Search results for: digital transformation artificial intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6677

Search results for: digital transformation artificial intelligence

2927 Similarity Based Retrieval in Case Based Reasoning for Analysis of Medical Images

Authors: M. Dasgupta, S. Banerjee

Abstract:

Content Based Image Retrieval (CBIR) coupled with Case Based Reasoning (CBR) is a paradigm that is becoming increasingly popular in the diagnosis and therapy planning of medical ailments utilizing the digital content of medical images. This paper presents a survey of some of the promising approaches used in the detection of abnormalities in retina images as well in mammographic screening and detection of regions of interest in MRI scans of the brain. We also describe our proposed algorithm to detect hard exudates in fundus images of the retina of Diabetic Retinopathy patients.

Keywords: case based reasoning, exudates, retina image, similarity based retrieval

Procedia PDF Downloads 349
2926 Feasibility of Online Health Coaching for Canadian Armed Forces Personnel Receiving Treatment for Depression, Anxiety and PTSD

Authors: Noah Wayne, Andrea Tuka, Adrian Norbash, Bryan Garber, Paul Ritvo

Abstract:

Program/Intervention Description: The Canadian Armed Forces(CAF) Mental Health Clinicstreat a full spectrum of mental disorder, addictions, and psychosocial issues that include Major Depressive Disorder, Post-Traumatic Stress Disorder, Generalized Anxiety Disorder, and other diagnoses. We evaluated the feasibility of an online health coach interventiondelivering mindfulness based cognitive behavioral therapy (M-CBT) and behaviour changesupport for individuals receiving treatment at CAF Clinics. Participants were provided accounts on NexJ Connected Wellness, a digital health platform, and 16 weeks of phone-based health coaching,emphasizingmild to moderate aerobic exercise, a healthy diet, and M-CBT content. The primary objective was to assess the feasibility of the online deliverywith CAF members. Evaluation Methods: Feasibility was evaluated in terms of recruitment, engagement, and program satisfaction. Weadditionallyevaluatedhealth behavior change, program completion, and mental health symptoms (i.e. PHQ-9, GAD-7, PCL-5) at three time points. Results: Service members were referred from Vancouver, Esquimalt, and Edmonton CAF bases between August 2020 and January 2021. N=106 CAF personnel were referred, and n=77 consented.N=66 participated, and n=44 completed 4-month and follow-up measures. The platform received a mean rating of76.5 on the System Usability Scale, and health coaching was judged the most helpful program feature (95.2% endorsement), while reminders (53.7%), secure messaging (51.2%), and notifications (51.2%) were also identified. Improvements in mental health status during active interventions were observed on the PHQ-9 (-5.4, p<0.001), GAD-7 (-4.0, p<0.001), and PCL-5 (-4.1, p<0.05). Conclusion: Online health coaching was well-received amidst the COVID-19 pandemic and related lockdowns. Uptake and engagement were positively reported. Participants valuedcontacts and reported strong therapeutic alliances with coaches. Healthy diet, regular exercise, and mindfulness practice are important for physical and mental health. Engagements in these behaviors are associated with reduced symptoms. An online health coach program appears feasible for assisting Canadian Armed Forces personnel.

Keywords: coaching, CBT, military, depression, mental health, digital

Procedia PDF Downloads 161
2925 Machine Learning Techniques for Estimating Ground Motion Parameters

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.

Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine

Procedia PDF Downloads 124
2924 A Low-Power Comparator Structure with Arbitrary Pre-Amplification Delay

Authors: Ata Khorami, Mohammad Sharifkhani

Abstract:

In the dynamic comparators, the pre-amplifier amplifies the input differential voltage and when the output Vcm of the pre-amplifier becomes larger than Vth of the latch input transistors, the latch is activated and finalizes the comparison. As a result, the pre-amplification delay is fixed to a value and cannot be set at the minimum required delay, thus, significant power and delay are imposed. In this paper, a novel structure is proposed through which the pre-amplification delay can be set at any low value saving power and time. Simulations show that using the proposed structure, by setting the pre-amplification delay at the minimum required value the power and comparison delay can be reduced by 55% and 100ps respectively.

Keywords: dynamic comparator, low power comparator, analog to digital converter, pre-amplification delay

Procedia PDF Downloads 207
2923 Investigating the Role of Positive Adolescent Development on Hope for the Future in Adolescents Aged 14 to 18 with Anxiety in the City of Ahvaz in the Country of Iran in 2023

Authors: Negar Mirzaie, Hedayet Allah Sharifi

Abstract:

The present study was conducted with the aim of investigating the role of positive adolescent development on hope for the future in adolescents aged 14 to 18 with anxiety in the city of Ahvaz in the country of Iran in 2023. This research was descriptive and correlational. The statistical population of the present research was the adolescents aged 14 to 18 with anxiety of Ahvaz city in Iran in 2023. 150 people were selected by Purposeful sampling method and answered questionnaires of positive adolescent development and hope. The data were analyzed by Pearson correlation and multiple regression. The results showed that there is a significant relationship between the positive development of adolescence and hope for the future in anxious adolescents aged 14 to 18 in the city of Ahvaz in Iran in 2023 (p<0.05). Therefore, it is suggested to use the program of positive transformation of adolescents as hope in adolescents.

