Search results for: device integration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4484

Search results for: device integration

704 Hot Carrier Photocurrent as a Candidate for an Intrinsic Loss in a Single Junction Solar Cell

Authors: Jonas Gradauskas, Oleksandr Masalskyi, Ihor Zharchenko

Abstract:

The advancement in improving the efficiency of conventional solar cells toward the Shockley-Queisser limit seems to be slowing down or reaching a point of saturation. The challenges hindering the reduction of this efficiency gap can be categorized into extrinsic and intrinsic losses, with the former being theoretically avoidable. Among the five intrinsic losses, two — the below-Eg loss (resulting from non-absorption of photons with energy below the semiconductor bandgap) and thermalization loss —contribute to approximately 55% of the overall lost fraction of solar radiation at energy bandgap values corresponding to silicon and gallium arsenide. Efforts to minimize the disparity between theoretically predicted and experimentally achieved efficiencies in solar cells necessitate the integration of innovative physical concepts. Hot carriers (HC) present a contemporary approach to addressing this challenge. The significance of hot carriers in photovoltaics is not fully understood. Although their excessive energy is thought to indirectly impact a cell's performance through thermalization loss — where the excess energy heats the lattice, leading to efficiency loss — evidence suggests the presence of hot carriers in solar cells. Despite their exceptionally brief lifespan, tangible benefits arise from their existence. The study highlights direct experimental evidence of hot carrier effect induced by both below- and above-bandgap radiation in a singlejunction solar cell. Photocurrent flowing across silicon and GaAs p-n junctions is analyzed. The photoresponse consists, on the whole, of three components caused by electron-hole pair generation, hot carriers, and lattice heating. The last two components counteract the conventional electron-hole generation-caused current required for successful solar cell operation. Also, a model of the temperature coefficient of the voltage change of the current–voltage characteristic is used to obtain the hot carrier temperature. The distribution of cold and hot carriers is analyzed with regard to the potential barrier height of the p-n junction. These discoveries contribute to a better understanding of hot carrier phenomena in photovoltaic devices and are likely to prompt a reevaluation of intrinsic losses in solar cells.

Keywords: solar cell, hot carriers, intrinsic losses, efficiency, photocurrent

Procedia PDF Downloads 65
703 Project-Based Learning and Evidence Based Nursing as Tools for Developing Students' Integrative Critical Thinking Skills: Content Analysis of Final Students' Projects

Authors: E. Maoz

Abstract:

Background: As a teaching method, project-based learning is strongly linked to developing students’ critical thinking skills. It combines creative independent thinking, team work, and disciplinary subject-field integration. In the 'Introduction to Nursing Research Methods' course (year 3, Generic Track), project based learning is used to teach the topic of 'Evidence-Based Nursing'. This topic examines a clinical care issue encountered by students in the field. At the end of their project, students present proposals for managing the said issue. Proposals are the product of independent integrative thinking integrating a wide range of factors influencing the issue’s management. Method: Papers by 27 groups of students (165 students) were content analyzed to identify which themes emerged from the students' recommendations for managing the clinical issue. Findings: Five main themes emerged—current management approach; adapting procedures in line with current recent research recommendations; training for change (veteran nursing staff, beginner students, patients, significant others); analysis of 'economic benefit vs. patient benefit'; multidisciplinary team engagement in implementing change in practice. Two surprising themes also emerged: advertising and marketing using new technologies, which reflects how the new generation thinks. Summary and Recommendations: Among the main challenges in nursing education is training nursing graduates to think independently, integratively, and critically. Combining PBL with classical teaching methods stimulates students cognitively while opening new vistas with implications on all levels of the profession: management, research, education, and practice. Advanced students can successfully grasp and interpret the current state of clinical practice. They are competent and open to leading change and able to consider the diverse factors and interconnections that characterize the nurse's work.

Keywords: evidence based nursing, critical thinking skills, project based learning, students education

Procedia PDF Downloads 91
702 Interoception and Its Role in Connecting Empathy, Bodily Perception and Conceptual Representations: A Cross-Cultural Online Study

Authors: Fabio Marson, Revital Naor-Ziv, Patrizio Paoletti, Joseph Glicksohn, Filippo Carducci, Tal Dotan Ben-Soussan

Abstract:

According to embodied cognition theories, higher-order cognitive functions and complex behaviors seems to be affected by bodily states. For example, the polyvagal theory suggests that the human autonomic nervous system evolved to support social interactions. Accordingly, integration and perception of information related to the physiological state arising from the peripherical nervous system (i.e., interoception) play a role in the regulation of social interaction by modulating emotional responses and prosocial behaviors. Moreover, recent studies showed that interoception is involved in the representations of conceptual knowledge, suggesting that the bodily information carried by the interoceptive system provides a perceptual basis for the embodiment of abstract concepts, especially those related to social and emotional domains. However, to the best of our knowledge, no studies explored the relationship between interoception, prosocial behaviors, and conceptual representations. Considering the privileged position of interoception in mediating higher-order cognition and social interaction, we designed a cross-cultural study to explore the relationship between interoception, the sensitivity of bodily functions, and empathy. We recruited Italian, English, and Hebrew participants, and we asked them to fill in a questionnaire about empathy (Empathy Quotient), a questionnaire about bodily perception (Body Perception Questionnaire), and to rate different concrete and abstract concepts for the extent such concepts can be experienced through vision, hearing, taste, smell, touch, and interoception. We observed that in all languages, interoception ratings for abstract concepts were greater than for concrete concepts. Importantly, interoception ratings for abstract concepts were positively correlated with empathy and sensitivity of bodily functions. Our results suggest that participants with higher empathy and sensitivity of bodily functions show also a greater embodiment of abstract concepts in interoception, providing further evidence for the importance of the interoceptive system in regulating prosocial behaviors and integrating conceptual representations.

Keywords: conceptual representations, embodiment, empathy, empathy quotient, interoception, prosocial behaviors

Procedia PDF Downloads 166
701 The Medieval Byzantine Churches at Trebizond (Trabzon): Promotion of Local Awareness and Conservation through Interpretation and Presentation

Authors: Esra Ceren Kara, Ufuk Seri̇n

Abstract:

The Byzantine Empire, which persisted from the 4th to 15th centuries, covered a significant period in history and bequeathed a significant cultural heritage throughout its territories, including Turkey. However, despite its historical and cultural importance, the approach of the political authorities, which emphasizes the Seljuk and Ottoman heritage, to Byzantium in Turkey is reluctant and problematic. Byzantine history and culture have long been neglected and attained negative connotations. This has led to a lack of awareness and understanding of Byzantine heritage among the public and inadequate conservation efforts. This research aims to address this problem by proposing a reinterpretation and presentation of Byzantine heritage in Turkey that emphasizes its cultural value and presents it to the public as a part of a common cultural heritage in order to accomplish effective conservation, raise awareness and provide a better understanding of the Byzantium. In this article, the ways to interpret, present and integrate the Medieval Byzantine heritage into today’s world are analyzed through the selected case study of Trebizond (Trabzon) with a holistic approach by putting emphasis on the Byzantine religious edifices, churches, chapels and monasteries. Although the vestiges of this period are still intact and in use today, their past is unknown to many of their users. This situation is even more evident in the case of the converted churches, which are now used as mosques or mosque-museums. In the city center of Trebizond, 9 out of 12 religious edifices that are still in use were built during the Medieval Byzantine period and converted into mosques under Ottoman and Turkish rule. Currently, these monuments serve as mosques and mosque-museums. However, with the exception of Hagia Sophia and Girls Monastery, their Byzantine past is obscure to many locals. Thus, the promotion of local awareness and conservation of the Medieval Byzantine heritage in the city is required. With this premise, this research will investigate the values and opportunities offered by the Byzantine cultural heritage in Trebizond and the threats to its conservation, and it will offer proposals for a more effective interpretation and presentation so as to foster local awareness and integration of the Medieval Byzantine heritage.

