Search results for: water process analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42528

Search results for: water process analysis

4518 Mental Health of Female Runners - Results of a Pilot Study

Authors: Katalin Gocze, Gabriella Kiss, Zsuzsanna Gurdan, Krisztian Kvell, Attila Trabert

Abstract:

Introduction: On a worldwide scale running has become an increasingly popular leisure time activity during the past decade. Since the participation rate of women has risen significantly the aim of our study was to analyze the mental status, sleeping habits and the prevalence of depression among female runners. Methods: Cross-sectional analysis included the use of validated and globally used surveys for the comprehensive evaluation of insomnia (AIS), depression (BDI), exercise dependence (EDS) and exercise addiction (EAI). Recreational and amateur female runners participating at half-marathon events in Hungary were asked to take part in our pilot study. Results: Participants mean age was 42.03±9.03 years. The prevalence of imsomnia was 18.87%. 60.34% has worries regarding their weight and 43.1% think that they have an actual weight problem. 77.6% stated that their body weight has an influence on their mood. 2.7% displayed borderline clinical depression, the prevalence of mild mood disorders was 10.81%. 17.2% had previously problems with disordered eating. Participants had a mean total EDS score of 46.94±15.55 and a mean total of 13.49±3.80 on EAI. Component scores were the highest for tolerance (a need for increased amounts of exercise to achieve the desired effect or a diminished effect occurs with continued use of the same amount of exercise). Conclusion: Even tough running can help improve mental health, tackle depression and overcome adversity, athletes are at risk of experiencing psychological difficulties which have an impact on their physical perfomance as well. Further research can help initiate targeted educational and screening programs to ensure that female athletes find a path to emotional well-being.

Keywords: depression, eating disorder, exercise addiction, exercise dependence, insomnia, running

Procedia PDF Downloads 122
4517 Optimized Processing of Neural Sensory Information with Unwanted Artifacts

Authors: John Lachapelle

Abstract:

Introduction: Neural stimulation is increasingly targeted toward treatment of back pain, PTSD, Parkinson’s disease, and for sensory perception. Sensory recording during stimulation is important in order to examine neural response to stimulation. Most neural amplifiers (headstages) focus on noise efficiency factor (NEF). Conversely, neural headstages need to handle artifacts from several sources including power lines, movement (EMG), and neural stimulation itself. In this work a layered approach to artifact rejection is used to reduce corruption of the neural ENG signal by 60dBv, resulting in recovery of sensory signals in rats and primates that would previously not be possible. Methods: The approach combines analog techniques to reduce and handle unwanted signal amplitudes. The methods include optimized (1) sensory electrode placement, (2) amplifier configuration, and (3) artifact blanking when necessary. The techniques together are like concentric moats protecting a castle; only the wanted neural signal can penetrate. There are two conditions in which the headstage operates: unwanted artifact < 50mV, linear operation, and artifact > 50mV, fast-settle gain reduction signal limiting (covered in more detail in a separate paper). Unwanted Signals at the headstage input: Consider: (a) EMG signals are by nature < 10mV. (b) 60 Hz power line signals may be > 50mV with poor electrode cable conditions; with careful routing much of the signal is common to both reference and active electrode and rejected in the differential amplifier with <50mV remaining. (c) An unwanted (to the neural recorder) stimulation signal is attenuated from stimulation to sensory electrode. The voltage seen at the sensory electrode can be modeled Φ_m=I_o/4πσr. For a 1 mA stimulation signal, with 1 cm spacing between electrodes, the signal is <20mV at the headstage. Headstage ASIC design: The front end ASIC design is designed to produce < 1% THD at 50mV input; 50 times higher than typical headstage ASICs, with no increase in noise floor. This requires careful balance of amplifier stages in the headstage ASIC, as well as consideration of the electrodes effect on noise. The ASIC is designed to allow extremely small signal extraction on low impedance (< 10kohm) electrodes with configuration of the headstage ASIC noise floor to < 700nV/rt-Hz. Smaller high impedance electrodes (> 100kohm) are typically located closer to neural sources and transduce higher amplitude signals (> 10uV); the ASIC low-power mode conserves power with 2uV/rt-Hz noise. Findings: The enhanced neural processing ASIC has been compared with a commercial neural recording amplifier IC. Chronically implanted primates at MGH demonstrated the presence of commercial neural amplifier saturation as a result of large environmental artifacts. The enhanced artifact suppression headstage ASIC, in the same setup, was able to recover and process the wanted neural signal separately from the suppressed unwanted artifacts. Separately, the enhanced artifact suppression headstage ASIC was able to separate sensory neural signals from unwanted artifacts in mouse-implanted peripheral intrafascicular electrodes. Conclusion: Optimizing headstage ASICs allow observation of neural signals in the presence of large artifacts that will be present in real-life implanted applications, and are targeted toward human implantation in the DARPA HAPTIX program.

Keywords: ASIC, biosensors, biomedical signal processing, biomedical sensors

Procedia PDF Downloads 326
4516 Analysis on South Korean Early Childhood Education Teachers’ Stage of Concerns about Software Education According to the Concern-Based Adoption Model

Authors: Sun-Mi Park, Ji-Hyun Jung, Min-Jung Kang

Abstract:

Software (SW) education is scheduled to be included in the National curriculum in South Korea by 2018. However, Korean national kindergarten curriculum has been excepted from the revision of the entire Korean national school curriculum including software education. Even though the SW education has not been considered a part of current national kindergarten curriculum, there is a growing interest of adopting software education into the ECE practice. Teachers might be a key element in introducing and implementing new educational change such as SW education. In preparation for the adoption of SW education in ECE, it might be necessary to figure out ECE teachers’ perception and attitudes toward early childhood software education. For this study, 219 ECE teachers’ concern level in SW education was surveyed by using the Stages of Concern Questionnaire (SoCQ). As a result, the teachers' concern level in SW education is the highest at stage 0-Unconcerned and is high level in stage 1-informational, stage 2-personal, and stage 3-management concern. Thus, a non-user pattern was mostly indicated. However, compared to a typical non-user pattern, the personal and informative concern level is slightly high. The 'tailing up' phenomenon toward stage 6-refocusing was shown. Therefore, the pattern aspect close to critical non-user ever appeared to some extent. In addition, a significant difference in concern level was shown at all stages depending on the awareness of necessity. Teachers with SW training experience showed higher intensity only at stage 0. There was statistically significant difference in stage 0 and 6 depending on the future implementation decision. These results will be utilized as a resource in building ECE teachers’ support system according to his or her concern level of SW education.