Keywords: positive adolescent development, hope, adolescents, anxiety

Procedia PDF Downloads 62
2922 Review on Rainfall Prediction Using Machine Learning Technique

Authors: Prachi Desai, Ankita Gandhi, Mitali Acharya

Abstract:

Rainfall forecast is mainly used for predictions of rainfall in a specified area and determining their future rainfall conditions. Rainfall is always a global issue as it affects all major aspects of one's life. Agricultural, fisheries, forestry, tourism industry and other industries are widely affected by these conditions. The studies have resulted in insufficient availability of water resources and an increase in water demand in the near future. We already have a new forecast system that uses the deep Convolutional Neural Network (CNN) to forecast monthly rainfall and climate changes. We have also compared CNN against Artificial Neural Networks (ANN). Machine Learning techniques that are used in rainfall predictions include ARIMA Model, ANN, LR, SVM etc. The dataset on which we are experimenting is gathered online over the year 1901 to 20118. Test results have suggested more realistic improvements than conventional rainfall forecasts.

Keywords: ANN, CNN, supervised learning, machine learning, deep learning

Procedia PDF Downloads 205
2921 Automatic Algorithm for Processing and Analysis of Images from the Comet Assay

Authors: Yeimy L. Quintana, Juan G. Zuluaga, Sandra S. Arango

Abstract:

The comet assay is a method based on electrophoresis that is used to measure DNA damage in cells and has shown important results in the identification of substances with a potential risk to the human population as innumerable physical, chemical and biological agents. With this technique is possible to obtain images like a comet, in which the tail of these refers to damaged fragments of the DNA. One of the main problems is that the image has unequal luminosity caused by the fluorescence microscope and requires different processing to condition it as well as to know how many optimal comets there are per sample and finally to perform the measurements and determine the percentage of DNA damage. In this paper, we propose the design and implementation of software using Image Processing Toolbox-MATLAB that allows the automation of image processing. The software chooses the optimum comets and measuring the necessary parameters to detect the damage.

Keywords: artificial vision, comet assay, DNA damage, image processing

Procedia PDF Downloads 312
2920 Traffic Light Detection Using Image Segmentation

Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra

Abstract:

Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).

Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks

Procedia PDF Downloads 176
2919 The Proposal for a Framework to Face Opacity and Discrimination ‘Sins’ Caused by Consumer Creditworthiness Machines in the EU

Authors: Diogo José Morgado Rebelo, Francisco António Carneiro Pacheco de Andrade, Paulo Jorge Freitas de Oliveira Novais

Abstract:

Not everything in AI-power consumer credit scoring turns out to be a wonder. When using AI in Creditworthiness Assessment (CWA), opacity and unfairness ‘sins’ must be considered to the task be deemed Responsible. AI software is not always 100% accurate, which can lead to misclassification. Discrimination of some groups can be exponentiated. A hetero personalized identity can be imposed on the individual(s) affected. Also, autonomous CWA sometimes lacks transparency when using black box models. However, for this intended purpose, human analysts ‘on-the-loop’ might not be the best remedy consumers are looking for in credit. This study seeks to explore the legality of implementing a Multi-Agent System (MAS) framework in consumer CWA to ensure compliance with the regulation outlined in Article 14(4) of the Proposal for an Artificial Intelligence Act (AIA), dated 21 April 2021 (as per the last corrigendum by the European Parliament on 19 April 2024), Especially with the adoption of Art. 18(8)(9) of the EU Directive 2023/2225, of 18 October, which will go into effect on 20 November 2026, there should be more emphasis on the need for hybrid oversight in AI-driven scoring to ensure fairness and transparency. In fact, the range of EU regulations on AI-based consumer credit will soon impact the AI lending industry locally and globally, as shown by the broad territorial scope of AIA’s Art. 2. Consequently, engineering the law of consumer’s CWA is imperative. Generally, the proposed MAS framework consists of several layers arranged in a specific sequence, as follows: firstly, the Data Layer gathers legitimate predictor sets from traditional sources; then, the Decision Support System Layer, whose Neural Network model is trained using k-fold Cross Validation, provides recommendations based on the feeder data; the eXplainability (XAI) multi-structure comprises Three-Step-Agents; and, lastly, the Oversight Layer has a 'Bottom Stop' for analysts to intervene in a timely manner. From the analysis, one can assure a vital component of this software is the XAY layer. It appears as a transparent curtain covering the AI’s decision-making process, enabling comprehension, reflection, and further feasible oversight. Local Interpretable Model-agnostic Explanations (LIME) might act as a pillar by offering counterfactual insights. SHapley Additive exPlanation (SHAP), another agent in the XAI layer, could address potential discrimination issues, identifying the contribution of each feature to the prediction. Alternatively, for thin or no file consumers, the Suggestion Agent can promote financial inclusion. It uses lawful alternative sources such as the share of wallet, among others, to search for more advantageous solutions to incomplete evaluation appraisals based on genetic programming. Overall, this research aspires to bring the concept of Machine-Centered Anthropocentrism to the table of EU policymaking. It acknowledges that, when put into service, credit analysts no longer exert full control over the data-driven entities programmers have given ‘birth’ to. With similar explanatory agents under supervision, AI itself can become self-accountable, prioritizing human concerns and values. AI decisions should not be vilified inherently. The issue lies in how they are integrated into decision-making and whether they align with non-discrimination principles and transparency rules.

Keywords: creditworthiness assessment, hybrid oversight, machine-centered anthropocentrism, EU policymaking

Procedia PDF Downloads 36
2918 The Impact of Online Advertising on Consumer Purchase Behaviour Based on Malaysian Organizations

Authors: Naser Zourikalatehsamad, Seyed Abdorreza Payambarpour, Ibrahim Alwashali, Zahra Abdolkarimi

Abstract:

The paper aims to evaluate the effect of online advertising on consumer purchase behavior in Malaysian organizations. The paper has potential to extend and refine theory. A survey was distributed among Students of UTM university during the winter 2014 and 160 responses were collected. Regression analysis was used to test the hypothesized relationships of the model. Result shows that the predictors (cost saving factor, convenience factor and customized product or services) have positive impact on intention to continue seeking online advertising.