Keywords: Byzantium/Byzantine, Trebizond, cultural heritage, interpretation and presentation, conservation, religious architecture, converted churches interpretation and presentation

Procedia PDF Downloads 78
700 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration

Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger

Abstract:

Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.

Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration

Procedia PDF Downloads 48
699 Effects of Ubiquitous 360° Learning Environment on Clinical Histotechnology Competence

Authors: Mari A. Virtanen, Elina Haavisto, Eeva Liikanen, Maria Kääriäinen

Abstract:

Rapid technological development and digitalization has affected also on higher education. During last twenty years multiple of electronic and mobile learning (e-learning, m-learning) platforms have been developed and have become prevalent in many universities and in the all fields of education. Ubiquitous learning (u-learning) is not that widely known or used. Ubiquitous learning environments (ULE) are the new era of computer-assisted learning. They are based on ubiquitous technology and computing that fuses the learner seamlessly into learning process by using sensing technology as tags, badges or barcodes and smart devices like smartphones and tablets. ULE combines real-life learning situations into virtual aspects and can be flexible used in anytime and anyplace. The aim of this study was to assess the effects of ubiquitous 360 o learning environment on higher education students’ clinical histotechnology competence. A quasi-experimental study design was used. 57 students in biomedical laboratory science degree program was assigned voluntarily to experiment (n=29) and to control group (n=28). Experimental group studied via ubiquitous 360o learning environment and control group via traditional web-based learning environment (WLE) in a 8-week educational intervention. Ubiquitous 360o learning environment (ULE) combined authentic learning environment (histotechnology laboratory), digital environment (virtual laboratory), virtual microscope, multimedia learning content, interactive communication tools, electronic library and quick response barcodes placed into authentic laboratory. Web-based learning environment contained equal content and components with the exception of the use of mobile device, interactive communication tools and quick response barcodes. Competence of clinical histotechnology was assessed by using knowledge test and self-report developed for this study. Data was collected electronically before and after clinical histotechnology course and analysed by using descriptive statistics. Differences among groups were identified by using Wilcoxon test and differences between groups by using Mann-Whitney U-test. Statistically significant differences among groups were identified in both groups (p<0.001). Competence scores in post-test were higher in both groups, than in pre-test. Differences between groups were very small and not statistically significant. In this study the learning environment have developed based on 360o technology and successfully implemented into higher education context. And students’ competence increases when ubiquitous learning environment were used. In the future, ULE can be used as a learning management system for any learning situation in health sciences. More studies are needed to show differences between ULE and WLE.

Keywords: competence, higher education, histotechnology, ubiquitous learning, u-learning, 360o

Procedia PDF Downloads 286
698 Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks

Authors: Mehrdad Shafiei Dizaji, Hoda Azari

Abstract:

The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models.

Keywords: physics-informed neural networks, deep learning, ground-penetrating radar (GPR), NDE, ConvLSTM, physics, data driven

Procedia PDF Downloads 40
697 Understanding Knowledge, Skills and Competency Needs in Digital Health for Current and Future Health Workforce

Authors: Sisira Edirippulige

Abstract:

Background: Digital health education and training (DHET) is imperative for preparing current and future clinicians to work competently in digitally enabled environments. Despite rapid integration of digital health in modern health services, systematic education and training opportunities for health workers is still lacking. Objectives: This study aimed to investigate healthcare professionals’ perspectives and expectations regarding the knowledge, skills and competency needs in digital health for current and future healthcare workforce. Methods: A qualitative study design with semi-structured individual interviews was employed. A purposive sample method was adopted to collect relevant information from the health workers. Inductive thematic analysis was used to analyse data. Interviews were audio-recorded and transcribed verbatim. Consolidated Criteria for Reporting Qualitative Research (COREQ) was followed when we reported this study. Results: Two themes emerged while analysing the data: (1) what to teach in DHET and (2) how to teach DHET. Overall, healthcare professionals agreed that DHET is important for preparing current and future clinicians for working competently in digitally enabled environments. Knowledge relating to what is digital health, types of digital health, use of technology and human factors in digital health were considered as important to be taught in DHET. Skills relating to digital health consultations, clinical information system management and remote monitoring were considered important to be taught. Blended learning which combined e-learning and classroom-based teaching, simulation sessions and clinical rotations were suggested by healthcare professionals as optimal approaches to deliver the above-mentioned content. Conclusions: This study is the first of its kind to investigate health professionals’ perspectives and expectations relating to the knowledge, skills and competency needs in digital health for current and future healthcare workforce. Healthcare workers are keen to acquire relevant knowledge, skills and competencies related to digital health. Different modes of education delivery is of interest to fit in with busy schedule of health workers.

Keywords: digital health, telehealth, telemedicine, education, curriculum

Procedia PDF Downloads 149
696 Poly(ε-caprolactone)/Halloysite Nanotube Nanocomposites Scaffolds for Tissue Engineering

Authors: Z. Terzopoulou, I. Koliakou, D. Bikiaris

Abstract:

Tissue engineering offers a new approach to regenerate diseased or damaged tissues such as bone. Great effort is devoted to eliminating the need of removing non-degradable implants at the end of their life span, with biodegradable polymers playing a major part. Poly(ε-caprolactone) (PCL) is one of the best candidates for this purpose due to its high permeability, good biodegradability and exceptional biocompatibility, which has stimulated extensive research into its potential application in the biomedical fields. However, PCL degrades much slower than other known biodegradable polymers and has a total degradation of 2-4 years depending on the initial molecular weight of the device. This is due to its relatively hydrophobic character and high crystallinity. Consequently, much attention has been given to the tunable degradation of PCL to meet the diverse requirements of biomedicine. Poly(ε-caprolactone) (PCL) is a biodegradable polyester that lacks bioactivity, so when used in bone tissue engineering, new bone tissue cannot bond tightly on the polymeric surface. Therefore, it is important to incorporate reinforcing fillers into PCL matrix in order to result in a promising combination of bioactivity, biodegradability, and strength. Natural clay halloysite nanotubes (HNTs) were incorporated into PCL polymeric matrix, via in situ ring-opening polymerization of caprolactone, in concentrations 0.5, 1 and 2.5 wt%. Both unmodified and modified with aminopropyltrimethoxysilane (APTES) HNTs were used in this study. The effect of nanofiller concentration and functionalization with end-amino groups on the physicochemical properties of the prepared nanocomposites was studied. Mechanical properties were found enhanced after the incorporation of nanofillers, while the modification increased further the values of tensile and impact strength. Thermal stability of PCL was not affected by the presence of nanofillers, while the crystallization rate that was studied by Differential Scanning Calorimetry (DSC) and Polarized Light Optical Microscopy (POM) increased. All materials were subjected to enzymatic hydrolysis in phosphate buffer in the presence of lipases. Due to the hydrophilic nature of HNTs, the biodegradation rate of nanocomposites was higher compared to neat PCL. In order to confirm the effect of hydrophilicity, contact angle measurements were also performed. In vitro biomineralization test confirmed that all samples were bioactive as mineral deposits were detected by X-ray diffractometry after incubation in SBF. All scaffolds were tested in relevant cell culture using osteoblast-like cells (MG-63) to demonstrate their biocompatibility