Keywords: concerns-based adoption model (CBAM), early childhood education teachers, software education, Stages of Concern (SoC)

Procedia PDF Downloads 204
4515 The Development of Liquid Chromatography Tandem Mass Spectrometry Method for Citrinin Determination in Dry-Fermented Meat Products

Authors: Ana Vulic, Tina Lesic, Nina Kudumija, Maja Kis, Manuela Zadravec, Nada Vahcic, Tomaz Polak, Jelka Pleadin

Abstract:

Mycotoxins are toxic secondary metabolites produced by numerous types of molds. They can contaminate both food and feed so that they represent a serious public health concern. Production of dry-fermented meat products involves ripening, during which molds can overgrow the product surface, produce mycotoxins, and consequently contaminate the final product. Citrinin is a mycotoxin produced mainly by the Penicillium citrinum. Data on citrinin occurrence in both food and feed are limited. Therefore, there is a need for research on citrinin occurrence in these types of meat products. The LC-MS/MS method for citrinin determination was developed and validated. Sample preparation was performed using immunoaffinity columns, which resulted in clean sample extracts. Method validation included the determination of the limit of detection (LOD), the limit of quantification (LOQ), recovery, linearity, and matrix effect in accordance to the latest validation guidance. The determined LOD and LOQ were 0.60 µg/kg and 1.98 µg/kg, respectively, showing a good method sensitivity. The method was tested for its linearity in the calibration range of 1 µg/L to 10 µg/L. The recovery was 100.9 %, while the matrix effect was 0.7 %. This method was employed in the analysis of 47 samples of dry-fermented sausages collected from local households. Citrinin wasn’t detected in any of these samples, probably because of the short ripening period of the tested sausages that takes three months tops. The developed method shall be used to test other types of traditional dry-cured products, such as prosciuttos, whose surface is usually more heavily overgrown by surface molds due to the longer ripening period.

Keywords: citrinin, dry-fermented meat products, LC-MS/MS, mycotoxins

Procedia PDF Downloads 115
4514 The Effect of Kelp Ecklonia maxima Inclusion in Formulated Feed on Growth, Feed Utilization and the Gut Microbiota of South African Abalone Haliotis Midae

Authors: Aldi Nel, Cliff L. W. Jones, Justin O. G. Kemp, Peter J. Britz

Abstract:

Kelp Ecklonia maxima is included in formulated abalone feeds in South Africa, but its effect on abalone growth, feed utilisation efficiency and gut-bacterial communities has not previously been investigated. An eight-month on-farm growth trial with sub-adult Haliotis midae (~43 mm shell length) fed graded levels of kelp in formulated feeds was conducted. Kelp inclusion (0.44–3.54 % of pellet dry mass) promoted faster growth (65.7 – 74.5 % total mass gain), with better feed and protein conversions (FCR: 1.4 – 1.8; PER 2.3 – 2.7), compared to abalone fed the non-supplemented feed (52.3% total mass gain; FCR: 2.1; PER 1.9; p < 0.001). The gut-bacterial communities of abalone fed kelp-supplemented feed (0.88 % of pellet dry mass) were subsequently compared with that of abalone fed a non-supplemented control diet. Abalone gut-bacterial DNA was sequenced using 16S rRNA pyrosequencing and sequences were clustered into operational taxonomic units (OTUs) at a 97 % similarity level. A supplementary 16S rRNA denaturing gradient gel electrophoresis (DGGE) analysis was conducted. The dominant OTUs differed in terms of their relative abundances, with that of an autochthonous Mollicutes strain being significantly higher (p = 0.03) in the guts of abalone fed kelp-supplemented feed. The DGGE band patterns displayed a higher within-group variability of dominant bacterial strains for abalone fed the control diet, suggesting that dietary inclusion of kelp, which is rich in fermentable polysaccharides, promotes a balanced gut-bacterial community. This may contribute to the better feed utilisation and growth in abalone fed kelp-supplemented feeds.

Keywords: abfeed, digestion, macroalgae, mariculture

Procedia PDF Downloads 272
4513 Classification of Small Towns: Three Methodological Approaches and Their Results

Authors: Jerzy Banski

Abstract:

Small towns represent a key element of settlement structure and serve a number of important functions associated with the servicing of rural areas that surround them. It is in light of this that scientific studies have paid considerable attention to the functional structure of centers of this kind, as well as the relationships with both surrounding rural areas and other urban centers. But a preliminary to such research has typically involved attempts at classifying the urban centers themselves, with this also assisting with the planning and shaping of development policy on different spatial scales. The purpose of the work is to test out the methods underpinning three different classifications of small urban centers, as well as to offer a preliminary interpretation of the outcomes obtained. Research took in 722 settlement units in Poland, granted town rights and populated by fewer than 20,000 inhabitants. A morphologically-based classification making reference to the database of topographic objects as regards land cover within the administrative boundaries of towns and cities was carried out, and it proved possible to distinguish the categories of “housing-estate”, industrial and R&R towns, as well as towns characterized by dichotomy. Equally, a functional/morphological approach taken with the same database allowed for the identification – via an alternative method – of three main categories of small towns (i.e., the monofunctional, multifunctional or oligo functional), which could then be described in far greater detail. A third, multi-criterion classification made simultaneous reference to the conditioning of a structural, a location-related, and an administrative hierarchy-related nature, allowing for distinctions to be drawn between small towns in 9 different categories. The results obtained allow for multifaceted analysis and interpretation of the geographical differentiation characterizing the distribution of Poland’s urban centers across space in the country.

Keywords: small towns, classification, local planning, Poland

Procedia PDF Downloads 82
4512 Cost-Benefit Analysis for the Optimization of Noise Abatement Treatments at the Workplace

Authors: Paolo Lenzuni

Abstract:

Cost-effectiveness of noise abatement treatments at the workplace has not yet received adequate consideration. Furthermore, most of the published work is focused on productivity, despite the poor correlation of this quantity with noise levels. There is currently no tool to estimate the social benefit associated to a specific noise abatement treatment, and no comparison among different options is accordingly possible. In this paper, we present an algorithm which has been developed to predict the cost-effectiveness of any planned noise control treatment in a workplace. This algorithm is based the estimates of hearing threshold shifts included in ISO 1999, and on compensations that workers are entitled to once their work-related hearing impairments have been certified. The benefits of a noise abatement treatment are estimated by means of the lower compensation costs which are paid to the impaired workers. Although such benefits have no real meaning in strictly monetary terms, they allow a reliable comparison between different treatments, since actual social costs can be assumed to be proportional to compensation costs. The existing European legislation on occupational exposure to noise it mandates that the noise exposure level be reduced below the upper action limit (85 dBA). There is accordingly little or no motivation for employers to sustain the extra costs required to lower the noise exposure below the lower action limit (80 dBA). In order to make this goal more appealing for employers, the algorithm proposed in this work also includes an ad-hoc element that promotes actions which bring the noise exposure down below 80 dBA. The algorithm has a twofold potential: 1) it can be used as a quality index to promote cost-effective practices; 2) it can be added to the existing criteria used by workers’ compensation authorities to evaluate the cost-effectiveness of technical actions, and support dedicated employers.

