machine learning, obesity, Smith-Waterman algorithm

Procedia PDF Downloads 299
15390 Off-Topic Text Detection System Using a Hybrid Model

Authors: Usama Shahid

Abstract:

Be it written documents, news columns, or students' essays, verifying the content can be a time-consuming task. Apart from the spelling and grammar mistakes, the proofreader is also supposed to verify whether the content included in the essay or document is relevant or not. The irrelevant content in any document or essay is referred to as off-topic text and in this paper, we will address the problem of off-topic text detection from a document using machine learning techniques. Our study aims to identify the off-topic content from a document using Echo state network model and we will also compare data with other models. The previous study uses Convolutional Neural Networks and TFIDF to detect off-topic text. We will rearrange the existing datasets and take new classifiers along with new word embeddings and implement them on existing and new datasets in order to compare the results with the previously existing CNN model.

Keywords: off topic, text detection, eco state network, machine learning

Procedia PDF Downloads 90
15389 Pitfalls and Drawbacks in Visual Modelling of Learning Knowledge by Students

Authors: Tatyana Gavrilova, Vadim Onufriev

Abstract:

Knowledge-based systems’ design requires the developer’s owning the advanced analytical skills. The efficient development of that skills within university courses needs a deep understanding of main pitfalls and drawbacks, which students usually make during their analytical work in form of visual modeling. Thus, it was necessary to hold an analysis of 5-th year students’ learning exercises within courses of 'Intelligent systems' and 'Knowledge engineering' in Saint-Petersburg Polytechnic University. The analysis shows that both lack of system thinking skills and methodological mistakes in course design cause the errors that are discussed in the paper. The conclusion contains an exploration of the issues and topics necessary and sufficient for the implementation of the improved practices in educational design for future curricula of teaching programs.

Keywords: knowledge based systems, knowledge engineering, students’ errors, visual modeling

Procedia PDF Downloads 311
15388 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations

Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso

Abstract:

Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.

Keywords: pipeline, leakage, detection, AI

Procedia PDF Downloads 194
15387 Economic Analysis of Interaction Freedom, Institutions and Development in the countries of North Africa: Amartya Sen Approach of Capability

Authors: Essardi Omar, Razzouk Redouane

Abstract:

The concept of freedom requires notice of countries all over the world to consider welfare and the quality of life. Despite, many economics efforts in the field of development literature, they have often failed to incorporate the ideas of freedom and rights into their theoretical and empirical work. However, with Amartya Sen’s approach of capability and researches, we can provide a basis for moving forward in theory and measure of development. Indeed, with an approach based on the correlation and the analysis of data, particularly on the tool of principle component analysis, we are going to study assessments of World Bank, Freedom House, Fraster institute, and MINEFE experts. Our empirical objective is to reveal the existence of the institutional and freedom characteristics related to the development of the emergent countries. In order to help us to explain the recent performance reached by Central and Eastern Europe and Latine America in compared with the case of countries of North Africa. To do this, first we will try to build indicators based on dilemma liberties /institutions. Second we will introduce institutional variables and freedom variables to make comparisons in freedom, quality of institutions and development in the countries observed.

Keywords: freedoms, institutions, development, approach of capability, principle component analysis

Procedia PDF Downloads 432
15386 Teaching Self-Advocacy Skills to Students With Learning Disabilities: The S.A.M.E. Program of Instruction

Authors: Dr. Rebecca Kimelman

Abstract:

Teaching students to self-advocate has become a central topic in special education literature and practice. However, many special education programs do not address this important skill area. To this end, I created and implemented the Self Advocacy Made Easy (S.A.M.E.) program of instruction, intended to enhance the self-advocacy skills of young adults with mild to moderate disabilities. The effectiveness of S.A.M.E., the degree to which self-advocacy skills were acquired and demonstrated by the students, the level of parental support, and the impact of culture on the process, and teachers’ beliefs and attitudes about the role of self-advocacy skills for their students were measured using action research that employed mixed methodology. Conducted at an overseas American International School, this action research study sought answers to these questions by providing an in-depth portrayal of the S.A.M.E. program, as well as the attitudes and perceptions of the stakeholders involved in the study (thirteen students, their parents, teachers and counsellors). The findings of this study were very positive. The S.A.M.E. program was found to be a valid and valuable instructional tool for teaching self-advocacy skills to students with learning disabilities and ADHD. The study showed participation in the S.A.M.E. program led to an increased understanding of the important elements of self-advocacy, an increase in students’ skills and abilities to self-advocate, and a positive increase in students’ feelings about themselves. Inclusion in the Student-Led IEP meetings, an authentic student assessment within the S.A.M.E. program, also yielded encouraging results, including a higher level of ownership of one’s profile and learning needs, a higher level of student engagement and participation in the IEP meeting, and a growing student awareness of the relevance of the document and the IEP process to their lives. Without exception, every parent believed that participating in the Student-Led IEP led to a growth in confidence in their children, including that it taught them how to ‘own’ their disability and an improvement in their communication skills. Teachers and counsellors that participated in the study felt the program was worthwhile, and led to an increase in the students’ ability to acknowledge their learning profile and to identify and request the accommodations (such as extended time or use of a calculator) they need to overcome or work around their disability. The implications for further research are many, and include an examination of the degree to which participation in S.A.M.E. fosters student achievement, the long-term effects of participation in the program, and the degree to which student participation in the Student-Led IEP meeting increases parents’ level of understanding and involvement.

Keywords: self-advocacy, learning disabilities, ADHD, student-led IEP process

Procedia PDF Downloads 56
15385 Mobile Collaboration Learning Technique on Students in Developing Nations

Authors: Amah Nnachi Lofty, Oyefeso Olufemi, Ibiam Udu Ama

Abstract:

New and more powerful communications technologies continue to emerge at a rapid pace and their uses in education are widespread and the impact remarkable in the developing societies. This study investigates Mobile Collaboration Learning Technique (MCLT) on learners’ outcome among students in tertiary institutions of developing nations (a case of Nigeria students). It examines the significance of retention achievement scores of students taught using mobile collaboration and conventional method. The sample consisted of 120 students using Stratified random sampling method. Three research questions and hypotheses were formulated, and tested at a 0.05 level of significance. A student achievement test (SAT) was made of 40 items of multiple-choice objective type, developed and validated for data collection by professionals. The SAT was administered to students as pre-test and post-test. The data were analyzed using t-test statistic to test the hypotheses. The result indicated that students taught using MCLT performed significantly better than their counterparts using the conventional method of instruction. Also, there was no significant difference in the post-test performance scores of male and female students taught using MCLT. Based on the findings, the following recommendations was made that: Mobile collaboration system be encouraged in the institutions to boost knowledge sharing among learners, workshop and trainings should be organized to train teachers on the use of this technique and that schools and government should formulate policies and procedures towards responsible use of MCLT.

Keywords: education, communication, learning, mobile collaboration, technology

Procedia PDF Downloads 223
15384 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification

Authors: Xiao Chen, Xiaoying Kong, Min Xu

Abstract:

This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.

Keywords: vehicle classification, signal processing, road traffic model, magnetic sensing

Procedia PDF Downloads 322
15383 An Investigation into the Views of Gifted Children on the Effects of Computer and Information Technologies on Their Lives and Education

Authors: Ahmet Kurnaz, Eyup Yurt, Ümit Çiftci

Abstract:

In this study, too, an attempt was made to reveal the place and effects of information technologies on the lives and education of gifted children based on the views of gifted. To this end, the effects of information technologies on gifted are general skills, technology use, academic and social skills, and cooperative and personal skills were investigated. These skills were explored depending on whether or not gifted had their own computers, had internet connection at home, or how often they use the internet, average time period they spent at the computer, how often they played computer games and their use of social media. The study was conducted using the screening model with a quantitative approach. The sample of the study consisted of 129 gifted attending 5-12th classes in 12 provinces in different regions of Turkey. 64 of the participants were female while 65 were male. The research data were collected using the using computer of gifted and information technologies (UCIT) questionnaire which was developed by the researchers and given its final form after receiving expert view. As a result of the study, it was found that UCIT use improved foreign language speaking skills of gifted, enabled them to get to know and understand different cultures, and made use of computer and information technologies while they study. At the end of the study these result were obtained: Gifted have positive idea using computer and communication technology. There are differences whether using the internet about the ideas UCIT. But there are not differences whether having computer, inhabited city, grade level, having internet at home, daily and weekly internet usage durations, playing the computer and internet game, having Facebook and Twitter account about the UCIT. UCIT contribute to the development of gifted vocabulary, allows knowing and understand different cultures, developing foreign language speaking skills, gifted do not give up computer when they do their homework, improve their reading, listening, understanding and writing skills in a foreign language. Gifted children want to have transition to the use of tablets in education. They think UCIT facilitates doing their homework, contributes learning more information in a shorter time. They'd like to use computer-assisted instruction programs at courses. They think they will be more successful in the future if their computer skills are good. But gifted students prefer teacher instead of teaching with computers and they said that learning can be run from home without going to school.

Keywords: gifted, using computer, communication technology, information technologies

Procedia PDF Downloads 391
15382 Analyzing the Perception of Social Networking Sites as a Learning Tool among University Students: Case Study of a Business School in India

Authors: Bhaskar Basu

Abstract:

Universities and higher education institutes are finding it increasingly difficult to engage students fruitfully through traditional pedagogic tools. Web 2.0 technologies comprising social networking sites (SNSs) offer a platform for students to collaborate and share information, thereby enhancing their learning experience. Despite the potential and reach of SNSs, its use has been limited in academic settings promoting higher education. The purpose of this paper is to assess the perception of social networking sites among business school students in India and analyze its role in enhancing quality of student experiences in a business school leading to the proposal of an agenda for future research. In this study, more than 300 students of a reputed business school were involved in a survey of their preferences of different social networking sites and their perceptions and attitudes towards these sites. A questionnaire with three major sections was designed, validated and distributed among  a sample of students, the research method being descriptive in nature. Crucial questions were addressed to the students concerning time commitment, reasons for usage, nature of interaction on these sites, and the propensity to share information leading to direct and indirect modes of learning. It was further supplemented with focus group discussion to analyze the findings. The paper notes the resistance in the adoption of new technology by a section of business school faculty, who are staunch supporters of the classical “face-to-face” instruction. In conclusion, social networking sites like Facebook and LinkedIn provide new avenues for students to express themselves and to interact with one another. Universities could take advantage of the new ways  in which students are communicating with one another. Although interactive educational options such as Moodle exist, social networking sites are rarely used for academic purposes. Using this medium opens new ways of academically-oriented interactions where faculty could discover more about students' interests, and students, in turn, might express and develop more intellectual facets of their lives. hitherto unknown intellectual facets.  This study also throws up the enormous potential of mobile phones as a tool for “blended learning” in business schools going forward.

Keywords: business school, India, learning, social media, social networking, university

Procedia PDF Downloads 266
15381 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis

Authors: C. B. Le, V. N. Pham

Abstract:

In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.

Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering

Procedia PDF Downloads 192
15380 The Sociological and Legal Study of Sexual Assault in Nigeria

Authors: Adeshina Francis Akindutre, Adebolarin Adekanle

Abstract:

Sexual assault is often considered as the most extreme form of violence that degrades and humiliates women in society. It is a widespread public health and psychological problem in Nigeria. Criminologically, sexual assaults have been considered as one of the several violent crimes targeted specifically at women and perpetrated by men. This paper attempts to examine the types of sexual assaults in Nigeria, the strategies used by the offenders, the causes, the psychological effects on the victims and the possible solutions of sexual assaults. This work also, examines the law prohibiting sexual assault in Nigeria. The authors made use of three theories: the victim precipitation approach, the feminist approach, and the psychological approach which explain why sexual assault takes place in society. Finally, it takes the Stockholm Syndrome into consideration (the treatment of victims).