Keywords: biomaterials, nanocomposites, scaffolds, tissue engineering

Procedia PDF Downloads 316
695 Interaction Between Task Complexity and Collaborative Learning on Virtual Patient Design: The Effects on Students’ Performance, Cognitive Load, and Task Time

Authors: Fatemeh Jannesarvatan, Ghazaal Parastooei, Jimmy frerejan, Saedeh Mokhtari, Peter Van Rosmalen

Abstract:

Medical and dental education increasingly emphasizes the acquisition, integration, and coordination of complex knowledge, skills, and attitudes that can be applied in practical situations. Instructional design approaches have focused on using real-life tasks in order to facilitate complex learning in both real and simulated environments. The Four component instructional design (4C/ID) model has become a useful guideline for designing instructional materials that improve learning transfer, especially in health profession education. The objective of this study was to apply the 4C/ID model in the creation of virtual patients (VPs) that dental students can use to practice their clinical management and clinical reasoning skills. The study first explored the context and concept of complication factors and common errors for novices and how they can affect the design of a virtual patient program. The study then selected key dental information and considered the content needs of dental students. The design of virtual patients was based on the 4C/ID model's fundamental principles, which included: Designing learning tasks that reflect real patient scenarios and applying different levels of task complexity to challenge students to apply their knowledge and skills in different contexts. Creating varied learning materials that support students during the VP program and are closely integrated with the learning tasks and students' curricula. Cognitive feedback was provided at different levels of the program. Providing procedural information where students followed a step-by-step process from history taking to writing a comprehensive treatment plan. Four virtual patients were designed using the 4C/ID model's principles, and an experimental design was used to test the effectiveness of the principles in achieving the intended educational outcomes. The 4C/ID model provides an effective framework for designing engaging and successful virtual patients that support the transfer of knowledge and skills for dental students. However, there are some challenges and pitfalls that instructional designers should take into account when developing these educational tools.

Keywords: 4C/ID model, virtual patients, education, dental, instructional design

Procedia PDF Downloads 80
694 Coupling of Microfluidic Droplet Systems with ESI-MS Detection for Reaction Optimization

Authors: Julia R. Beulig, Stefan Ohla, Detlev Belder

Abstract:

In contrast to off-line analytical methods, lab-on-a-chip technology delivers direct information about the observed reaction. Therefore, microfluidic devices make an important scientific contribution, e.g. in the field of synthetic chemistry. Herein, the rapid generation of analytical data can be applied for the optimization of chemical reactions. These microfluidic devices enable a fast change of reaction conditions as well as a resource saving method of operation. In the presented work, we focus on the investigation of multiphase regimes, more specifically on a biphasic microfluidic droplet systems. Here, every single droplet is a reaction container with customized conditions. The biggest challenge is the rapid qualitative and quantitative readout of information as most detection techniques for droplet systems are non-specific, time-consuming or too slow. An exception is the electrospray mass spectrometry (ESI-MS). The combination of a reaction screening platform with a rapid and specific detection method is an important step in droplet-based microfluidics. In this work, we present a novel approach for synthesis optimization on the nanoliter scale with direct ESI-MS detection. The development of a droplet-based microfluidic device, which enables the modification of different parameters while simultaneously monitoring the effect on the reaction within a single run, is shown. By common soft- and photolithographic techniques a polydimethylsiloxane (PDMS) microfluidic chip with different functionalities is developed. As an interface for the MS detection, we use a steel capillary for ESI and improve the spray stability with a Teflon siphon tubing, which is inserted underneath the steel capillary. By optimizing the flow rates, it is possible to screen parameters of various reactions, this is exemplarity shown by a Domino Knoevenagel Hetero-Diels-Alder reaction. Different starting materials, catalyst concentrations and solvent compositions are investigated. Due to the high repetition rate of the droplet production, each set of reaction condition is examined hundreds of times. As a result, of the investigation, we receive possible reagents, the ideal water-methanol ratio of the solvent and the most effective catalyst concentration. The developed system can help to determine important information about the optimal parameters of a reaction within a short time. With this novel tool, we make an important step on the field of combining droplet-based microfluidics with organic reaction screening.

Keywords: droplet, mass spectrometry, microfluidics, organic reaction, screening

Procedia PDF Downloads 301
693 Flexible Integration of Airbag Weakening Lines in Interior Components: Airbag Weakening with Jenoptik Laser Technology

Authors: Markus Remm, Sebastian Dienert

Abstract:

Vehicle interiors are not only changing in terms of design and functionality but also due to new driving situations in which, for example, autonomous operating modes are possible. Flexible seating positions are changing the requirements for passive safety system behavior and location in the interior of a vehicle. With fully autonomous driving, the driver can, for example, leave the position behind the steering wheel and take a seated position facing backward. Since autonomous and non-autonomous vehicles will share the same road network for the foreseeable future, accidents cannot be avoided, which makes the use of passive safety systems indispensable. With JENOPTIK-VOTAN® A technology, the trend towards flexible predetermined airbag weakening lines is enabled. With the help of laser beams, the predetermined weakening lines are introduced from the backside of the components so that they are absolutely invisible. This machining process is sensor-controlled and guarantees that a small residual wall thickness remains for the best quality and reliability for airbag weakening lines. Due to the wide processing range of the laser, the processing of almost all materials is possible. A CO₂ laser is used for many plastics, natural fiber materials, foams, foils and material composites. A femtosecond laser is used for natural materials and textiles that are very heat-sensitive. This laser type has extremely short laser pulses with very high energy densities. Supported by a high-precision and fast movement of the laser beam by a laser scanner system, the so-called cold ablation is enabled to predetermine weakening lines layer by layer until the desired residual wall thickness remains. In that way, for example, genuine leather can be processed in a material-friendly and process-reliable manner without design implications to the components A-Side. Passive safety in the vehicle is increased through the interaction of modern airbag technology and high-precision laser airbag weakening. The JENOPTIK-VOTAN® A product family has been representing this for more than 25 years and is pointing the way to the future with new and innovative technologies.

Keywords: design freedom, interior material processing, laser technology, passive safety

Procedia PDF Downloads 121
692 Cartilage Mimicking Coatings to Increase the Life-Span of Bearing Surfaces in Joint Prosthesis

Authors: L. Sánchez-Abella, I. Loinaz, H-J. Grande, D. Dupin

Abstract:

Aseptic loosening remains as the principal cause of revision in total hip arthroplasty (THA). For long-term implantations, submicron particles are generated in vivo due to the inherent wear of the prosthesis. When this occurs, macrophages undergo phagocytosis and secretion of bone resorptive cytokines inducing osteolysis, hence loosening of the implanted prosthesis. Therefore, new technologies are required to reduce the wear of the bearing materials and hence increase the life-span of the prosthesis. Our strategy focuses on surface modification of the bearing materials with a hydrophilic coating based on cross-linked water-soluble (meth)acrylic monomers to improve their tribological behavior. These coatings are biocompatible, with high swelling capacity and antifouling properties, mimicking the properties of natural cartilage, i.e. wear resistance with a permanent hydrated layer that prevents prosthesis damage. Cartilage mimicking based coatings may be also used to protect medical device surfaces from damage and scratches that will compromise their integrity and hence their safety. However, there are only a few reports on the mechanical and tribological characteristics of this type of coatings. Clear beneficial advantages of this coating have been demonstrated in different conditions and different materials, such as Ultra-high molecular weight polyethylene (UHMWPE), Polyethylene (XLPE), Carbon-fiber-reinforced polyetheretherketone (CFR-PEEK), cobalt-chromium (CoCr), Stainless steel, Zirconia Toughened Alumina (ZTA) and Alumina. Using routine tribological experiments, the wear for UHMWPE substrate was decreased by 75% against alumina, ZTA and stainless steel. For PEEK-CFR substrate coated, the amount of material lost against ZTA and CrCo was at least 40% lower. Experiments on hip simulator allowed coated ZTA femoral heads and coated UHMWPE cups to be validated with a decrease of 80% of loss material. Further experiments on hip simulator adding abrasive particles (1 micron sized alumina particles) during 3 million cycles, on a total of 6 million, demonstrated a decreased of around 55% of wear compared to uncoated UHMWPE and uncoated XLPE. In conclusion, CIDETEC‘s hydrogel coating technology is versatile and can be adapted to protect a large range of surfaces, even in abrasive conditions.