Keywords: consumer purchase, convenience, customized product, cost saving, customization, flow theory, mass communication, online advertising ads, online advertising measurement, online advertising mechanism, online intelligence system, self-confidence, willingness to purchase

Procedia PDF Downloads 481
2917 Science of Social Work: Recognizing Its Existence as a Scientific Discipline by a Method Triangulation

Authors: Sandra Mendes

Abstract:

Social Work has encountered over time with multivariate requests in the field of its action, provisioning frameworks of knowledge and praxis. Over the years, we have observed a transformation of society and, consequently, of the public who deals with the social work practitioners. Both, training and profession have had need to adapt and readapt the ways of doing, bailing up theories to action, while action unfolds emancipation of new theories. The theoretical questioning of this subject lies on classical authors from social sciences, and contemporary authors of Social Work. In fact, both enhance, in the design of social work, an integration and social cohesion function, creating a culture of action and theory, attributing to its method a relevant function, which shall be promoter of social changes in various dimensions of both individual and collective life, as well as scientific knowledge. On the other hand, it is assumed that Social Work, through its professionalism and through the academy, is now closer to distinguish itself from other Social Sciences as an autonomous scientific field, being, however, in the center of power struggles. This paper seeks to fill the gap in social work literature about the study of the scientific field of this area of knowledge.

Keywords: field theory, knowledge, science, social work

Procedia PDF Downloads 359
2916 Transformations of Land Uses and Attitudes in Manavgat Region at South Turkey

Authors: Emrah Yildirim, Veli Ortacesme

Abstract:

Manavgat region, located in Antalya province at South Turkey, has hosted many civilizations throughout the centuries. All of these civilizations cultivated the land in their surroundings by engaging in agriculture, livestock production and hunting. In the last 50 years, there have been dramatic changes in the region. The economy of the region switched from the agriculture to tourism. Due to the increase in the irrigable agricultural lands, several dams were built on Manavgat River. Developments in the agricultural mechanization and new product needs have changed the pattern of agriculture and regional landscape. Coastal zone of the region has transformed to tourism areas, Manavgat Town Center has grown up and the urbanization in general has increased. The population and urbanization have increased by 257 % and 276 %, respectively. The tourism and commercial areas cover 561,8 hectares today. All these developments had some negative effects on the environment. In this study, land use/land cover transformations were studied in Manavgat region by using aerial photos. The reasons and consequences of the land use transformations were discussed, and some recommendations regarding the sustainable use of this region’s landscape will be shared.

Keywords: land use, Manavgat region, south Turkey, transformation

Procedia PDF Downloads 401
2915 Analyzing Growth Trends of the Built Area in the Precincts of Various Types of Tourist Attractions in India: 2D and 3D Analysis

Authors: Yarra Sulina, Nunna Tagore Sai Priya, Ankhi Banerjee

Abstract:

With the rapid growth in tourist arrivals, there has been a huge demand for the growth of infrastructure in the destinations. With the increasing preference of tourists to stay near attractions, there has been a considerable change in the land use around tourist sites. However, with the inclusion of certain regulations and guidelines provided by the authorities based on the nature of tourism activity and geographical constraints, the pattern of growth of built form is different for various tourist sites. Therefore, this study explores the patterns of growth of built-up for a decade from 2009 to 2019 through two-dimensional and three-dimensional analysis. Land use maps are created through supervised classification of satellite images obtained from LANDSAT 4-5 and LANDSAT 8 for 2009 and 2019, respectively. The overall expansion of the built-up area in the region is analyzed in relation to the distance from the city's geographical center and the tourism-related growth regions are identified which are influenced by the proximity of tourist attractions. The primary tourist sites of various destinations with different geographical characteristics and tourism activities, that have undergone a significant increase in built-up area and are occupied with tourism-related infrastructure are selected for further study. Proximity analysis of the tourism-related growth sites is carried out to delineate the influence zone of the tourist site in a destination. Further, a temporal analysis of volumetric growth of built form is carried out to understand the morphology of the tourist precincts over time. The Digital Surface Model (DSM) and Digital Terrain Model (DTM) are used to extract the building footprints along with building height. Factors such as building height, and building density are evaluated to understand the patterns of three-dimensional growth of the built area in the region. The study also explores the underlying reasons for such changes in built form around various tourist sites and predicts the impact of such growth patterns in the region. The building height and building density around tourist site creates a huge impact on the appeal of the destination. The surroundings that are incompatible with the theme of the tourist site have a negative impact on the attractiveness of the destination that leads to negative feedback by the tourists, which is not a sustainable form of development. Therefore, proper spatial measures are necessary in terms of area and volume of the built environment for a healthy and sustainable environment around the tourist sites in the destination.