Keywords: feminist, victims, offenders, psychological, sexual assault, Stockholm Syndrome

Procedia PDF Downloads 562
15379 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain

Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA

Abstract:

In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.

Keywords: BER, DWT, extreme leaning machine (ELM), PSNR

Procedia PDF Downloads 313
15378 Spectral Anomaly Detection and Clustering in Radiological Search

Authors: Thomas L. McCullough, John D. Hague, Marylesa M. Howard, Matthew K. Kiser, Michael A. Mazur, Lance K. McLean, Johanna L. Turk

Abstract:

Radiological search and mapping depends on the successful recognition of anomalies in large data sets which contain varied and dynamic backgrounds. We present a new algorithmic approach for real-time anomaly detection which is resistant to common detector imperfections, avoids the limitations of a source template library and provides immediate, and easily interpretable, user feedback. This algorithm is based on a continuous wavelet transform for variance reduction and evaluates the deviation between a foreground measurement and a local background expectation using methods from linear algebra. We also present a technique for recognizing and visualizing spectrally similar clusters of data. This technique uses Laplacian Eigenmap Manifold Learning to perform dimensional reduction which preserves the geometric "closeness" of the data while maintaining sensitivity to outlying data. We illustrate the utility of both techniques on real-world data sets.

Keywords: radiological search, radiological mapping, radioactivity, radiation protection

Procedia PDF Downloads 698
15377 A Study of Faculty Development Programs in India to Assist Pedagogy and Curriculum Development

Authors: Chhavi Rana, Sanjay K Jain

Abstract:

All sides of every education debate agree that quality learning happens when knowledgeable, caring teachers use sound pedagogy. Many deliberations of pedagogy make the fault of considering it as principally being about teaching. There has been lot of research about how to build a positive climate for learning, improve student curiosity, and enhance classroom association. However, these things can only be facilitated when teachers are equipped with better teaching techniques that use sound and accurate pedagogy. Pedagogy is the science and art of education. Its aims range from the full development of the human being to skills acquisition. In India, a project named Mission 10 x has been started by an esteemed IT Corporation Wipro as a faculty development programme (FDP) that particularly focus on elements that facilitated teachers in developing curriculum and new pedagogies that can lead to improvement in student engagement. This paper presents a study of these FDPs and examines (1) the parameters that help teachers in building new pedagogies (2) the extent to which appropriate usage of pedagogy is improved after the conduct of Mission 10 x FDPs, and (3) whether institutions differ in terms of their ability to convert usage of improved pedagogy into academic performance via these FDPs. The sample consisted of 2,236 students at 6 four-year engineering colleges and universities that completed several FDPs during 2012-2014. Many measures of usage of better pedagogy were linked positively with such FDPs, although some of the relationships were weak in strength. The results suggest that the usage of pedagogy were more benefited after conducting these FDPs and application of novel approaches in conducting classes.

Keywords: student engagement, critical thinking; achievement, student learning, pedagogy

Procedia PDF Downloads 422
15376 Design and Construction of a Home-Based, Patient-Led, Therapeutic, Post-Stroke Recovery System Using Iterative Learning Control

Authors: Marco Frieslaar, Bing Chu, Eric Rogers

Abstract:

Stroke is a devastating illness that is the second biggest cause of death in the world (after heart disease). Where it does not kill, it leaves survivors with debilitating sensory and physical impairments that not only seriously harm their quality of life, but also cause a high incidence of severe depression. It is widely accepted that early intervention is essential for recovery, but current rehabilitation techniques largely favor hospital-based therapies which have restricted access, expensive and specialist equipment and tend to side-step the emotional challenges. In addition, there is insufficient funding available to provide the long-term assistance that is required. As a consequence, recovery rates are poor. The relatively unexplored solution is to develop therapies that can be harnessed in the home and are formulated from technologies that already exist in everyday life. This would empower individuals to take control of their own improvement and provide choice in terms of when and where they feel best able to undertake their own healing. This research seeks to identify how effective post-stroke, rehabilitation therapy can be applied to upper limb mobility, within the physical context of a home rather than a hospital. This is being achieved through the design and construction of an automation scheme, based on iterative learning control and the Riener muscle model, that has the ability to adapt to the user and react to their level of fatigue and provide tangible physical recovery. It utilizes a SMART Phone and laptop to construct an iterative learning control (ILC) system, that monitors upper arm movement in three dimensions, as a series of exercises are undertaken. The equipment generates functional electrical stimulation to assist in muscle activation and thus improve directional accuracy. In addition, it monitors speed, accuracy, areas of motion weakness and similar parameters to create a performance index that can be compared over time and extrapolated to establish an independent and objective assessment scheme, plus an approximate estimation of predicted final outcome. To further extend its assessment capabilities, nerve conduction velocity readings are taken by the software, between the shoulder and hand muscles. This is utilized to measure the speed of response of neuron signal transfer along the arm and over time, an online indication of regeneration levels can be obtained. This will prove whether or not sufficient training intensity is being achieved even before perceivable movement dexterity is observed. The device also provides the option to connect to other users, via the internet, so that the patient can avoid feelings of isolation and can undertake movement exercises together with others in a similar position. This should create benefits not only for the encouragement of rehabilitation participation, but also an emotional support network potential. It is intended that this approach will extend the availability of stroke recovery options, enable ease of access at a low cost, reduce susceptibility to depression and through these endeavors, enhance the overall recovery success rate.

Keywords: home-based therapy, iterative learning control, Riener muscle model, SMART phone, stroke rehabilitation

Procedia PDF Downloads 266
15375 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem

Authors: Brandon Foggo, Nanpeng Yu

Abstract:

Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.

Keywords: distribution network, machine learning, network topology, phase identification, smart grid

Procedia PDF Downloads 303
15374 Face Recognition Using Body-Worn Camera: Dataset and Baseline Algorithms

Authors: Ali Almadan, Anoop Krishnan, Ajita Rattani

Abstract:

Facial recognition is a widely adopted technology in surveillance, border control, healthcare, banking services, and lately, in mobile user authentication with Apple introducing “Face ID” moniker with iPhone X. A lot of research has been conducted in the area of face recognition on datasets captured by surveillance cameras, DSLR, and mobile devices. Recently, face recognition technology has also been deployed on body-worn cameras to keep officers safe, enabling situational awareness and providing evidence for trial. However, limited academic research has been conducted on this topic so far, without the availability of any publicly available datasets with a sufficient sample size. This paper aims to advance research in the area of face recognition using body-worn cameras. To this aim, the contribution of this work is two-fold: (1) collection of a dataset consisting of a total of 136,939 facial images of 102 subjects captured using body-worn cameras in in-door and daylight conditions and (2) evaluation of various deep-learning architectures for face identification on the collected dataset. Experimental results suggest a maximum True Positive Rate(TPR) of 99.86% at False Positive Rate(FPR) of 0.000 obtained by SphereFace based deep learning architecture in daylight condition. The collected dataset and the baseline algorithms will promote further research and development. A downloadable link of the dataset and the algorithms is available by contacting the authors.