Keywords: cartilage, hydrogel, hydrophilic coating, joint

Procedia PDF Downloads 119
691 Analyze the Properties of Different Surgical Sutures

Authors: Doaa H. Elgohary, Tamer F. Khalifa, Mona M. Salem, M. A. Saad, Ehab Haider Sherazy

Abstract:

Textiles have conquered new areas over the past three decades, including agriculture, transportation, filtration, military, and medicine. The use of textiles in the medical field has increased significantly in recent years and covers almost everything. Medical textiles represent a huge market as they are widely used not only in hospitals, hygiene, and healthcare but also in hotels and other environments where hygiene is required. However, not all fibers are suitable for the manufacture of medical textile products. Some special properties are required for the manufactured materials, e.g. Strength, elasticity, spinnability, etc. In addition to the usual properties of medical fibers, non-toxicity, sterilizability, biocompatibility, biodegradability, good absorbability, softness, and freedom from additives, etc., desirable properties include impurities. Stitching is one of the most common practices in the medical field. as it is a biomaterial device, either natural or synthetic, used to connect blood vessels and connect tissues. In addition to being very strong, suture material should easily dissolve in bodily fluids and lose strength as the tissue gains strength. In this work, a study to select the most used materials for sutures, it was found that silk, VICRYL and polypropylene were the most used materials in varying numbers. The research involved the analysis of 36 samples from three different materials (mostly commonly used), the tests were carried out on 36 imported samples for four different companies. Each company supplied three different materials (silk, VICRYL and polypropylene) with three different gauges (4, 3.5 and 3 metric). The results of the study were tabulated, presented, and discussed. Practical statistical science serves to support the practical analysis of experimental work products and the various relationships between variables to achieve the best sampling performance with the functional purpose generated for it. Analysis of the imported sutures shows that VICRYL sutures had the highest tensile strength, toughness, knot tensile strength and knot toughness, followed by polypropylene and silk. As yarn counts, weight and diameter increase, its tensile strength and toughness increase while its elongation and knot tension decrease. The multifilament yarn construction (silk and VICRYL) scores higher compared to the monofilament construction (polypropylene), resulting in increases in tenacity, toughness, knot tensile strength and knot toughness.

Keywords: biodegradable yarns, braided sutures, irritation, knot tying, medical textiles, surgical sutures, wound healing

Procedia PDF Downloads 60
690 Building Information Modeling Acting as Protagonist and Link between the Virtual Environment and the Real-World for Efficiency in Building Production

Authors: Cristiane R. Magalhaes

Abstract:

Advances in Information and Communication Technologies (ICT) have led to changes in different sectors particularly in architecture, engineering, construction, and operation (AECO) industry. In this context, the advent of BIM (Building Information Modeling) has brought a number of opportunities in the field of the digital architectural design process bringing integrated design concepts that impact on the development, elaboration, coordination, and management of ventures. The project scope has begun to contemplate, from its original stage, the third dimension, by means of virtual environments (VEs), composed of models containing different specialties, substituting the two-dimensional products. The possibility to simulate the construction process of a venture in a VE starts at the beginning of the design process offering, through new technologies, many possibilities beyond geometrical digital modeling. This is a significant change and relates not only to form, but also to how information is appropriated in architectural and engineering models and exchanged among professionals. In order to achieve the main objective of this work, the Design Science Research Method will be adopted to elaborate an artifact containing strategies for the application and use of ICTs from BIM flows, with pre-construction cut-off to the execution of the building. This article intends to discuss and investigate how BIM can be extended to the site acting as a protagonist and link between the Virtual Environments and the Real-World, as well as its contribution to the integration of the value chain and the consequent increase of efficiency in the production of the building. The virtualization of the design process has reached high levels of development through the use of BIM. Therefore it is essential that the lessons learned with the virtual models be transposed to the actual building production increasing precision and efficiency. Thus, this paper discusses how the Fourth Industrial Revolution has impacted on property developments and how BIM could be the propellant acting as the main fuel and link between the virtual environment and the real production for the structuring of flows, information management and efficiency in this process. The results obtained are partial and not definite up to the date of this publication. This research is part of a doctoral thesis development, which focuses on the discussion of the impact of digital transformation in the construction of residential buildings in Brazil.

Keywords: building information modeling, building production, digital transformation, ICT

Procedia PDF Downloads 122
689 Linking Soil Spectral Behavior and Moisture Content for Soil Moisture Content Retrieval at Field Scale

Authors: Yonwaba Atyosi, Moses Cho, Abel Ramoelo, Nobuhle Majozi, Cecilia Masemola, Yoliswa Mkhize

Abstract:

Spectroscopy has been widely used to understand the hyperspectral remote sensing of soils. Accurate and efficient measurement of soil moisture is essential for precision agriculture. The aim of this study was to understand the spectral behavior of soil at different soil water content levels and identify the significant spectral bands for soil moisture content retrieval at field-scale. The study consisted of 60 soil samples from a maize farm, divided into four different treatments representing different moisture levels. Spectral signatures were measured for each sample in laboratory under artificial light using an Analytical Spectral Device (ASD) spectrometer, covering a wavelength range from 350 nm to 2500 nm, with a spectral resolution of 1 nm. The results showed that the absorption features at 1450 nm, 1900 nm, and 2200 nm were particularly sensitive to soil moisture content and exhibited strong correlations with the water content levels. Continuum removal was developed in the R programming language to enhance the absorption features of soil moisture and to precisely understand its spectral behavior at different water content levels. Statistical analysis using partial least squares regression (PLSR) models were performed to quantify the correlation between the spectral bands and soil moisture content. This study provides insights into the spectral behavior of soil at different water content levels and identifies the significant spectral bands for soil moisture content retrieval. The findings highlight the potential of spectroscopy for non-destructive and rapid soil moisture measurement, which can be applied to various fields such as precision agriculture, hydrology, and environmental monitoring. However, it is important to note that the spectral behavior of soil can be influenced by various factors such as soil type, texture, and organic matter content, and caution should be taken when applying the results to other soil systems. The results of this study showed a good agreement between measured and predicted values of Soil Moisture Content with high R2 and low root mean square error (RMSE) values. Model validation using independent data was satisfactory for all the studied soil samples. The results has significant implications for developing high-resolution and precise field-scale soil moisture retrieval models. These models can be used to understand the spatial and temporal variation of soil moisture content in agricultural fields, which is essential for managing irrigation and optimizing crop yield.