Keywords: sustainable tourism, growth patterns, land-use changes, 3-dimensional analysis of built-up area

Procedia PDF Downloads 79
2914 Wear Behavior and Microstructure of Eutectic Al - Si Alloys Manufactured by Selective Laser Melting

Authors: Nan KANG, Pierre Coddet, Hanlin Liao, Christian Coddet

Abstract:

In this study, the almost dense eutectic Al-12Si alloys were fabricated by selective laser melting (SLM) from the powder mixture of pure Aluminum and pure Silicon, which show the mean particle sizes of 30 μm and 5μm respectively, under the argon environment. The image analysis shows that the highest value of relative density (95 %) was measured for the part obtained at the laser power of 280 W. X ray diffraction (XRD), Optical microscope (OM) and scanning electron microscope (SEM) equipped with X-ray energy dispersive spectroscopy (EDS) were employed to determine the microstructures of the SLM-processed Al-Si alloy, which illustrate that the SLM samples present the ultra-fine microstructure. The XRD results indicate that no clearly phase transformation happened during the SLM process. Additionally, the vaporization behavior of Aluminum was detected for the parts obtained at high laser power. Besides, the maximum microhardness value, about 95 Hv, was measured for the samples obtained at laser power of 280 W, and which shows the highest wear resistance.

Keywords: al-Si alloy, selective laser melting, wear behavior, microstructure

Procedia PDF Downloads 402
2913 Generalized Hyperbolic Functions: Exponential-Type Quantum Interactions

Authors: Jose Juan Peña, J. Morales, J. García-Ravelo

Abstract:

In the search of potential models applied in the theoretical treatment of diatomic molecules, some of them have been constructed by using standard hyperbolic functions as well as from the so-called q-deformed hyperbolic functions (sc q-dhf) for displacing and modifying the shape of the potential under study. In order to transcend the scope of hyperbolic functions, in this work, a kind of generalized q-deformed hyperbolic functions (g q-dhf) is presented. By a suitable transformation, through the q deformation parameter, it is shown that these g q-dhf can be expressed in terms of their corresponding standard ones besides they can be reduced to the sc q-dhf. As a useful application of the proposed approach, and considering a class of exactly solvable multi-parameter exponential-type potentials, some new q-deformed quantum interactions models that can be used as interesting alternative in quantum physics and quantum states are presented. Furthermore, due that quantum potential models are conditioned on the q-dependence of the parameters that characterize to the exponential-type potentials, it is shown that many specific cases of q-deformed potentials are obtained as particular cases from the proposal.

Keywords: diatomic molecules, exponential-type potentials, hyperbolic functions, q-deformed potentials

Procedia PDF Downloads 186
2912 Evaluating Forecasting Strategies for Day-Ahead Electricity Prices: Insights From the Russia-Ukraine Crisis

Authors: Alexandra Papagianni, George Filis, Panagiotis Papadopoulos

Abstract:

The liberalization of the energy market and the increasing penetration of fluctuating renewables (e.g., wind and solar power) have heightened the importance of the spot market for ensuring efficient electricity supply. This is further emphasized by the EU’s goal of achieving net-zero emissions by 2050. The day-ahead market (DAM) plays a key role in European energy trading, accounting for 80-90% of spot transactions and providing critical insights for next-day pricing. Therefore, short-term electricity price forecasting (EPF) within the DAM is crucial for market participants to make informed decisions and improve their market positioning. Existing literature highlights out-of-sample performance as a key factor in assessing EPF accuracy, with influencing factors such as predictors, forecast horizon, model selection, and strategy. Several studies indicate that electricity demand is a primary price determinant, while renewable energy sources (RES) like wind and solar significantly impact price dynamics, often lowering prices. Additionally, incorporating data from neighboring countries, due to market coupling, further improves forecast accuracy. Most studies predict up to 24 steps ahead using hourly data, while some extend forecasts using higher-frequency data (e.g., half-hourly or quarter-hourly). Short-term EPF methods fall into two main categories: statistical and computational intelligence (CI) methods, with hybrid models combining both. While many studies use advanced statistical methods, particularly through different versions of traditional AR-type models, others apply computational techniques such as artificial neural networks (ANNs) and support vector machines (SVMs). Recent research combines multiple methods to enhance forecasting performance. Despite extensive research on EPF accuracy, a gap remains in understanding how forecasting strategy affects prediction outcomes. While iterated strategies are commonly used, they are often chosen without justification. This paper contributes by examining whether the choice of forecasting strategy impacts the quality of day-ahead price predictions, especially for multi-step forecasts. We evaluate both iterated and direct methods, exploring alternative ways of conducting iterated forecasts on benchmark and state-of-the-art forecasting frameworks. The goal is to assess whether these factors should be considered by end-users to improve forecast quality. We focus on the Greek DAM using data from July 1, 2021, to March 31, 2022. This period is chosen due to significant price volatility in Greece, driven by its dependence on natural gas and limited interconnection capacity with larger European grids. The analysis covers two phases: pre-conflict (January 1, 2022, to February 23, 2022) and post-conflict (February 24, 2022, to March 31, 2022), following the Russian-Ukraine conflict that initiated an energy crisis. We use the mean absolute percentage error (MAPE) and symmetric mean absolute percentage error (sMAPE) for evaluation, as well as the Direction of Change (DoC) measure to assess the accuracy of price movement predictions. Our findings suggest that forecasters need to apply all strategies across different horizons and models. Different strategies may be required for different horizons to optimize both accuracy and directional predictions, ensuring more reliable forecasts.

Keywords: short-term electricity price forecast, forecast strategies, forecast horizons, recursive strategy, direct strategy

Procedia PDF Downloads 11
2911 Interactive Multiple Functions User Interface

Authors: Manjit Singh Sidhu, Waleed Maqableh, Jee Geak Ying

Abstract:

Tangible user interfaces (TUI) that employ markers in the augmented reality (AR) environment has hampered the interactivity between the user and the software application. This is because the user lacks focus on visualizing the contents due to the interaction mechanisms whereby multiple markers may need to be used to perform a particular function. In this research, we have designed a novel TUI user interface where multiple functions could be triggered similar to a natural keyboard thus allowing user to focus more on its digital contents such as 2D/3D, text input, animation and sound. Test results of the user interface with potential users and HCI experts revealed that the multiple functions user interface was new, preferred and appreciated more as opposed to marker based user interface.