Keywords: face recognition, body-worn cameras, deep learning, person identification

Procedia PDF Downloads 168
15373 Python Implementation for S1000D Applicability Depended Processing Model - SALERNO

Authors: Theresia El Khoury, Georges Badr, Amir Hajjam El Hassani, Stéphane N’Guyen Van Ky

Abstract:

The widespread adoption of machine learning and artificial intelligence across different domains can be attributed to the digitization of data over several decades, resulting in vast amounts of data, types, and structures. Thus, data processing and preparation turn out to be a crucial stage. However, applying these techniques to S1000D standard-based data poses a challenge due to its complexity and the need to preserve logical information. This paper describes SALERNO, an S1000d AppLicability dEpended pRocessiNg mOdel. This python-based model analyzes and converts the XML S1000D-based files into an easier data format that can be used in machine learning techniques while preserving the different logic and relationships in files. The model parses the files in the given folder, filters them, and extracts the required information to be saved in appropriate data frames and Excel sheets. Its main idea is to group the extracted information by applicability. In addition, it extracts the full text by replacing internal and external references while maintaining the relationships between files, as well as the necessary requirements. The resulting files can then be saved in databases and used in different models. Documents in both English and French languages were tested, and special characters were decoded. Updates on the technical manuals were taken into consideration as well. The model was tested on different versions of the S1000D, and the results demonstrated its ability to effectively handle the applicability, requirements, references, and relationships across all files and on different levels.

Keywords: aeronautics, big data, data processing, machine learning, S1000D

Procedia PDF Downloads 163
15372 Pomegranates Attenuates Cognitive and Behavioural Deficts and reduces inflammation in a Transgenic Mice Model of Alzheimer's Disease

Authors: M. M. Essa, S. Subash, M. Akbar, S. Al-Adawi, A. Al-Asmi, G. J. Guillemein

Abstract:

Objective: Transgenic (tg) mice which contain an amyloid precursor protein (APP) gene mutation, develop extracellular amyloid beta (Aβ) deposition in the brain, and severe memory and behavioural deficits with age. These mice serve as an important animal model for testing the efficacy of novel drug candidates for the treatment and management of symptoms of Alzheimer's disease (AD). Several reports have suggested that oxidative stress is the underlying cause of Aβ neurotoxicity in AD. Pomegranates contain very high levels of antioxidants and several medicinal properties that may be useful for improving the quality of life in AD patients. In this study, we investigated the effect of dietary supplementation of Omani pomegranate extract on the memory, anxiety and learning skills along with inflammation in an AD mouse model containing the double Swedish APP mutation (APPsw/Tg2576). Methods: The experimental groups of APP-transgenic mice from the age of 4 months were fed custom-mix diets (pellets) containing 4% pomegranate. We assessed spatial memory and learning ability, psychomotor coordination, and anxiety-related behavior in Tg and wild-type mice at the age of 4-5 months and 18-19 months using the Morris water maze test, rota rod test, elevated plus maze test, and open field test. Further, inflammatory parameters also analysed. Results: APPsw/Tg2576 mice that were fed a standard chow diet without pomegranates showed significant memory deficits, increased anxiety-related behavior, and severe impairment in spatial learning ability, position discrimination learning ability and motor coordination along with increased inflammation compared to the wild type mice on the same diet, at the age of 18-19 months In contrast, APPsw/Tg2576 mice that were fed a diet containing 4% pomegranates showed a significant improvements in memory, learning, locomotor function, and anxiety with reduced inflammatory markers compared to APPsw/Tg2576 mice fed the standard chow diet. Conclusion: Our results suggest that dietary supplementation with pomegranates may slow the progression of cognitive and behavioural impairments in AD. The exact mechanism is still unclear and further extensive research needed.

Keywords: Alzheimer's disease, pomegranates, oman, cognitive decline, memory loss, anxiety, inflammation

Procedia PDF Downloads 531
15371 Recruitment Strategies and Migration Regulations for International Students in the United States and Canada: A Comparative Study

Authors: Aynur Charkasova

Abstract:

The scientific and economic contributions of international students cannot be underestimated. International education continues to be a competitive global industry, and many countries are seeking to recruit the best and the brightest to reinforce scientific innovations, boost intercultural learning, and bring more funding to universities and colleges. Substantial changes in international educational policies and migration regulations have been made in the hopes of recruiting global talent. This paper explores and compares recruitment strategies, employment opportunities, and a legal path to permanent residency policies related to international students in the United States of America and Canada. This study will utilize the legal information available from the government websites of both countries and peer-reviewed scholarly articles and will highlight which approach promises a better path in recruiting and retention of international students. The findings from the study will be discussed and recommendations will be provided.