Keywords: soil moisture content retrieval, precision agriculture, continuum removal, remote sensing, machine learning, spectroscopy

Procedia PDF Downloads 99
688 Introducing the Concept of Sustainable Learning: Redesigning the Social Studies and Citizenship Education Curriculum in the Context of Saudi Arabia

Authors: Aiydh Aljeddani, Fran Martin

Abstract:

Sustainable human development is an essential component of a sustainable economic, social and environmental development. Addressing sustainable learning only through the addition of new teaching methods, or embedding certain approaches, is not sufficient on its own to support the goals of sustainable human development. This research project seeks to explore how the process of redesigning the current principles of curriculum based on the concept of sustainable learning could contribute to preparing a citizen who could later contribute towards sustainable human development. Multiple qualitative methodologies were employed in order to achieve the aim of this study. The main research methods were teachers’ field notes, artefacts, informal interviews (unstructured interview), a passive participant observation, a mini nominal group technique (NGT), a weekly diary, and weekly meeting. The study revealed that the integration of a curriculum for sustainable development, in addition to the use of innovative teaching approaches, highly valued by students and teachers in social studies’ sessions. This was due to the fact that it created a positive atmosphere for interaction and aroused both teachers and students’ interest. The content of the new curriculum also contributed to increasing students’ sense of shared responsibility through involving them in thinking about solutions for some global issues. This was carried out through addressing these issues through the concept of sustainable development and the theory of Thinking Activity in a Social Context (TASC). Students had interacted with sustainable development sessions intellectually and they also practically applied it through designing projects and cut-outs. Ongoing meetings and workshops to develop work between both the researcher and the teachers, and by the teachers themselves, played a vital role in implementing the new curriculum. The participation of teachers in the development of the project through working papers, exchanging experiences and introducing amendments to the students' environment was also critical in the process of implementing the new curriculum. Finally, the concept of sustainable learning can contribute to the learning outcomes much better than the current curriculum and it can better develop the learning objectives in educational institutions.

Keywords: redesigning, social studies and citizenship education curriculum, sustainable learning, thinking activity in a social context

Procedia PDF Downloads 232
687 Transformation of Antitrust Policy against Collusion in Russia and Transition Economies

Authors: Andrey Makarov

Abstract:

This article will focus on the development of antitrust policy in transition economies in the context of preventing explicit and tacit collusion. Experience of BRICS, CIS (Ukraine, Kazakhstan) and CEE countries (Bulgaria, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia, Slovenia, Czech Republic, Estonia) in the creation of antitrust institutions was analyzed, including both legislation and enforcement practice. Most of these countries in the early 90th were forced to develop completely new legislation in the field of protection of competition and it is important to compare different ways of building antitrust institutions and policy results. The article proposes a special approach to evaluation of preventing collusion mechanisms. This approach takes into account such enforcement problems as: classification problems (tacit vs explicit collusion, vertical vs horizontal agreements), flexibility of prohibitions (the balance between “per se” vs “rule of reason” approaches de jure and in practice), design of sanctions, private enforcement challenge, leniency program mechanisms, the role of antitrust authorities etc. The analysis is conducted using both official data, published by competition authorities, and expert assessments. The paper will show how the integration process within the EU predetermined some aspects of the development of antitrust policy in CEE countries, including the trend of the use of "rule of reason" approach. Simultaneously was analyzed the experience of CEE countries in special mechanisms of government intervention. CIS countries in the development of antitrust policy followed more or less original ways, without such a great impact from the European Union, more attention will be given to Russian experience in this field, including the analysis of judicial decisions in antitrust cases. Main problems and challenges for transition economies in this field will be shown, including: Legal uncertainty problem; Problem of rigidity of prohibitions; Enforcement priorities of the regulator; Interaction of administrative and criminal law, limited effectiveness of criminal sanctions in the antitrust field; The effectiveness of leniency program design; Private enforcement challenge.

Keywords: collusion, antitrust policy, leniency program, transition economies, Russia, CEE

Procedia PDF Downloads 446
686 Evidence-Based Practice Attributes across Nursing Roles at a Children’s Hospital

Authors: Rose Chapman Rodriguez

Abstract:

Problem: Evidence-based practice (EBP) attributes are significantly associated with EBP implementation science, which improves patient care outcomes. Nurses influence EBP, yet little is known of the specific EBP attributes of pediatric nurses in their clinical sub-specialties. Aim: This study aims to investigate the relationship between nursing academic degree, years of experience, and clinical specialty, with mean survey scores on EBP belief, organizational culture, and implementation scales across all levels of nursing in a Children’s Hospital. Methods: A convenience sample of nurses (n=185) participated in a descriptive, cross-sectional, correlational study in May 2023. The electronic surveys comprised 11 demographic questions and nine survey items from the short-version EBP Beliefs Scale (Cronbach α = 0.81), Organizational Culture and Readiness Scale for System-wide Integration Scale (Cronbach α = 0.87), and EBP Implementation Scale (Cronbach α = 0.89). Findings: EBP belief scores were notably higher in nurses working in neonatology (m=4.33), critical care (m=4.47), and among nurse leaders (m=4.50). There was a statistically significant difference in EBP organizational culture among nurse leaders (m = 3.95, p=0.039) compared to clinical nurses (m = 3.34) and advanced practice nurses (m = 3.34). EBP implementation was favorable in neonatology (m=4.20), acute care (m=4.05), and nurse leaders (m=4.33). No significant difference or correlation was found in EBP belief, organizational culture, or implementation mean scores related to nurses' age, academic nursing degree, or years of experience in our cohort (EBP beliefs (r = -.06, p = .400), organizational readiness (r = .02, p = .770), and implementation scales (r = .01, p = .867). Conclusions: This study identified nurse’s EBP attributes in a Children’s Hospital using key variables studied in EBP social cognitive theory and learning theory. Magnet status, shared governance structure, specialty certification, and nurse leaders play a significant role in favorable EBP culture and implementation. Nurses’ unit level ‘group culture’ may vary depending on the EBP attributes and collaborative efforts of local teams. Opportunities for mentoring were identified, which may continue to enhance EBP implementation science across all nursing roles in our pediatric organization.

Keywords: evidence-based practice, peditrics, nursing roles, implementation

Procedia PDF Downloads 70
685 The Context of Teaching and Learning Primary Science to Gifted Students: An Analysis of Australian Curriculum and New South Wales Science Syllabus

Authors: Rashedul Islam

Abstract:

A firmly-validated aim of teaching science is to support student enthusiasm for science learning with an outspread interest in scientific issues in future life. This is in keeping with the recent development in Gifted and Talented Education statement which instructs that gifted students have a renewed interest and natural aptitude in science. Yet, the practice of science teaching leaves many students with the feeling that science is difficult and compared to other school subjects, students interest in science is declining at the final years of the primary school. As a curriculum guides the teaching-learning activities in school, where significant consequences may result from the context of the curricula and syllabi, are a major feature of certain educational jurisdictions in NSW, Australia. The purpose of this study was an exploration of the curriculum sets the context to identify how science education is practiced through primary schools in Sydney, Australia. This phenomenon was explored through document review from two publicly available documents namely: the NSW Science Syllabus K-6, and Australian Curriculum: Foundation - 10 Science. To analyse the data, this qualitative study applied themed content analysis at three different levels, i.e., first cycle coding, second cycle coding- pattern codes, and thematic analysis. Preliminary analysis revealed the phenomenon of teaching-learning practices drawn from eight themes under three phenomena aligned with teachers’ practices and gifted student’s learning characteristics based on Gagné’s Differentiated Model of Gifted and Talent (DMGT). From the results, it appears that, overall, the two documents are relatively well-placed in terms of identifying the context of teaching and learning primary science to gifted students. However, educators need to make themselves aware of the ways in which the curriculum needs to be adapted to meet gifted students learning needs in science. It explores the important phenomena of teaching-learning context to provide gifted students with optimal educational practices including inquiry-based learning, problem-solving, open-ended tasks, creativity in science, higher order thinking, integration, and challenges. The significance of such a study lies in its potential to schools and further research in the field of gifted education.