Keywords: multimedia, augmented reality, engineering, user interface, visualization

Procedia PDF Downloads 451
2910 Maker Education as Means for Early Entrepreneurial Education: Evaluation Results from a European Pilot Action

Authors: Elisabeth Unterfrauner, Christian Voigt

Abstract:

Since the foundation of the first Fab Lab by the Massachusetts Institute of Technology about 17 years ago, the Maker movement has spread globally with the foundation of maker spaces and Fab Labs worldwide. In these workshops, citizens have access to digital fabrication technologies such as 3D printers and laser cutters to develop and test their own ideas and prototypes, which makes it an attractive place for start-up companies. Know-How is shared not only in the physical space but also online in diverse communities. According to the Horizon report, the Maker movement, however, will also have an impact on educational settings in the following years. The European project ‘DOIT - Entrepreneurial skills for young social innovators in an open digital world’ has incorporated key elements of making to develop an early entrepreneurial education program for children between the age of six and 16. The Maker pedagogy builds on constructive learning approaches, learning by doing principles, learning in collaborative and interdisciplinary teams and learning through trial and error where mistakes are acknowledged as learning opportunities. The DOIT program consists of seven consecutive elements. It starts with a motivation phase where students get motivated by envisioning the scope of their possibilities. The second step is about Co-design: Students are asked to collect and select potential ideas for innovations. In the Co-creation phase students gather in teams and develop first prototypes of their ideas. In the iteration phase, the prototype is continuously improved and in the next step, in the reflection phase, feedback on the prototypes is exchanged between the teams. In the last two steps, scaling and reaching out, the robustness of the prototype is tested with a bigger group of users outside of the educational setting and finally students will share their projects with a wider public. The DOIT program involves 1,000 children in two pilot phases at 11 pilot sites in ten different European countries. The comprehensive evaluation design is based on a mixed method approach with a theoretical backbone on Lackeus’ model of entrepreneurship education, which distinguishes between entrepreneurial attitudes, entrepreneurial skills and entrepreneurial knowledge. A pre-post-test with quantitative measures as well as qualitative data from interviews with facilitators, students and workshop protocols will reveal the effectiveness of the program. The evaluation results will be presented at the conference.

Keywords: early entrepreneurial education, Fab Lab, maker education, Maker movement

Procedia PDF Downloads 134
2909 Hegemonic Salaryman Masculinity: Case Study of Transitional Male Gender Roles in Today's Japan

Authors: D. Norton

Abstract:

This qualitative study focuses on the lived experience and displacement of young white-collar masculinities in Japan. In recent years, the salaryman lifestyle has undergone significant disruption - increased competition for regular employment, rise in non-regular structurings of labour across public/private sectors, and shifting role expectations within the home. Despite this, related scholarship hints at a continued reinforcement of the traditional male gender role - that the salaryman remains a key benchmark of Japanese masculine identity. For those in structural proximity to these more ‘normative’ performativities, interest lies their engagement with such narratives - how they make sense of their masculinity in response to stated changes. In light of the historical emphasis on labour and breadwinning logics, notions of respective security or precarity generated as a result remain unclear. Similarly, concern extends to developments within the private sphere - by what means young white-collar men construct ideas of singlehood and companionship according to traditional gender ideologies or more contemporary, flexible readings. The influence of these still-emergent status distinctions on the logics of the social group in question is yet to be explored in depth by gender scholars. This project, therefore, focuses on a salaryman archetype as hegemonic - its transformation amidst these changes and socialising mechanisms that continue to legitimate unequal gender hierarchies. For data collection, a series of ethnographic interviews were held over a period of 12 months with university-educated, white-collar male employees from both Osaka and the Greater Tokyo Area. Findings suggest a modern salaryman ideal reflecting both continuities and shifts within white-collar employment. Whilst receptive to more contemporary workplace practices, the narratives of those interviewed remain imbued with logics supporting patterns of internal hegemony. Regular/non-regular distinction emerged as the foremost variable for both material and discursive patterns of white-collar stratification, with variants of displacement for each social group. Despite the heightened valorisation of stable employment, regular workers articulated various concerns over a model of corporate masculinity seen to be incompatible with recent socioeconomic developments. Likewise, non-regular employees face detachment owing to a still-inflexible perception of their working masculinity as marginalized amidst economic precarity. In seeking to negotiate respective challenges, those interviewed demonstrated an engagement with various concurrent social changes that would often either accommodate, reinforce, or expand upon traditional role behaviours. Few of these narratives offered any notable transgression of said ideal, however, suggesting that within the spectre of white-collar employment in Japan for the near future, any substantive transformation of corporate masculinity remains dependant upon economic developments, less so the agency of those involved.

Keywords: gender ideologies, hegemonic masculinity, Japan, white-collar employment

Procedia PDF Downloads 128
2908 Fractional Residue Number System

Authors: Parisa Khoshvaght, Mehdi Hosseinzadeh

Abstract:

During the past few years, the Residue Number System (RNS) has been receiving considerable interest due to its parallel and fault-tolerant properties. This system is a useful tool for Digital Signal Processing (DSP) since it can support parallel, carry-free, high-speed and low power arithmetic. One of the drawbacks of Residue Number System is the fractional numbers, that is, the corresponding circuit is very hard to realize in conventional CMOS technology. In this paper, we propose a method in which the numbers of transistors are significantly reduced. The related delay is extremely diminished, in the first glance we use this method to solve concerning problem of one decimal functional number some how this proposition can be extended to generalize the idea. Another advantage of this method is the independency on the kind of moduli.