Keywords: cost-effectiveness, noise, occupational exposure, treatment

Procedia PDF Downloads 313
4511 Sun-Light Driven Photocatalytic Degradation of Tetracycline Antibiotics Employing Hydrothermally Synthesized sno₂/mnv₂o₆ Heterojunction

Authors: Sandeep Kaushal

Abstract:

Tetracycline (TC) is a widespread antibiotic that is utilised in a multitude of countries, particularly China, India, and the United States of America, due to its low cost and potency in boosting livestock production. Unfortunately, certain antibiotics can be hazardous to living beings due to metal complexation and aggregation, which can lead to teratogenicity and carcinogenicity. Heterojunction photocatalysts are promising for the effective removal of pollutants like antibiotics. Herein, a simple, economical, and pollution-less hydrothermal technique was used to construct SnO₂/MnV₂O₆heterojunction with varying amounts of tin dioxide (SO₂). Various sophisticated techniques like XRD, FTIR, XPS, FESEM, HRTEM, and PLand Raman spectroscopy demonstrated the successful synthesis of SnO₂/MnV₂O₆ heterojunction photocatalysts.BET surface area analysis revealed that the as-synthesized heterojunction has a favorable surface area and surface properties for efficacious degradation of tetracycline. Under the direct sunlight exposure, the SnO₂/MnV₂O₆ heterojunction possessed superior photodegradation activity toward TC than the pristine SnO₂ and MnV2O6owing to their excellent adsorption abilities suitable band positions, large surface areas along with the effective charge-transfer ability of the heterojunction. The SnO₂/MnV₂O₆ heterojunction possessed extraordinary efficiency for the photocatalytic degradation of TC antibiotic (98% in 60 min) with an apparent rate constant of 0.092 min–1. In the degradation experiments, photocatalytic activities of as-synthesized heterojunction were studied by varying different factors such as time contact, catalyst dose, and solution pH. The role of reactive species in antibiotics was validated by radical scavenging studies, which indicated that.OH, radical has a critical role in photocatalytic degradation. Moreover, liquid chromatography-mass spectrometry (LC-MS) investigations were employed to anticipate a plausible mechanism for TC degradation.

Keywords: photocatalytic degradation, tetracycline, heterojunction, LC-MS

Procedia PDF Downloads 103
4510 Productivity Effect of Urea Deep Placement Technology: An Empirical Analysis from Irrigation Rice Farmers in the Northern Region of Ghana

Authors: Shaibu Baanni Azumah, Ignatius Tindjina, Stella Obanyi, Tara N. Wood

Abstract:

This study examined the effect of Urea Deep Placement (UDP) technology on the output of irrigated rice farmers in the northern region of Ghana. Multi-stage sampling technique was used to select 142 rice farmers from the Golinga and Bontanga irrigation schemes, around Tamale. A treatment effect model was estimated at two stages; firstly, to determine the factors that influenced farmers’ decision to adopt the UDP technology and secondly, to determine the effect of the adoption of the UDP technology on the output of rice farmers. The significant variables that influenced rice farmers’ adoption of the UPD technology were sex of the farmer, land ownership, off-farm activity, extension service, farmer group participation and training. The results also revealed that farm size and the adoption of UDP technology significantly influenced the output of rice farmers in the northern region of Ghana. In addition to the potential of the technology to improve yields, it also presents an employment opportunity for women and youth, who are engaged in the deep placement of Urea Super Granules (USG), as well as in the transplantation of rice. It is recommended that the government of Ghana work closely with the IFDC to embed the UDP technology in the national agricultural programmes and policies. The study also recommends an effective collaboration between the government, through the Ministry of Food and Agriculture (MoFA) and the International Fertilizer Development Center (IFDC) to train agricultural extension agents on UDP technology in the rice producing areas of the country.

Keywords: Northern Ghana, output , irrigation rice farmers, treatment effect model, urea deep placement

Procedia PDF Downloads 426
4509 Investigating the Influence of Critical Thinking Skills on Learning Achievement among Higher Education Students in Foreign Language Programs

Authors: Mostafa Fanaei, Shahram R. Sistani, Athare Nazri-Panjaki

Abstract:

Introduction: Critical thinking skills are increasingly recognized as vital for academic success, particularly in higher education. This study examines the influence of critical thinking on learning achievement among undergraduate and master's students enrolled in foreign language programs. By investigating this correlation, educators can gain valuable insights into optimizing teaching methodologies and enhancing academic outcomes. Methods: This cross-sectional study involved 150 students from the Shahid Bahonar University of Kerman, recruited via random sampling. Participants completed the Critical Thinking Questionnaire (CThQ), assessing dimensions such as analysis, evaluation, creation, remembering, understanding, and application. Academic performance was measured using the students' GPA (0-20). Results: The participants' mean age was 21.46 ± 5.2 years, with 62.15% being female. The mean scores for critical thinking subscales were as follows: Analyzing (13.2 ± 3.5), Evaluating (12.8 ± 3.4), Creating (18.6 ± 4.8), Remembering (9.4 ± 2.1), Understanding (12.9 ± 3.3), and Applying (12.5 ± 3.2). The overall critical thinking score was 79.4 ± 18.1, and the average GPA was 15.7 ± 2.4. Significant positive correlations were found between GPA and several critical thinking subscales: Analyzing (r = 0.45, p = 0.013), Creating (r = 0.52, p < 0.001), Remembering (r = 0.29, p = 0.021), Understanding (r = 0.41, p = 0.002), and the overall CThQ score (r = 0.54, p = 0.043). Conclusion: The study demonstrates a significant positive relationship between critical thinking skills and learning achievement in foreign language programs. Enhancing critical thinking skills through educational interventions could potentially improve academic performance. Further research is recommended to explore the underlying mechanisms and long-term impacts of critical thinking on academic success.