Keywords: teaching primary science, gifted student learning, curriculum context, science syllabi, Australia

Procedia PDF Downloads 421
684 Electrospun Fibre Networks Loaded with Hydroxyapatite and Barium Titanate as Smart Scaffolds for Tissue Regeneration

Authors: C. Busuioc, I. Stancu, A. Nicoara, A. Zamfirescu, A. Evanghelidis

Abstract:

The field of tissue engineering has expanded its potential due to the use of composite biomaterials belonging to increasingly complex systems, leading to bone substitutes with properties that are continuously improving to meet the patient's specific needs. Furthermore, the development of biomaterials based on ceramic and polymeric phases is an unlimited resource for future scientific research, with the final aim of restoring the original tissue functionality. Thus, in the first stage, composite scaffolds based on polycaprolactone (PCL) or polylactic acid (PLA) and inorganic powders were prepared by employing the electrospinning technique. The targeted powders were: commercial and laboratory synthesized hydroxyapatite (HAp), as well as barium titanate (BT). By controlling the concentration of the powder within the precursor solution, together with the processing parameters, different types of three-dimensional architectures were achieved. In the second stage, both the mineral powders and hybrid composites were investigated in terms of composition, crystalline structure, and microstructure so that to demonstrate their suitability for tissue engineering applications. Regarding the scaffolds, these were proven to be homogeneous on large areas and loaded with mineral particles in different proportions. The biological assays demonstrated that the addition of inorganic powders leads to modified responses in the presence of simulated body fluid (SBF) or cell cultures. Through SBF immersion, the biodegradability coupled with bioactivity were highlighted, with fiber fragmentation and surface degradation, as well as apatite layer formation within the testing period. Moreover, the final composites represent supports accepted by the cells, favoring implant integration. Concluding, the purposed fibrous materials based on bioresorbable polymers and mineral powders, produced by the electrospinning technique, represent candidates with considerable potential in the field of tissue engineering. Future improvements can be attained by optimizing the synthesis process or by simultaneous incorporation of multiple inorganic phases with well-defined biological action in order to fabricate multifunctional composites.

Keywords: barium titanate, electrospinning, fibre networks, hydroxyapatite, smart scaffolds

Procedia PDF Downloads 111
683 Organizational Culture of a Public and a Private Hospital in Brazil

Authors: Fernanda Ludmilla Rossi Rocha, Thamiris Cavazzani Vegro, Silvia Helena Henriques Camelo, Carmen Silvia Gabriel, Andrea Bernardes

Abstract:

Introduction: Organizations are cultural, symbolic and imaginary systems composed by values and norms. These values and norms represent the organizational culture, which determines the behavior of the workers, guides the work practices and impacts the quality of care and the safety culture of health services worldwide. Objective: To analyze the organizational culture of a public and a private hospital in Brazil. Method: Descriptive study with quantitative approach developed in a public and in a private hospital of Brazil. Sample was composed by 281 nursing workers, of which 73 nurses and 208 nursing auxiliaries and technicians. The data collection instrument comprised the Brazilian Instrument for Assessing Organizational Culture. Data were collected from March to December 2013. Results: At the public hospital, the results showed an average score of 2.85 for the values concerning cooperative professionalism (CP); 3.02 for values related to hierarchical rigidity and the centralization of power (HR); 2.23 for individualistic professionalism and competition at work (IP); 2.22 for values related to satisfaction, well-being and motivation of workers (SW); 3.47 for external integration (EI); 2.03 for rewarding and training practices (RT); 2.75 for practices related to the promotion of interpersonal relationships (IR) About the private hospital, the results showed an average score of 3.24 for the CP; 2.83 for HR; 2.69 for IP; 2.71 for SW; 3.73 for EI; 2.56 for RT; 2.83 for IR at the hospital. Discussion: The analysis of organizational values of the studied hospitals shows that workers find the existence of hierarchical rigidity and the centralization of power in the institutions; believed there was cooperation at workplace, though they perceived individualism and competition; believed that values associated with the workers’ well-being, satisfaction and motivation were seldom acknowledged by the hospital; believed in the adoption of strategic planning actions within the institution, but considered interpersonal relationship promotion, continuous education and the rewarding of workers to be little valued by the institution. Conclusion: This work context can lead to professional dissatisfaction, compromising the quality of care and contributing to the occurrence of occupational diseases.

Keywords: nursing management, organizational culture, quality of care, interpersonal relationships

Procedia PDF Downloads 440
682 Development of Structural Deterioration Models for Flexible Pavement Using Traffic Speed Deflectometer Data

Authors: Sittampalam Manoharan, Gary Chai, Sanaul Chowdhury, Andrew Golding

Abstract:

The primary objective of this paper is to present a simplified approach to develop the structural deterioration model using traffic speed deflectometer data for flexible pavements. Maintaining assets to meet functional performance is not economical or sustainable in the long terms, and it would end up needing much more investments for road agencies and extra costs for road users. Performance models have to be included for structural and functional predicting capabilities, in order to assess the needs, and the time frame of those needs. As such structural modelling plays a vital role in the prediction of pavement performance. A structural condition is important for the prediction of remaining life and overall health of a road network and also major influence on the valuation of road pavement. Therefore, the structural deterioration model is a critical input into pavement management system for predicting pavement rehabilitation needs accurately. The Traffic Speed Deflectometer (TSD) is a vehicle-mounted Doppler laser system that is capable of continuously measuring the structural bearing capacity of a pavement whilst moving at traffic speeds. The device’s high accuracy, high speed, and continuous deflection profiles are useful for network-level applications such as predicting road rehabilitations needs and remaining structural service life. The methodology adopted in this model by utilizing time series TSD maximum deflection (D0) data in conjunction with rutting, rutting progression, pavement age, subgrade strength and equivalent standard axle (ESA) data. Then, regression analyses were undertaken to establish a correlation equation of structural deterioration as a function of rutting, pavement age, seal age and equivalent standard axle (ESA). This study developed a simple structural deterioration model which will enable to incorporate available TSD structural data in pavement management system for developing network-level pavement investment strategies. Therefore, the available funding can be used effectively to minimize the whole –of- life cost of the road asset and also improve pavement performance. This study will contribute to narrowing the knowledge gap in structural data usage in network level investment analysis and provide a simple methodology to use structural data effectively in investment decision-making process for road agencies to manage aging road assets.