Keywords: computer arithmetic, residue number system, number system, one-Hot, VLSI

Procedia PDF Downloads 497
2907 Design and Implementation of Wave-Pipelined Circuit Using Reconfigurable Technique

Authors: Adhinarayanan Venkatasubramanian

Abstract:

For design of high speed digital circuit wave pipeline is the best approach this can be operated at higher operating frequencies by adjusting clock periods and skews so as latch the o/p of combinational logic circuit at the stable period. In this paper, there are two methods are proposed in automation task one is BIST (Built in self test) and second method is Reconfigurable technique. For the above two approaches dedicated AND gate (multiplier) by applying wave pipeline technique. BIST approach is implemented by Xilinx Spartan-II device. In reconfigurable technique done by ASIC. From the results, wave pipeline circuits are faster than nonpipeline circuit and area, power dissipation are reduced by reconfigurable technique.

Keywords: SOC, wave-pipelining, FPGA, self-testing, reconfigurable, ASIC

Procedia PDF Downloads 430
2906 Remote BioMonitoring of Mothers and Newborns for Temperature Surveillance Using a Smart Wearable Sensor: Techno-Feasibility Study and Clinical Trial in Southern India

Authors: Prem K. Mony, Bharadwaj Amrutur, Prashanth Thankachan, Swarnarekha Bhat, Suman Rao, Maryann Washington, Annamma Thomas, N. Sheela, Hiteshwar Rao, Sumi Antony

Abstract:

The disease burden among mothers and newborns is caused mostly by a handful of avoidable conditions occurring around the time of childbirth and within the first month following delivery. Real-time monitoring of vital parameters of mothers and neonates offers a potential opportunity to impact access as well as the quality of care in vulnerable populations. We describe the design, development and testing of an innovative wearable device for remote biomonitoring (RBM) of body temperatures in mothers and neonates in a hospital in southern India. The architecture consists of: [1] a low-cost, wearable sensor tag; [2] a gateway device for ‘real-time’ communication link; [3] piggy-backing on a commercial GSM communication network; and [4] an algorithm-based data analytics system. Requirements for the device were: long battery-life upto 28 days (with sampling frequency 5/hr); robustness; IP 68 hermetic sealing; and human-centric design. We undertook pre-clinical laboratory testing followed by clinical trial phases I & IIa for evaluation of safety and efficacy in the following sequence: seven healthy adult volunteers; 18 healthy mothers; and three sets of babies – 3 healthy babies; 10 stable babies in the Neonatal Intensive Care Unit (NICU) and 1 baby with hypoxic ischaemic encephalopathy (HIE). The 3-coin thickness, pebble-design sensor weighing about 8 gms was secured onto the abdomen for the baby and over the upper arm for adults. In the laboratory setting, the response-time of the sensor device to attain thermal equilibrium with the surroundings was 4 minutes vis-a-vis 3 minutes observed with a precision-grade digital thermometer used as a reference standard. The accuracy was ±0.1°C of the reference standard within the temperature range of 25-40°C. The adult volunteers, aged 20 to 45 years, contributed a total of 345 hours of readings over a 7-day period and the postnatal mothers provided a total of 403 paired readings. The mean skin temperatures measured in the adults by the sensor were about 2°C lower than the axillary temperature readings (sensor =34.1 vs digital = 36.1); this difference was statistically significant (t-test=13.8; p<0.001). The healthy neonates provided a total of 39 paired readings; the mean difference in temperature was 0.13°C (sensor =36.9 vs digital = 36.7; p=0.2). The neonates in the NICU provided a total of 130 paired readings. Their mean skin temperature measured by the sensor was 0.6°C lower than that measured by the radiant warmer probe (sensor =35.9 vs warmer probe = 36.5; p < 0.001). The neonate with HIE provided a total of 25 paired readings with the mean sensor reading being not different from the radian warmer probe reading (sensor =33.5 vs warmer probe = 33.5; p=0.8). No major adverse events were noted in both the adults and neonates; four adult volunteers reported mild sweating under the device/arm band and one volunteer developed mild skin allergy. This proof-of-concept study shows that real-time monitoring of temperatures is technically feasible and that this innovation appears to be promising in terms of both safety and accuracy (with appropriate calibration) for improved maternal and neonatal health.

Keywords: public health, remote biomonitoring, temperature surveillance, wearable sensors, mothers and newborns

Procedia PDF Downloads 210
2905 Terrestrial Laser Scans to Assess Aerial LiDAR Data

Authors: J. F. Reinoso-Gordo, F. J. Ariza-López, A. Mozas-Calvache, J. L. García-Balboa, S. Eddargani

Abstract:

The DEMs quality may depend on several factors such as data source, capture method, processing type used to derive them, or the cell size of the DEM. The two most important capture methods to produce regional-sized DEMs are photogrammetry and LiDAR; DEMs covering entire countries have been obtained with these methods. The quality of these DEMs has traditionally been evaluated by the national cartographic agencies through punctual sampling that focused on its vertical component. For this type of evaluation there are standards such as NMAS and ASPRS Positional Accuracy Standards for Digital Geospatial Data. However, it seems more appropriate to carry out this evaluation by means of a method that takes into account the superficial nature of the DEM and, therefore, its sampling is superficial and not punctual. This work is part of the Research Project "Functional Quality of Digital Elevation Models in Engineering" where it is necessary to control the quality of a DEM whose data source is an experimental LiDAR flight with a density of 14 points per square meter to which we call Point Cloud Product (PCpro). In the present work it is described the capture data on the ground and the postprocessing tasks until getting the point cloud that will be used as reference (PCref) to evaluate the PCpro quality. Each PCref consists of a patch 50x50 m size coming from a registration of 4 different scan stations. The area studied was the Spanish region of Navarra that covers an area of 10,391 km2; 30 patches homogeneously distributed were necessary to sample the entire surface. The patches have been captured using a Leica BLK360 terrestrial laser scanner mounted on a pole that reached heights of up to 7 meters; the position of the scanner was inverted so that the characteristic shadow circle does not exist when the scanner is in direct position. To ensure that the accuracy of the PCref is greater than that of the PCpro, the georeferencing of the PCref has been carried out with real-time GNSS, and its accuracy positioning was better than 4 cm; this accuracy is much better than the altimetric mean square error estimated for the PCpro (<15 cm); The kind of DEM of interest is the corresponding to the bare earth, so that it was necessary to apply a filter to eliminate vegetation and auxiliary elements such as poles, tripods, etc. After the postprocessing tasks the PCref is ready to be compared with the PCpro using different techniques: cloud to cloud or after a resampling process DEM to DEM.

Keywords: data quality, DEM, LiDAR, terrestrial laser scanner, accuracy

Procedia PDF Downloads 102
2904 Reduced Complexity Iterative Solution For I/Q Imbalance Problem in DVB-T2 Systems

Authors: Karim S. Hassan, Hisham M. Hamed, Yassmine A. Fahmy, Ahmed F. Shalash

Abstract:

The mismatch between in-phase and quadrature signals in Orthogonal frequency division multiplexing (OFDM) systems, such as DVB-T2, results in a severe degradation in performance. Several general solutions have been proposed in the past, but these are largely computationally intensive, leading to complex implementations. In this paper, we propose a relatively simple iterative solution, which provides good results in relatively few iterations, using fixed precision arithmetic. An additional advantage is that complex digital blocks, such as dividers and square root, are not required. Thus, the proposed solution may be implemented in relatively simple hardware.

Keywords: OFDM, DVB-T2, I/Q imbalance, I/Q mismatch, iterative method, fixed point, reduced complexity

Procedia PDF Downloads 542
2903 Fuzzy Logic Based Fault Tolerant Model Predictive MLI Topology

Authors: Abhimanyu Kumar, Chirag Gupta

Abstract:

This work presents a comprehensive study on the employment of Model Predictive Control (MPC) for a three-phase voltage-source inverter to regulate the output voltage efficiently. The inverter is modeled via the Clarke Transformation, considering a scenario where the load is unknown. An LC filter model is developed, demonstrating its efficacy in Total Harmonic Distortion (THD) reduction. The system, when implemented with fault-tolerant multilevel inverter topologies, ensures reliable operation even under fault conditions, a requirement that is paramount with the increasing dependence on renewable energy sources. The research also integrates a Fuzzy Logic based fault tolerance system which identifies and manages faults, ensuring consistent inverter performance. The efficacy of the proposed methodology is substantiated through rigorous simulations and comparative results, shedding light on the voltage prediction efficiency and the robustness of the model even under fault conditions.

Keywords: total harmonic distortion, fuzzy logic, renewable energy sources, MLI

Procedia PDF Downloads 135
2902 Gender and Total Compensation, in an ‘Age’ of Disruption

Authors: Daniel J. Patricio Jiménez

Abstract:

The term 'total compensation’ refers to salary, training, innovation, and development, and of course, motivation; total compensation is an open and flexible system which must facilitate personal and family conciliation and therefore cannot be isolated from social reality. Today, the challenge for any company that wants to have a future is to be sustainable, and women play a ‘special’ role in this. Spain, in its statutory and conventional development, has not given sufficient response to new phenomena such as ‘bonuses’, ‘stock options’ or ‘fringe benefits’ (constructed dogmatically and by court decisions), the new digital reality, where cryptocurrency, new collaborative models and service provision -such as remote work-, are always ahead of the law. To talk about compensation is to talk about the gender gap, and with the entry into force of RD.902 /2020 on 14 April 2021, certain measures are necessary under the principle of salary transparency; the valuation of jobs, the pay register (Rd. 6/2019) and the pay audit, are an example of this. Analyzing the methodologies, and in particular the determination and weight of the factors -so that the system itself is not discriminatory- is essential. The wage gap in Spain is smaller than in Europe, but the sources do not reflect the reality, and since the beginning of the pandemic, there has been a clear stagnation. A living wage is not the minimum wage; it is identified with rights and needs; it is that which, based on internal equity, reflects the competitiveness of the company in terms of human capital. Spain has lost and has not recovered the relative weight of its wages; this is having a direct impact on our competitiveness, consequently on the precariousness of employment and undoubtedly on the levels of extreme poverty. Training is becoming more than ever a strategic factor; the new digital reality requires that each component of the system is connected, the transversality is imposed on us, this forces us to redefine content, to give answers to the new demands that the new normality requires because technology and robotization are changing the concept of employability. The presence of women in this context is necessary, and there is a long way to go. The so-called emotional compensation becomes particularly relevant at a time when pandemics, silence, and disruption, are leaving after-effects; technostress (in all its manifestations) is just one of them. Talking about motivation today makes no sense without first being aware that mental health is a priority, that it must be treated and communicated in an inclusive way because it increases satisfaction, productivity, and engagement. There is a clear conclusion to all this: compensation systems do not respond to the ‘new normality’: diversity, and in particular women, cannot be invisible in human resources policies if the company wants to be sustainable.