Keywords: critical thinking, learning achievement, higher education, foreign language programs, student success

Procedia PDF Downloads 27
4508 Electrical Conductivity as Pedotransfer Function in the Determination of Sodium Adsorption Ratio in Soil System in Managing Micro Level Farming Practices in India: An Effective Low Cost Technology

Authors: Usha Loganathan, Haresh Pandya

Abstract:

Analysis and correlation of soil properties represent an important outset for precision agriculture and is currently promoted and implemented in the developed world. Establishing relationships among indices of soil salinity has always been a challenging task in salt affected soils necessitating unique approaches for their reclamation and management to sustain long term productivity of Soil. Soil salinity indices like Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR) are normally used to characterize soils as either sodic or saline sodic. Currently, Determination of Soil sodium adsorption ratio is a more accepted and reliable measure of soil salinity. However, it involves arduous and protracted laboratory investigations which demand evolving new and economical methods to determine SAR based on simple soil salinity index. A linear regression model to predict soil SAR from soil electrical conductivity has been developed and presented in this paper as per which, soil SAR could very well be worked out as a pedotransfer function of soil EC. The present study was carried out in Orathupalayam (11.09-11.11 N latitude and 74.54-77.59 E longitude) in the vicinity of Orathupalayam Reservoir of Noyyal River Basin, India, over a period of 3 consecutive years from September 2013 through February 2016 in different locations chosen randomly through different seasons. The research findings are discussed in the light of micro level farming practices in India and recommend determination of SAR as a low cost technology aiding in the effective management of salt affected agricultural land.

Keywords: electrical conductivity, orathupalayam, pedotranfer function, sodium adsorption ratio

Procedia PDF Downloads 251
4507 Analyzing the Impact of Knowledge Sharing on Product Innovation: A Moderated Mediation Framework of Employees Creativity and Top Management Support

Authors: Aqsa Akbar, Sadaf Ehsan, Suheera Khalid Sheikh

Abstract:

Purpose: In the today’s competitive world, situational dynamism presents complex challenges for organizations to pursue production innovation. Calling for dire need to remain sustainable, the research aims to examine the interlinking mechanism of knowledge sharing and product innovation relationship. For this, a moderated mediation framework is developed in which employees’ creativity and top management support are suggested as viable factors affecting the knowledge sharing and product innovation relationship. Design/Methodology/Approaches A survey-based quantitative research design is selected for data collection via self-administered questionnaires from employees of Pakistan’s E-commerce organizations. Almost, 350 questionnaires were circulated and 285 were received back through a cross-sectional method. Data analysis is performed on SPSS 22.0 and AMOS. Finding The outcomes suggest that knowledge sharing is critical for companies undergoing product innovation. In addition, findings disclose that employees’ creativity partially mediates the relationship between knowledge sharing and product innovation. Furthermore, the moderation impact of top management support also substantiated the proposed hypothesis. Results are discussed in the light of the literature review, followed by the study’s limitations and future directions. Originality/Value The study donates significance towards the development of better understanding of how knowledge sharing is vital for product innovation. It adds on to the literature by highlighting mechanisms responsible for successful product innovation. Moreover, the study offers practical insights to Pakistan’s E-commerce industry and suggests about how to develop capabilities for product innovation.

Keywords: employees creativity, knowledge sharing, product innovation, top management support

Procedia PDF Downloads 78
4506 MicroRNA Profiling Reveals Novel Circulating Biomarkers in Acute Phase of Myocardial Infarction

Authors: A. Maciejak, M. Kiliszek, G. Opolski, D. Tulacz, A. Segiet, K. Matlak, S. Dobrzycki, G. Sygitowicz, B. Burzynska, M. Gora

Abstract:

Introduction and aims: Acute myocardial infarction (AMI) is one of the most severe cardiovascular diseases affecting millions of patients each year worldwide. An early and accurate diagnosis of AMI is essential for optimal treatment. Therefore, new approaches that can complement and improve current strategies for AMI diagnosis are urgently needed. Recent studies have revealed the presence of stable circulating myocardial-derived microRNAs (miRNAs) in human peripheral blood, suggesting that such miRNAs could serve as potential biomarkers of infarction. The present study aimed to identify differentially expressed circulating miRNAs in ST-segment elevation myocardial infarction (STEMI) patients. Materials and methods: miRNA expression profile analysis was performed using Exiqon Serum/Plasma Focus microRNA PCR panel in plasma samples of n=16 patients on the first day of AMI (admission) and in samples from the same patients collected six months after AMI. Selected miRNAs were validated by RT-qPCR using serum samples from an independent set of n=14 AMI patients. Results: The profiling study identified 46 species of plasma miRNAs that were differentially expressed (p < 0.05) on admission compared to six months after AMI. The validation in the independent group of patients confirmed that miR-133b and miR-22-5p were significantly up-regulated upon AMI. Conclusions: Our results suggest that miRNA expression profiling provides better understanding of the changes that occur in the acute phase of MI in the myocardium and could be useful in determination of the potential role of extracellular miRNAs as paracrine signaling molecules. miR-22-5p represents a novel promising biomarker for the diagnosis of acute myocardial infarction.

Keywords: acute myocardial infarction, circulating microRNAs, microRNA expression profiling, miR-22-5p

Procedia PDF Downloads 327
4505 A Comparison of Caesarean Section Indications and Characteristics in 2009 and 2020 in a Saudi Tertiary Hospital

Authors: Sarah K. Basudan, Ragad I. Al Jazzar, Zeinah Sulaihim, Hanan M. Al-Kadri

Abstract:

Background: Cesarean section has been increasing in recent years, with a wide range of etiologies contributing to this rise. This study aimed to assess the indications, outcomes, and complications in Riyadh, Saudi Arabia. Methods: A Retrospective Cohort study was conducted at King Abdulaziz medical city. The study includes two cohorts: G1 (2009) and G2 (2020) groups who met the inclusion criteria. The data was transferred to the SPSS (statistical package for social sciences) version 24 for analysis. The initial descriptive statistics were run for all variables, including numerical and categorical data. The numerical data were reported as median, and standard deviation and categorical data were reported as frequencies and percentages. Results: The data were collected from 399 women who were divided into two groups, G1(199) and G2(200). The mean age of all participants is 32+-6​; G1 and G2 had significant differences in age means with 30+-6 and 34+-5, respectively, with a p-value of <0.001, which indicates delayed fertility by four years. Moreover, a breech presentation was less likely to occur in G2 (OR 0.64, CI: 0.21-0.62. P<0.001). Nonetheless, maternal causes such as repeated C-sections and maternal medical conditions were more likely to happen in G2 (OR 1.5, CI: 1.04-2.38, p=0.03) and (OR 5.4, CI: 1.12-23.9, P=0.01), respectively. Furthermore, postpartum hemorrhage showed an increase of 12% in G2 (OR 5.4, CI: 2.2-13.4, p<0.001). G2 was more likely to be admitted to the neonatal intensive care unit (NICU) (OR 16, CI: 7.4-38.7) and to special care baby (SCB) (OR 7.2, CI: 3.9-13.1), both with a p-value<0.001 compared to regular nursery admission. Conclusion: There are multiple factors that are contributing to the increase in c section rate in a Saudi tertiary hospitals. The factors were suggested to be previous c-sections, abnormal fetal heart rate, malpresentation, and maternal or fetal medical conditions.