Keywords: International students, current immigration policies, STEM, employability, visa reforms for international students, Canadian recruitment policy

Procedia PDF Downloads 78
15370 Learning Outcomes Alignment across Engineering Core Courses

Authors: A. Bouabid, B. Bielenberg, S. Ainane, N. Pasha

Abstract:

In this paper, a team of faculty members of the Petroleum Institute in Abu Dhabi, UAE representing six different courses across General Engineering (ENGR), Communication (COMM), and Design (STPS) worked together to establish a clear developmental progression of learning outcomes and performance indicators for targeted knowledge, areas of competency, and skills for the first three semesters of the Bachelor of Sciences in Engineering curriculum. The sequences of courses studied in this project were ENGR/COMM, COMM/STPS, and ENGR/STPS. For each course’s nine areas of knowledge, competency, and skills, the research team reviewed the existing learning outcomes and related performance indicators with a focus on identifying linkages across disciplines as well as within the courses of a discipline. The team reviewed existing performance indicators for developmental progression from semester to semester for same discipline related courses (vertical alignment) and for different discipline courses within the same semester (horizontal alignment). The results of this work have led to recommendations for modifications of the initial indicators when incoherence was identified, and/or for new indicators based on best practices (identified through literature searches) when gaps were identified. It also led to recommendations for modifications of the level of emphasis within each course to ensure developmental progression. The exercise has led to a revised Sequence Performance Indicator Mapping for the knowledge, skills, and competencies across the six core courses.

Keywords: curriculum alignment, horizontal and vertical progression, performance indicators, skill level

Procedia PDF Downloads 224
15369 Balance Rigor, Relevance and Socio-Emotional Learning in Math

Authors: Abimbola Akintounde

Abstract:

Supporting the social and emotional needs of young adolescents has become an emergent concern for schools around the world. Yet educators remain in a dilemma regarding the optimum approach for integrating social and emotional learning (SEL) into their content area instruction. The purpose of this study was to explore the perception of secondary students regarding their schoolwide SEL interventions. Twenty-four International Baccalaureate students in a final year mathematics course at an American Public Secondary School near Washington D. C. were randomly selected for participation in this study via an online electronic survey. The participants in this study used Likert-scale items to rate the effectiveness of the socio-emotional and character development programs being implemented at their schools. Respondents also ranked their preferred mode of delivery of social and emotional support programs. About 71% of the teenagers surveyed preferred SEL support rendered via interactive team-building activities and games, 42% of the high school students in the study ranked focus group discussions as their preferred format for SEL interventions, while only 13% of the respondents in the study regarded lectures and presentations as their preferred mode of SEL delivery. About one-fourth of the study participants agreed that explicit instruction was critical to enhancing students’ wellness, 79% agreed that SEL programs should foster less teacher talk, while 88% of the students indicated that student engagement was critical to their mental health. Eighty percent of the teenagers surveyed decried that the focus of their school-wide social and emotional programs was poorly prioritized. About two-thirds of the students agreed that social justice and equity issues should be embedded in their schools’ advisory programs. More than half of the respondents agitated for strategies for managing stress and their school workload. About 54% of the respondents also clamored for SEL programs that reinforce emotion regulation and coping strategies for anxiety. Based on the findings of this study, recommendations were proffered for best practices in the design and implementation of effective learner-friendly social and emotional development interventions.

Keywords: SEL, math anxiety, student support, emotion regulation, social awareness, self awareness, self management, relationship building

Procedia PDF Downloads 74