Keywords: diversity, gender gap, human resources, sustainability.

Procedia PDF Downloads 170
2901 Mexico's Steam Connections Across the Pacific (1867-1910)

Authors: Ruth Mandujano Lopez

Abstract:

During the second half of the 19th century, in the transition from sail to steam navigation, the transpacific space underwent major transformation. This paper examines the role that the steamship companies between Mexico, the rest of North America and Asia played in that process. Based on primary sources found in Mexico, California, London and Hong Kong, it argues that these companies actively participated in the redefining of the Pacific space as they opened new routes, transported thousands of people and had an impact on regional geopolitics. In order to prove this, the text will present the cases of a handful of companies that emerged between 1867 and 1910 and of some of their passengers. By looking at the way the Mexican ports incorporated to the transpacific steam maritime network, this work contributes to have a better understanding of the role that Latin American ports have played in the formation of a global order. From a theoretical point of view, it proposes the conceptualization of space in the form of transnational networks as a point of departure to conceive a history that is truly global.

Keywords: mexico, steamships, transpacific, maritime companies

Procedia PDF Downloads 51
2900 The Platform for Digitization of Georgian Documents

Authors: Erekle Magradze, Davit Soselia, Levan Shughliashvili, Irakli Koberidze, Shota Tsiskaridze, Victor Kakhniashvili, Tamar Chaghiashvili

Abstract:

Since the beginning of active publishing activity in Georgia, voluminous printed material has been accumulated, the digitization of which is an important task. Digitized materials will be available to the audience, and it will be possible to find text in them and conduct various factual research. Digitizing scanned documents means scanning documents, extracting text from the scanned documents, and processing the text into a corresponding language model to detect inaccuracies and grammatical errors. Implementing these stages requires a unified, scalable, and automated platform, where the digital service developed for each stage will perform the task assigned to it; at the same time, it will be possible to develop these services dynamically so that there is no interruption in the work of the platform.

Keywords: NLP, OCR, BERT, Kubernetes, transformers

Procedia PDF Downloads 147
2899 A Methodology of Using Fuzzy Logics and Data Analytics to Estimate the Life Cycle Indicators of Solar Photovoltaics

Authors: Thor Alexis Sazon, Alexander Guzman-Urbina, Yasuhiro Fukushima

Abstract:

This study outlines the method of how to develop a surrogate life cycle model based on fuzzy logic using three fuzzy inference methods: (1) the conventional Fuzzy Inference System (FIS), (2) the hybrid system of Data Analytics and Fuzzy Inference (DAFIS), which uses data clustering for defining the membership functions, and (3) the Adaptive-Neuro Fuzzy Inference System (ANFIS), a combination of fuzzy inference and artificial neural network. These methods were demonstrated with a case study where the Global Warming Potential (GWP) and the Levelized Cost of Energy (LCOE) of solar photovoltaic (PV) were estimated using Solar Irradiation, Module Efficiency, and Performance Ratio as inputs. The effects of using different fuzzy inference types, either Sugeno- or Mamdani-type, and of changing the number of input membership functions to the error between the calibration data and the model-generated outputs were also illustrated. The solution spaces of the three methods were consequently examined with a sensitivity analysis. ANFIS exhibited the lowest error while DAFIS gave slightly lower errors compared to FIS. Increasing the number of input membership functions helped with error reduction in some cases but, at times, resulted in the opposite. Sugeno-type models gave errors that are slightly lower than those of the Mamdani-type. While ANFIS is superior in terms of error minimization, it could generate solutions that are questionable, i.e. the negative GWP values of the Solar PV system when the inputs were all at the upper end of their range. This shows that the applicability of the ANFIS models highly depends on the range of cases at which it was calibrated. FIS and DAFIS generated more intuitive trends in the sensitivity runs. DAFIS demonstrated an optimal design point wherein increasing the input values does not improve the GWP and LCOE anymore. In the absence of data that could be used for calibration, conventional FIS presents a knowledge-based model that could be used for prediction. In the PV case study, conventional FIS generated errors that are just slightly higher than those of DAFIS. The inherent complexity of a Life Cycle study often hinders its widespread use in the industry and policy-making sectors. While the methodology does not guarantee a more accurate result compared to those generated by the Life Cycle Methodology, it does provide a relatively simpler way of generating knowledge- and data-based estimates that could be used during the initial design of a system.

Keywords: solar photovoltaic, fuzzy logic, inference system, artificial neural networks

Procedia PDF Downloads 167
2898 Using of Particle Swarm Optimization for Loss Minimization of Vector-Controlled Induction Motors

Authors: V. Rashtchi, H. Bizhani, F. R. Tatari

Abstract:

This paper presents a new online loss minimization for an induction motor drive. Among the many loss minimization algorithms (LMAs) for an induction motor, a particle swarm optimization (PSO) has the advantages of fast response and high accuracy. However, the performance of the PSO and other optimization algorithms depend on the accuracy of the modeling of the motor drive and losses. In the development of the loss model, there is always a trade off between accuracy and complexity. This paper presents a new online optimization to determine an optimum flux level for the efficiency optimization of the vector-controlled induction motor drive. An induction motor (IM) model in d-q coordinates is referenced to the rotor magnetizing current. This transformation results in no leakage inductance on the rotor side, thus the decomposition into d-q components in the steady-state motor model can be utilized in deriving the motor loss model. The suggested algorithm is simple for implementation.

Keywords: induction machine, loss minimization, magnetizing current, particle swarm optimization

Procedia PDF Downloads 634