Keywords: cesarean sections, maternal indications, maternal complications, neonatal condition

Procedia PDF Downloads 78
4504 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction

Authors: Luis C. Parra

Abstract:

The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.

Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms

Procedia PDF Downloads 102
4503 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms

Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager

Abstract:

This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.

Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties

Procedia PDF Downloads 52
4502 Telemedicine in Physician Assistant Education: A Partnership with Community Agency

Authors: Martina I. Reinhold, Theresa Bacon-Baguley

Abstract:

A core challenge of physician assistant education is preparing professionals for lifelong learning. While this conventionally has encompassed scientific advances, students must also embrace new care delivery models and technologies. Telemedicine, the provision of care via two-way audio and video, is an example of a technological advance reforming health care. During a three-semester sequence of Hospital Community Experiences, physician assistant students were assigned experiences with Answer Health on Demand, a telemedicine collaborative. Preceding the experiences, the agency lectured on the application of telemedicine. Students were then introduced to the technology and partnered with a provider. Prior to observing the patient-provider interaction, patient consent was obtained. Afterwards, students completed a reflection paper on lessons learned and the potential impact of telemedicine on their careers. Thematic analysis was completed on the students’ reflection papers (n=13). Preceding the lecture and experience, over 75% of students (10/13) were unaware of telemedicine. Several stated they were 'skeptical' about the effectiveness of 'impersonal' health care appointments. After the experience, all students remarked that telemedicine will play a large role in the future of healthcare and will provide benefits by improving access in rural areas, decreasing wait time, and saving cost. More importantly, 30% of students (4/13) commented that telemedicine is a technology they can see themselves using in their future practice. Initial results indicate that collaborative interaction between students and telemedicine providers enhanced student learning and exposed students to technological advances in the delivery of care. Further, results indicate that students perceived telemedicine more favorably as a viable delivery method after the experience.

Keywords: collaboration, physician assistant education, teaching innovative health care delivery method, telemedicine

Procedia PDF Downloads 193
4501 Book Exchange System with a Hybrid Recommendation Engine

Authors: Nilki Upathissa, Torin Wirasinghe

Abstract:

This solution addresses the challenges faced by traditional bookstores and the limitations of digital media, striking a balance between the tactile experience of printed books and the convenience of modern technology. The book exchange system offers a sustainable alternative, empowering users to access a diverse range of books while promoting community engagement. The user-friendly interfaces incorporated into the book exchange system ensure a seamless and enjoyable experience for users. Intuitive features for book management, search, and messaging facilitate effortless exchanges and interactions between users. By streamlining the process, the system encourages readers to explore new books aligned with their interests, enhancing the overall reading experience. Central to the system's success is the hybrid recommendation engine, which leverages advanced technologies such as Long Short-Term Memory (LSTM) models. By analyzing user input, the engine accurately predicts genre preferences, enabling personalized book recommendations. The hybrid approach integrates multiple technologies, including user interfaces, machine learning models, and recommendation algorithms, to ensure the accuracy and diversity of the recommendations. The evaluation of the book exchange system with the hybrid recommendation engine demonstrated exceptional performance across key metrics. The high accuracy score of 0.97 highlights the system's ability to provide relevant recommendations, enhancing users' chances of discovering books that resonate with their interests. The commendable precision, recall, and F1score scores further validate the system's efficacy in offering appropriate book suggestions. Additionally, the curve classifications substantiate the system's effectiveness in distinguishing positive and negative recommendations. This metric provides confidence in the system's ability to navigate the vast landscape of book choices and deliver recommendations that align with users' preferences. Furthermore, the implementation of this book exchange system with a hybrid recommendation engine has the potential to revolutionize the way readers interact with printed books. By facilitating book exchanges and providing personalized recommendations, the system encourages a sense of community and exploration within the reading community. Moreover, the emphasis on sustainability aligns with the growing global consciousness towards eco-friendly practices. With its robust technical approach and promising evaluation results, this solution paves the way for a more inclusive, accessible, and enjoyable reading experience for book lovers worldwide. In conclusion, the developed book exchange system with a hybrid recommendation engine represents a progressive solution to the challenges faced by traditional bookstores and the limitations of digital media. By promoting sustainability, widening access to printed books, and fostering engagement with reading, this system addresses the evolving needs of book enthusiasts. The integration of user-friendly interfaces, advanced machine learning models, and recommendation algorithms ensure accurate and diverse book recommendations, enriching the reading experience for users.

Keywords: recommendation systems, hybrid recommendation systems, machine learning, data science, long short-term memory, recurrent neural network

Procedia PDF Downloads 86
4500 Driving Forces of Bank Liquidity: Evidence from Selected Ethiopian Private Commercial Banks

Authors: Tadele Tesfay Teame, Tsegaye Abrehame, Hágen István Zsombor

Abstract:

Liquidity is one of the main concerns for banks, and thus achieving the optimum level of liquidity is critical. The main objective of this study is to discover the driving force of selected private commercial banks’ liquidity. In order to achieve the objective explanatory research design and quantitative research approach were used. Data has been collected from a secondary source of the sampled Ethiopian private commercial banks’ financial statements, the National Bank of Ethiopia, and the Minister of Finance, the sample covering the period from 2011 to 2022. Bank-specific and macroeconomic variables were analyzed by using the balanced panel fixed effect regression model. Bank’s liquidity ratio is measured by the total liquid asset to total deposits. The findings of the study revealed that bank size, capital adequacy, loan growth rate, and non-performing loan had a statistically significant impact on private commercial banks’ liquidity, and annual inflation rate and interest rate margin had a statistically significant impact on the liquidity of Ethiopian private commercial banks measured by L1 (bank liquidity). Thus, banks in Ethiopia should not only be concerned about internal structures and policies/procedures, but they must consider both the internal environment and the macroeconomic environment together in developing their strategies to efficiently manage their liquidity position and private commercial banks to maintain their financial proficiency shall have bank liquidity management policy by assimilating both bank-specific and macro-economic variables.