Keywords: adjusted structural number (SNP), maximum deflection (D0), equant standard axle (ESA), traffic speed deflectometer (TSD)

Procedia PDF Downloads 151
681 A Geosynchronous Orbit Synthetic Aperture Radar Simulator for Moving Ship Targets

Authors: Linjie Zhang, Baifen Ren, Xi Zhang, Genwang Liu

Abstract:

Ship detection is of great significance for both military and civilian applications. Synthetic aperture radar (SAR) with all-day, all-weather, ultra-long-range characteristics, has been used widely. In view of the low time resolution of low orbit SAR and the needs for high time resolution SAR data, GEO (Geosynchronous orbit) SAR is getting more and more attention. Since GEO SAR has short revisiting period and large coverage area, it is expected to be well utilized in marine ship targets monitoring. However, the height of the orbit increases the time of integration by almost two orders of magnitude. For moving marine vessels, the utility and efficacy of GEO SAR are still not sure. This paper attempts to find the feasibility of GEO SAR by giving a GEO SAR simulator of moving ships. This presented GEO SAR simulator is a kind of geometrical-based radar imaging simulator, which focus on geometrical quality rather than high radiometric. Inputs of this simulator are 3D ship model (.obj format, produced by most 3D design software, such as 3D Max), ship's velocity, and the parameters of satellite orbit and SAR platform. Its outputs are simulated GEO SAR raw signal data and SAR image. This simulating process is accomplished by the following four steps. (1) Reading 3D model, including the ship rotations (pitch, yaw, and roll) and velocity (speed and direction) parameters, extract information of those little primitives (triangles) which is visible from the SAR platform. (2) Computing the radar scattering from the ship with physical optics (PO) method. In this step, the vessel is sliced into many little rectangles primitives along the azimuth. The radiometric calculation of each primitive is carried out separately. Since this simulator only focuses on the complex structure of ships, only single-bounce reflection and double-bounce reflection are considered. (3) Generating the raw data with GEO SAR signal modeling. Since the normal ‘stop and go’ model is not available for GEO SAR, the range model should be reconsidered. (4) At last, generating GEO SAR image with improved Range Doppler method. Numerical simulation of fishing boat and cargo ship will be given. GEO SAR images of different posture, velocity, satellite orbit, and SAR platform will be simulated. By analyzing these simulated results, the effectiveness of GEO SAR for the detection of marine moving vessels is evaluated.

Keywords: GEO SAR, radar, simulation, ship

Procedia PDF Downloads 177
680 The Impact of Information and Communication Technology in Education: Opportunities and Challenges

Authors: M. Nadeem, S. Nasir, K. A. Moazzam, R. Kashif

Abstract:

The remarkable growth and evolution in information and communication technology (ICT) in the past few decades has transformed modern society in almost every aspect of life. The impact and application of ICT have been observed in almost all walks of life including science, arts, business, health, management, engineering, sports, and education. ICT in education is being used extensively for student learning, creativity, interaction, and knowledge sharing and as a valuable source of teaching instrument. Apart from the student’s perspective, it plays a vital role for teacher education, instructional methods and curriculum development. There is a significant difference in growth of ICT enabled education in developing countries compared to developed nations and according to research, this gap is widening. ICT gradually infiltrate in almost every aspect of life. It has a deep and profound impact on our social, economic, health, environment, development, work, learning, and education environments. ICT provides very effective and dominant tools for information and knowledge processing. It is firmly believed that the coming generation should be proficient and confident in the use of ICT to cope with the existing international standards. This is only possible if schools can provide basic ICT infrastructure to students and to develop an ICT-integrated curriculum which covers all aspects of learning and creativity in students. However, there is a digital divide and steps must be taken to reduce this digital divide considerably to have the profound impact of ICT in education all around the globe. This study is based on theoretical approach and an extensive literature review is being conducted to see the successful implementations of ICT integration in education and to identify technologies and models which have been used in education in developed countries. This paper deals with the modern applications of ICT in schools for both teachers and students to uplift the learning and creativity amongst the students. A brief history of technology in education is presented and discussed are some important ICT tools for both student and teacher’s perspective. Basic ICT-based infrastructure for academic institutions is presented. The overall conclusion leads to the positive impact of ICT in education by providing an interactive, collaborative and challenging environment to students and teachers for knowledge sharing, learning and critical thinking.

Keywords: information and communication technology, ICT, education, ICT infrastructure, learning

Procedia PDF Downloads 124
679 Diagrid Structural System

Authors: K. Raghu, Sree Harsha

Abstract:

The interrelationship between the technology and architecture of tall buildings is investigated from the emergence of tall buildings in late 19th century to the present. In the late 19th century early designs of tall buildings recognized the effectiveness of diagonal bracing members in resisting lateral forces. Most of the structural systems deployed for early tall buildings were steel frames with diagonal bracings of various configurations such as X, K, and eccentric. Though the historical research a filtering concept is developed original and remedial technology- through which one can clearly understand inter-relationship between the technical evolution and architectural esthetic and further stylistic transition buildings. Diagonalized grid structures – “diagrids” - have emerged as one of the most innovative and adaptable approaches to structuring buildings in this millennium. Variations of the diagrid system have evolved to the point of making its use non-exclusive to the tall building. Diagrid construction is also to be found in a range of innovative mid-rise steel projects. Contemporary design practice of tall buildings is reviewed and design guidelines are provided for new design trends. Investigated in depths are the behavioral characteristics and design methodology for diagrids structures, which emerge as a new direction in the design of tall buildings with their powerful structural rationale and symbolic architectural expression. Moreover, new technologies for tall building structures and facades are developed for performance enhancement through design integration, and their architectural potentials are explored. By considering the above data the analysis and design of 40-100 storey diagrids steel buildings is carried out using E-TABS software with diagrids of various angle to be found for entire building which will be helpful to reduce the steel requirement for the structure. The present project will have to undertake wind analysis, seismic analysis for lateral loads acting on the structure due to wind loads, earthquake loads, gravity loads. All structural members are designed as per IS 800-2007 considering all load combination. Comparison of results in terms of time period, top storey displacement and inter-storey drift to be carried out. The secondary effect like temperature variations are not considered in the design assuming small variation.

Keywords: diagrid, bracings, structural, building

Procedia PDF Downloads 386
678 Reassembling the Splintered City: The Role of Place-Making in Promoting Planning for Diversity for a Livable Neighborhood and an Inclusive City

Authors: Samia Dahmani

Abstract:

The research investigated the process and outcomes of an ongoing project “Den Grønne Rute”: a network of recreational rooms to be implemented throughout a former vulnerable neighborhood: Trekanten in the city of Holstebro in Denmark. The aim of the project is to better integrate Trekanten in the city and which initiated reflections upon the (dis)connection and the integration in relation to urban planning and city management, as well as the extent to which the project considers diversity since Holstebro is a growing multicultural city. With this research, it was first verified if Trekanten is splintered from Holstebro city, and secondly if planning for diversity, by engaging people in the process via place-making approaches, can help redress the disconnection between the neighborhood and the rest of the city. More specifically, the paper aims at exploring the role of place-making “Den Grønne Rute” in Trekanten in promoting planning for diversity and reassembling the splintering in the city. The theoretical and conceptual framework served to analyze the relationship between the splintering urbanism concept and the community involvement’s role in an inclusive process. The field study examines the detachment between Trekanten and Holstebro and the extent to which the project can overcome the disconnection. Methodologically a mix-methods approach was adopted where two semi-structured interviews, a focus group, and an online survey were conducted. Contrary to prior assumptions, the results showed that not only is Trekanten splintered from the city, but also the city is greatly disconnected from Trekanten, and hence Holstebro is a splintered city. The surprise was that Trekanten is moreover inner-splintered. The splintering urbanism accordingly has different dimensions. Even though the project’s design seemed to incorporate diverse ages and groups of people, its process lacks an understanding of the diversity’s relevance in promoting inclusiveness. In fact, the analysis revealed socio-cultural and psychological splintering. Since place-making, as a collaborative approach in planning, is itself an expression of diversity (since it brings differences into play), reconsidering diversity within the process by engaging people at the early stages of planning was recommended. Another suggestion was not to limit the project to a destination but more as an experience to remember and a story to tell. Only by bringing people together in re-imagining the place can Trekanten reassemble with Holstebro and vice versa. The aim of the research was to add a new perspective to the splintering urbanism and planning for diversity so to advance place-making as an approach in promoting the latter and redressing the former.