Keywords: liquidity, Ethiopian private commercial banks, liquidity ratio, panel data regression analysis

Procedia PDF Downloads 91
4499 Rhizosphere Microbiome Involvement in the Natural Suppression of Soybean Cyst Nematode in Disease Suppressive Soil

Authors: M. Imran Hamid, Muzammil Hussain, Yunpeng Wu, Meichun Xiang, Xingzhong Liu

Abstract:

The rhizosphere microbiome elucidate multiple functioning in the soil suppressiveness against plant pathogens. Soybean rhizosphere microbial communities may involve in the natural suppression of soybean cyst nematode (SCN) populations in disease suppressive soils. To explore these ecological mechanisms of microbes, a long term monoculture suppressive soil were taken into account for further investigation to test the disease suppressive ability by using different treatments. The designed treatments are as, i) suppressive soil (S), ii) conducive soil (C), iii) conducive soil mixed with 10% (w/w) suppressive soil (CS), iv) suppressive soil treated at 80°C for 1 hr (S80), and v) suppressive soil treated with formalin (SF). By using an ultra-high-throughput sequencing approach, we identified the key bacterial and fungal taxa involved in SCN suppression. The Phylum-level investigation of bacteria revealed that Actinobacteria, Bacteroidetes, and Proteobacteria in the rhizosphere soil of soybean seedlings were more abundant in the suppressive soil than in the conducive soil. The phylum-level analysis of fungi in rhizosphere soil indicated that relative abundance of Ascomycota was higher in suppressive soil than in the conducive soil, where Basidiomycota was more abundant. Transferring suppressive soil to conducive soil increased the population of Ascomycota in the conducive soil by lowering the populations of Basidiomycota. The genera, such as, Pochonia, Purpureocillium, Fusarium, Stachybotrys that have been well documented as bio-control agents of plant nematodes were far more in the disease suppressive soils. Our results suggested that the plants engage a subset of functional microbial groups in the rhizosphere for initial defense upon nematode attack and protect the plant roots later on by nematodes to response for suppression of SCN in disease-suppressive soils.

Keywords: disease suppressive soil, high-throughput sequencing, rhizosphere microbiome, soybean cyst nematode

Procedia PDF Downloads 149
4498 The Return of the Rejected Kings: A Comparative Study of Governance and Procedures of Standards Development Organizations under the Theory of Private Ordering

Authors: Olia Kanevskaia

Abstract:

Standardization has been in the limelight of numerous academic studies. Typically described as ‘any set of technical specifications that either provides or is intended to provide a common design for a product or process’, standards do not only set quality benchmarks for products and services, but also spur competition and innovation, resulting in advantages for manufacturers and consumers. Their contribution to globalization and technology advancement is especially crucial in the Information and Communication Technology (ICT) and telecommunications sector, which is also characterized by a weaker state-regulation and expert-based rule-making. Most of the standards developed in that area are interoperability standards, which allow technological devices to establish ‘invisible communications’ and to ensure their compatibility and proper functioning. This type of standard supports a large share of our daily activities, ranging from traffic coordination by traffic lights to the connection to Wi-Fi networks, transmission of data via Bluetooth or USB and building the network architecture for the Internet of Things (IoT). A large share of ICT standards is developed in the specialized voluntary platforms, commonly referred to as Standards Development Organizations (SDOs), which gather experts from various industry sectors, private enterprises, governmental agencies and academia. The institutional architecture of these bodies can vary from semi-public bodies, such as European Telecommunications Standards Institute (ETSI), to industry-driven consortia, such as the Internet Engineering Task Force (IETF). The past decades witnessed a significant shift of standard setting to those institutions: while operating independently from the states regulation, they offer a rather informal setting, which enables fast-paced standardization and places technical supremacy and flexibility of standards above other considerations. Although technical norms and specifications developed by such nongovernmental platforms are not binding, they appear to create significant regulatory impact. In the United States (US), private voluntary standards can be used by regulators to achieve their policy objectives; in the European Union (EU), compliance with harmonized standards developed by voluntary European Standards Organizations (ESOs) can grant a product a free-movement pass. Moreover, standards can de facto manage the functioning of the market when other regulative alternatives are not available. Hence, by establishing (potentially) mandatory norms, SDOs assume regulatory functions commonly exercised by States and shape their own legal order. The purpose of this paper is threefold: First, it attempts to shed some light on SDOs’ institutional architecture, focusing on private, industry-driven platforms and comparing their regulatory frameworks with those of formal organizations. Drawing upon the relevant scholarship, the paper then discusses the extent to which the formulation of technological standards within SDOs constitutes a private legal order, operating in the shadow of governmental regulation. Ultimately, this contribution seeks to advise whether a state-intervention in industry-driven standard setting is desirable, and whether the increasing regulatory importance of SDOs should be addressed in legislation on standardization.

Keywords: private order, standardization, standard-setting organizations, transnational law

Procedia PDF Downloads 161
4497 Self-Supervised Attributed Graph Clustering with Dual Contrastive Loss Constraints

Authors: Lijuan Zhou, Mengqi Wu, Changyong Niu

Abstract:

Attributed graph clustering can utilize the graph topology and node attributes to uncover hidden community structures and patterns in complex networks, aiding in the understanding and analysis of complex systems. Utilizing contrastive learning for attributed graph clustering can effectively exploit meaningful implicit relationships between data. However, existing attributed graph clustering methods based on contrastive learning suffer from the following drawbacks: 1) Complex data augmentation increases computational cost, and inappropriate data augmentation may lead to semantic drift. 2) The selection of positive and negative samples neglects the intrinsic cluster structure learned from graph topology and node attributes. Therefore, this paper proposes a method called self-supervised Attributed Graph Clustering with Dual Contrastive Loss constraints (AGC-DCL). Firstly, Siamese Multilayer Perceptron (MLP) encoders are employed to generate two views separately to avoid complex data augmentation. Secondly, the neighborhood contrastive loss is introduced to constrain node representation using local topological structure while effectively embedding attribute information through attribute reconstruction. Additionally, clustering-oriented contrastive loss is applied to fully utilize clustering information in global semantics for discriminative node representations, regarding the cluster centers from two views as negative samples to fully leverage effective clustering information from different views. Comparative clustering results with existing attributed graph clustering algorithms on six datasets demonstrate the superiority of the proposed method.

Keywords: attributed graph clustering, contrastive learning, clustering-oriented, self-supervised learning

Procedia PDF Downloads 44
4496 Survival Analysis of Identifying the Risk Factors of Affecting the First Recurrence Time of Breast Cancer: The Case of Tigray, Ethiopia

Authors: Segen Asayehegn

Abstract:

Introduction: In Tigray, Ethiopia, next to cervical cancer, breast cancer is one of the most common cancer health problems for women. Objectives: This article is proposed to identify the prospective and potential risk factors affecting the time-to-first-recurrence of breast cancer patients in Tigray, Ethiopia. Methods: The data were taken from the patient’s medical record that registered from January 2010 to January 2020. The study considered a sample size of 1842 breast cancer patients. Powerful non-parametric and parametric shared frailty survival regression models (FSRM) were applied, and model comparisons were performed. Results: Out of 1842 breast cancer patients, about 1290 (70.02%) recovered/cured the disease. The median cure time from breast cancer is found at 12.8 months. The model comparison suggested that the lognormal parametric shared a frailty survival regression model predicted that treatment, stage of breast cancer, smoking habit, and marital status significantly affects the first recurrence of breast cancer. Conclusion: Factors like treatment, stages of cancer, and marital status were improved while smoking habits worsened the time to cure breast cancer. Recommendation: Thus, the authors recommend reducing breast cancer health problems, the regional health sector facilities need to be improved. More importantly, concerned bodies and medical doctors should emphasize the identified factors during treatment. Furthermore, general awareness programs should be given to the community on the identified factors.

Keywords: acceleration factor, breast cancer, Ethiopia, shared frailty survival models, Tigray

Procedia PDF Downloads 130
4495 Numerical Investigation of the Integration of a Micro-Combustor with a Free Piston Stirling Engine in an Energy Recovery System

Authors: Ayodeji Sowale, Athanasios Kolios, Beatriz Fidalgo, Tosin Somorin, Aikaterini Anastasopoulou, Alison Parker, Leon Williams, Ewan McAdam, Sean Tyrrel

Abstract:

Recently, energy recovery systems are thriving and raising attention in the power generation sector, due to the request for cleaner forms of energy that are friendly and safe for the environment. This has created an avenue for cogeneration, where Combined Heat and Power (CHP) technologies have been recognised for their feasibility, and use in homes and small-scale businesses. The efficiency of combustors and the advantages of the free piston Stirling engines over other conventional engines in terms of output power and efficiency, have been observed and considered. This study presents the numerical analysis of a micro-combustor with a free piston Stirling engine in an integrated model of a Nano Membrane Toilet (NMT) unit. The NMT unit will use the micro-combustor to produce waste heat of high energy content from the combustion of human waste and the heat generated will power the free piston Stirling engine which will be connected to a linear alternator for electricity production. The thermodynamic influence of the combustor on the free piston Stirling engine was observed, based on the heat transfer from the flue gas to working gas of the free piston Stirling engine. The results showed that with an input of 25 MJ/kg of faecal matter, and flue gas temperature of 773 K from the micro-combustor, the free piston Stirling engine generates a daily output power of 428 W, at thermal efficiency of 10.7% with engine speed of 1800 rpm. An experimental investigation into the integration of the micro-combustor and free piston Stirling engine with the NMT unit is currently underway.

Keywords: free piston stirling engine, micro-combustor, nano membrane toilet, thermodynamics

Procedia PDF Downloads 252
4494 Use of Selected Cytokines in the Early SIRS/MODS Diagnostic Testing at Patients after Trauma

Authors: Aneta Binkowska, Grzegorz Michalak, Slawomir Pilip, Lukasz Bondaruk, Daniel Celinski, Robert Slotwinski

Abstract:

Post-traumatic mortality rates are still very high and show an increasing tendency. Early identification of patients at high risk of severe complications has a significant impact on treatment outcomes. The aim of the study was to better understand the early pathological inflammatory response to injury and infection and to determine the usefulness of the assessment of TNF-α and sTNFR1 concentrations in the peripheral blood as early indicators of severe post-traumatic complications. The study was carried out in a group of 51 patients after trauma treated in the ED, including 32 patients that met inclusion criteria for immunological analysis. Patients were divided into two groups using the ISS scale (group A with ISS ≥20, group B with ISS <20). Serum levels of TNF-α and sTNFR1 were determined after admission to the ED and after 3, 6, 12 and 24 hours. The highest TNF-α and sTNFR1 concentrations in both groups were recorded at admission and were significantly higher in group A compared to group B (A vs B TNF-α 2.46 pg/ml vs 1.78 pg/ml; sTNFR1 1667.5 pg/ml vs 875.2 p<0.005). The concentration of sTNFR1 in patients with severe complications was significantly higher compared to patients without complications and preceded clinical symptoms of complications ( C+ vs C- 1561.5 pg/ml vs 930.6 pg/ml). Spearman's correlation showed a statistically significant positive correlation between the baseline concentrations of IL-6 (r=0.38, p<0.043) and sTNFR1 (r=0.59, p=0.001) and the ISS scores. The high diagnostic sensitivity calculated from the ROC (receiver operating characteristic) curves was found for the concentrations of both cytokines: TNF α (AUC=0.91, p=0.004) and sTNFR1 (AUC=0.86, p=0.011). Elevated levels of sTNFR1, determined in the peripheral blood shortly after injury, is significantly associated with the occurrence of later complications, which in some patients lead to death. In contrast, high levels of TNF-α shortly after injury are associated with high mortality.

Keywords: cytokine, SIRS, MODS, trauma

Procedia PDF Downloads 159
4493 The Design Method of Artificial Intelligence Learning Picture: A Case Study of DCAI's New Teaching

Authors: Weichen Chang

Abstract:

To create a guided teaching method for AI generative drawing design, this paper develops a set of teaching models for AI generative drawing (DCAI), which combines learning modes such as problem-solving, thematic inquiry, phenomenon-based, task-oriented, and DFC . Through the information security AI picture book learning guided programs and content, the application of participatory action research (PAR) and interview methods to explore the dual knowledge of Context and ChatGPT (DCAI) for AI to guide the development of students' AI learning skills. In the interviews, the students highlighted five main learning outcomes (self-study, critical thinking, knowledge generation, cognitive development, and presentation of work) as well as the challenges of implementing the model. Through the use of DCAI, students will enhance their consensus awareness of generative mapping analysis and group cooperation, and they will have knowledge that can enhance AI capabilities in DCAI inquiry and future life. From this paper, it is found that the conclusions are (1) The good use of DCAI can assist students in exploring the value of their knowledge through the power of stories and finding the meaning of knowledge communication; (2) Analyze the transformation power of the integrity and coherence of the story through the context so as to achieve the tension of ‘starting and ending’; (3) Use ChatGPT to extract inspiration, arrange story compositions, and make prompts that can communicate with people and convey emotions. Therefore, new knowledge construction methods will be one of the effective methods for AI learning in the face of artificial intelligence, providing new thinking and new expressions for interdisciplinary design and design education practice.