Keywords: the splintering urbanism, place-making, planning for diversity, Den Grønne Rute, Trekanten, Holstebro

Procedia PDF Downloads 123
677 Modeling Aerosol Formation in an Electrically Heated Tobacco Product

Authors: Markus Nordlund, Arkadiusz K. Kuczaj

Abstract:

Philip Morris International (PMI) is developing a range of novel tobacco products with the potential to reduce individual risk and population harm in comparison to smoking cigarettes. One of these products is the Tobacco Heating System 2.2 (THS 2.2), (named as the Electrically Heated Tobacco System (EHTS) in this paper), already commercialized in a number of countries (e.g., Japan, Italy, Switzerland, Russia, Portugal and Romania). During use, the patented EHTS heats a specifically designed tobacco product (Electrically Heated Tobacco Product (EHTP)) when inserted into a Holder (heating device). The EHTP contains tobacco material in the form of a porous plug that undergoes a controlled heating process to release chemical compounds into vapors, from which an aerosol is formed during cooling. The aim of this work was to investigate the aerosol formation characteristics for realistic operating conditions of the EHTS as well as for relevant gas mixture compositions measured in the EHTP aerosol consisting mostly of water, glycerol and nicotine, but also other compounds at much lower concentrations. The nucleation process taking place in the EHTP during use when operated in the Holder has therefore been modeled numerically using an extended Classical Nucleation Theory (CNT) for multicomponent gas mixtures. Results from the performed simulations demonstrate that aerosol droplets are formed only in the presence of an aerosol former being mainly glycerol. Minor compounds in the gas mixture were not able to reach a supersaturated state alone and therefore could not generate aerosol droplets from the multicomponent gas mixture at the operating conditions simulated. For the analytically characterized aerosol composition and estimated operating conditions of the EHTS and EHTP, glycerol was shown to be the main aerosol former triggering the nucleation process in the EHTP. This implies that according to the CNT, an aerosol former, such as glycerol needs to be present in the gas mixture for an aerosol to form under the tested operating conditions. To assess if these conclusions are sensitive to the initial amount of the minor compounds and to include and represent the total mass of the aerosol collected during the analytical aerosol characterization, simulations were carried out with initial masses of the minor compounds increased by as much as a factor of 500. Despite this extreme condition, no aerosol droplets were generated when glycerol, nicotine and water were treated as inert species and therefore not actively contributing to the nucleation process. This implies that according to the CNT, an aerosol cannot be generated without the help of an aerosol former, from the multicomponent gas mixtures at the compositions and operating conditions estimated for the EHTP, even if all minor compounds are released or generated in a single puff.

Keywords: aerosol, classical nucleation theory (CNT), electrically heated tobacco product (EHTP), electrically heated tobacco system (EHTS), modeling, multicomponent, nucleation

Procedia PDF Downloads 277
676 Learners' Perception of Digitalization of Medical Education in a Low Middle-Income Country – A Case Study of the Lecturio Platform

Authors: Naomi Nathan

Abstract:

Introduction Digitalization of medical education can revolutionize how medical students learn and interact with the medical curriculum across contexts. With the increasing availability of the internet and mobile connectivity in LMICs, online medical education platforms and digital learning tools are becoming more widely available, providing new opportunities for learners to access high-quality medical education and training. However, the adoption and integration of digital technologies in medical education in LMICs is a complex process influenced by various factors, including learners' perceptions and attitudes toward digital learning. In Ethiopia, the adoption of digital platforms for medical education has been slow, with traditional face-to-face teaching methods still being the norm. However, as access to technology improves and more universities adopt digital platforms, it is crucial to understand how medical students perceive this shift. Methodology This study investigated medical students' perception of the digitalization of medical education in relation to their access to the Lecturio Digital Medical Education Platform through a capacity-building project. 740 medical students from over 20 medical universities participated in the study. The students were surveyed using a questionnaire that included their attitudes toward the digitalization of medical education, their frequency of use of the digital platform, and their perceived benefits and challenges. Results The study results showed that most medical students had a positive attitude toward digitalizing medical education. The most commonly cited benefit was the convenience and flexibility of accessing course material/curriculum online. Many students also reported that they found the platform more interactive and engaging, leading to a more meaningful learning experience. The study also identified several challenges medical students faced when using the platform. The most commonly reported challenge was the need for more reliable internet access, which made it difficult for students to access content consistently. Overall, the results of this study suggest that medical students in Ethiopia have a positive perception of the digitalization of medical education. Over 97% of students continuously expressed a need for access to the Lecturio platform throughout their studies. Conclusion Significant challenges still need to be addressed to fully realize the Lecturio digital platform's benefits. Universities, relevant ministries, and various stakeholders must work together to address these challenges to ensure that medical students fully participate in and benefit from digitalized medical education - sustainably and effectively.

Keywords: digital medical education, EdTech, LMICs, e-learning

Procedia PDF Downloads 92
675 The Role of Place-making in Promoting Planning for Diversity for a Livable Neighborhood and an Inclusive City: Reassembling the Splintered City

Authors: Samia Dahmani

Abstract:

The research investigated the process and outcomes of an ongoing project, “Den Grønne Rute”: a network of recreational rooms to be implemented throughout a former vulnerable neighborhood: Trekanten, in the city of Holstebro in Denmark. The aim of the project is to better integrate Trekanten in the city and which initiated reflections upon the (dis)connection and the integration in relation to urban planning and city management, as well as the extent to which the project considers diversity since Holstebro is a growing multicultural city. With this research, it was first verified if Trekanten is splintered from Holstebro city, and secondly if planning for diversity, by engaging people in the process via place-making approaches, can help redress the disconnection between the neighborhood and the rest of the city. More specifically, the paper aims at exploring the role of place-making “Den Grønne Rute” in Trekanten in promoting planning for diversity and reassembling the splintering in the city. The theoretical and conceptual framework served to analyze the relationship between the splintering urbanism concept and the community involvement’s role for an inclusive process. The field study examines the detachment between Trekanten and Holstebro and the extent to which the project can overcome the disconnection. Methodologically a mix-methods approach was adopted where two semi-structured interviews, a focus group, and an online survey were conducted. Contrary to prior assumptions, the results showed that not only is Trekanten splintered from the city, but also the city is greatly disconnected from Trekanten, and hence Holstebro is a splintered city. The surprise was that Trekanten is moreover inner-splintered. The splintering urbanism accordingly has different dimensions. Even though the project’s design seemed to incorporate diverse ages and groups of people, its process lacks an understanding of the diversity’s relevance in promoting inclusiveness. In fact, the analysis revealed socio-cultural and psychological splintering. Since place-making, as a collaborative approach in planning, is itself an expression of diversity (since it brings differences into play), reconsidering diversity within the process by engaging people at the early sages of planning was recommended. Another suggestion was not to limit the project to a destination but more as an experience to remember and a story to tell. Only by bringing people together in re-imagining the place, can Trekanten reassemble with Holstebro and vice versa. The aim with the research was to add a new perspective to the splintering urbanism and planning for diversity so to advance place-making as an approach in promoting the latter and redressing the former.

Keywords: the splintering urbanism, placemaking, planning for diversity, den grønne rute, trekanten, holstebro

Procedia PDF Downloads 104