Keywords: artificial intelligence, task-oriented, contextualization, design education

Procedia PDF Downloads 23
4492 Potential Growth of Tomato Plants in Induced Saline Soil with Rhizobacteria (PGPR)

Authors: Arfan Ali, Idrees Ahmad Nasir

Abstract:

The critical evaluation of tolerance in tomato plants against the induced saline soil were assessed by transcript analysis of genes coding for products potentially involved in stress tolerance. A reverse transcriptase PCR experiment was performed with Hsp90-1, MT2, and GR1like protein genes using RNA isolated from different tissues of tomato plants. Four strains of Bacillus magisterium were inoculated with 100 Mm & 200 Mm concentrations of salt. Eleven treatments each ten replica pots were installed in green house experiment and the parameters taken into account were morphological (length, weight, number of leaves, leaf surface area), chemical (anthocyanin, chlorophyll-a, chlorophyll-b, carotenoids) and biological (gene expression). Results bare a response i.e. highest response of MT2 like gene was at 24 hpi and the highest levels of GR1 like protein transcript accumulation were detected at 36 hpi. The chemical and morphological parameters at diverse salt concentrations bequeath superlative response amongst strains which candidly flank on Zm7 and Zm4. Therefore, Bacillus magisterium Zm7 strains and somehow Zm4 strain can be used in saline condition to make plants tolerant. The overall performance of strains Zm7, Zm6, and Zm4 was found better for all studied traits under salt stress conditions. Significant correlations among traits root length, shoot length, number of leaves, leaf surface area, carotenoids, anthocyanin, chlorophyll-a and chlorophyll-b were found and suggested that the salt tolerance in tomato may be improved through the use of PGPR strains.

Keywords: Bacillus magisterium, gene expression glutathione reductase, metallothionein, PGPR, Rhizobacteria, saline

Procedia PDF Downloads 430
4491 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments

Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea

Abstract:

The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.

Keywords: deep learning, data mining, gender predication, MOOCs

Procedia PDF Downloads 144
4490 A Comparison of Implant Stability between Implant Placed without Bone Graft versus with Bone Graft Using Guided Bone Regeneration (GBR) Technique: A Resonance Frequency Analysis

Authors: R. Janyaphadungpong, A. Pimkhaokham

Abstract:

This prospective clinical study determined the insertion torque (IT) value and monitored the changes in implant stability quotient (ISQ) values during the 12 weeks healing period from implant placement without bone graft (control group) and with bone graft using the guided bone regeneration (GBR) technique (study group). The relationship between the IT and ISQ values of the implants was also assessed. The control and study groups each consisted of 6 patients with 8 implants per group. The ASTRA TECH Implant System™ EV 4.2 mm in diameter was placed in the posterior mandibular region. In the control group, implants were placed in bone without bone graft, whereas in the study group implants were placed simultaneously with the GBR technique at favorable bone defect. IT (Ncm) of each implant was recorded when fully inserted. ISQ values were obtained from the Osstell® ISQ at the time of implant placement, and at 2, 4, 8, and 12 weeks. No difference in IT was found between groups (P = 0.320). The ISQ values in the control group were significantly higher than in the study group at the time of implant placement and at 4 weeks. There was no significant association between IT and ISQ values either at baseline or after the 12 weeks. At 12 weeks of healing, the control and study groups displayed different trends. Mean ISQ values for the control group decreased over the first 2 weeks and then started to increase. ISQ value increases were statistically significant at 8 weeks and later, whereas mean ISQ values in the study group decreased over the first 4 weeks and then started to increase, with statistical significance after 12 weeks. At 12 weeks, all implants achieved osseointegration with mean ISQ values over the threshold value (ISQ>70). These results indicated that implants, in which guided bone regeneration technique was performed during implant placement for treating favorable bone defects, were as predictable as implants placed without bone graft. However, loading in implants placed with the GBR technique for correcting favorable bone defects should be performed after 12 weeks of healing to ensure implant stability and osseointegration.

Keywords: dental implant, favorable bone defect, guided bone regeneration technique, implant stability

Procedia PDF Downloads 290
4489 Functions and Challenges of New County-Based Regional Plan in Taiwan

Authors: Yu-Hsin Tsai

Abstract:

A new, mandated county regional plan system has been initiated since 2010 nationwide in Taiwan, with its role situated in-between the policy-led cross-county regional plan and the blueprint-led city plan. This new regional plan contain both urban and rural areas in one single plan, which provides a more complete planning territory, i.e., city region within the county’s jurisdiction, and to be executed and managed effectively by the county government. However, the full picture of its functions and characteristics seems still not totally clear, compared with other levels of plans; either are planning goals and issues that can be most appropriately dealt with at this spatial scale. In addition, the extent to which the inclusion of sustainability ideal and measures to cope with climate change are unclear. Based on the above issues, this study aims to clarify the roles of county regional plan, to analyze the extent to which the measures cope with sustainability, climate change, and forecasted declining population, and the success factors and issues faced in the planning process. The methodology applied includes literature review, plan quality evaluation, and interview with officials of the central and local governments and urban planners involved for all the 23 counties in Taiwan. The preliminary research results show, first, growth management related policies have been widely implemented and expected to have effective impact, including incorporating resources capacity to determine maximum population for the city region as a whole, developing overall vision of urban growth boundary for all the whole city region, prioritizing infill development, and use of architectural land within urbanized area over rural area to cope with urban growth. Secondly, planning-oriented zoning is adopted in urban areas, while demand-oriented planning permission is applied in the rural areas with designated plans. Then, public participation has been evolved to the next level to oversee all of government’s planning and review processes due to the decreasing trust in the government, and development of public forum on the internet etc. Next, fertile agricultural land is preserved to maintain food self-supplied goal for national security concern. More adoption-based methods than mitigation-based methods have been applied to cope with global climate change. Finally, better land use and transportation planning in terms of avoiding developing rail transit stations and corridor in rural area is promoted. Even though many promising, prompt measures have been adopted, however, challenges exist to surround: first, overall urban density, likely affecting success of UGB, or use of rural agricultural land, has not been incorporated, possibly due to implementation difficulties. Second, land-use related measures to mitigating climate change seem less clear and hence less employed. Smart decline has not drawn enough attention to cope with predicted population decrease in the next decade. Then, some reluctance from county’s government to implement county regional plan can be observed vaguely possibly since limits have be set on further development on agricultural land and sensitive areas. Finally, resolving issue on existing illegal factories on agricultural land remains the most challenging dilemma.

Keywords: city region plan, sustainability, global climate change, growth management

Procedia PDF Downloads 344