Search results for: cider production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7232

Search results for: cider production

3482 Catalytic Decomposition of Formic Acid into H₂/CO₂ Gas: A Distinct Approach

Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy

Abstract:

Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of the biomass platform, comprising a potential pool of hydrogen energy that stands as a distinct energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need for in-situ H₂ production, which plays a key role in the hydrogenation reactions of biomass into higher-value components. It is reported elsewhere in the literature that catalytic decomposition of FA is usually performed in poorly designed setups using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. Our work suggests an approach that integrates designing a distinct catalyst featuring magnetic properties with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for the dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H₂ gas from FA. Using an ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under an inert medium. Through a distinct approach, FA is charged into the reactor via a high-pressure positive displacement pump at steady-state conditions. The produced gas (H₂+CO₂) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The uniqueness of this work lies in designing a very responsive catalyst, pumping a consistent amount of FA into a sealed reactor running at steady-state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at a lower temperature range (35-50°C) yielded more gas, while the catalyst loading and Pd doping wt.% were found to be the most significant factors with P-values 0.026 & 0.031, respectively.

Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles

Procedia PDF Downloads 22
3481 Multiannual Trends of Toxic and Potentially Toxic Microalgae (Ostreopsis cf. ovata, Prorocentrum lima, and Coolia monotis) in Sfax Coasts (North of Gabes Gulf, Tunisia)

Authors: Moncer Malika, Ben Brahim Mounir, Bel Hassen Malika, Hamza Asma

Abstract:

During the last decades, microalgae communities have presented significant changes in their structure and taxa composition along the Mediterranean littoral shallow waters. The main purpose of this work was to evaluate possible changes, over a 17-year scale (1997–2013), in the diversity and abundance of three toxic and potentially toxic microalgae related to changes in environmental parameters on Sfax coasts, a pole of shellfish production in Tunisia. In this 17-year span, a chronological series of data showed that a clear disparity from one year to another was observed in the abundance of studied species. The distribution of these species has been subjected to a seasonal cycle. The studied microalgae, especially Prorocentrum lima, seem to have significant relationships with many physicochemicaland meteorological parameters.

Keywords: long-term monitoring HABs, physico-chemical parameters, meteorological parameters, Prorocentrum lima, Ostreopsis cf. ovata, Coolia monotis

Procedia PDF Downloads 99
3480 Investigation of Compressive Strength of Fly Ash-Based Geopolymer Bricks with Hierarchical Bayesian Path Analysis

Authors: Ersin Sener, Ibrahim Demir, Hasan Aykut Karaboga, Kadir Kilinc

Abstract:

Bayesian methods, which have very wide range of applications, are implemented to the data obtained from the production of F class fly ash-based geopolymer bricks’ experimental design. In this study, dependent variable is compressive strength, independent variables are treatment type (oven and steam), treatment time, molding time, temperature, water absorbtion ratio and density. The effect of independent variables on compressive strength is investigated. There is no difference among treatment types, but there is a correlation between independent variables. Therefore, hierarchical Bayesian path analysis is applied. In consequence of analysis we specified that treatment time, temperature and density effects on compressive strength is higher, molding time, and water absorbtion ratio is relatively low.

Keywords: experimental design, F class fly ash, geopolymer bricks, hierarchical Bayesian path analysis

Procedia PDF Downloads 363
3479 The Late Bronze Age Archeometallurgy of Copper in Mountainous Colchis (Lechkhumi), Georgia

Authors: Nino Sulava, Brian Gilmour, Nana Rezesidze, Tamar Beridze, Rusudan Chagelishvili

Abstract:

Studies of ancient metallurgy are a subject of worldwide current interest. Georgia with its famous early metalworking traditions is one of the central parts of in the Caucasus region. The aim of the present study is to introduce the results of archaeometallurgical investigations being undertaken in the mountain region of Colchis, Lechkhumi (the Tsageri Municipality of western Georgia) and establish their place in the existing archaeological context. Lechkhumi (one of the historic provinces of Georgia known from Georgian, Greek, Byzantine and Armenian written sources as Lechkhumi/Skvimnia/Takveri) is the part of the Colchian mountain area. It is one of the important but little known centres of prehistoric metallurgy in the Caucasian region and of Colchian Bronze Age culture. Reconnaissance archaeological expeditions (2011-2015) revealed significant prehistoric metallurgical sites in Lechkhumi. Sites located in the vicinity of Dogurashi Village (Tsageri Municipality) have become the target area for archaeological excavations. During archaeological excavations conducted in 2016-2018 two archaeometallurgical sites – Dogurashi I and Dogurashi II were investigated. As a result of an interdisciplinary (archaeological, geological and geophysical) survey, it has been established that at both prehistoric Dogurashi mountain sites, it was copper that was being smelted and the ore sources are likely to be of local origin. Radiocarbon dating results confirm they were operating between about the 13th and 9th century BC. More recently another similar site has been identified in this area (Dogurashi III), and this is about to undergo detailed investigation. Other prehistoric metallurgical sites are being located and investigated in the Lechkhumi region as well as chance archaeological finds (often in hoards) – copper ingots, metallurgical production debris, slag, fragments of crucibles, tuyeres (air delivery pipes), furnace wall fragments and other related waste debris. Other chance finds being investigated are the many copper, bronze and (some) iron artefacts that have been found over many years. These include copper ingots, copper, bronze and iron artefacts such as tools, jewelry, and decorative items. These show the important but little known or understood the role of Lechkhumi in the late Bronze Age culture of Colchis. It would seem that mining and metallurgical manufacture form part of the local agricultural yearly lifecycle. Colchian ceramics have been found and also evidence for artefact production, small stone mould fragments and encrusted material from the casting of a fylfot (swastika) form of Colchian bronze buckle found in the vicinities of the early settlements of Tskheta and Dekhviri. Excavation and investigation of previously unknown archaeometallurgical sites in Lechkhumi will contribute significantly to the knowledge and understanding of prehistoric Colchian metallurgy in western Georgia (Adjara, Guria, Samegrelo, and Svaneti) and will reveal the importance of this region in the study of ancient metallurgy in Georgia and the Caucasus. Acknowledgment: This work has been supported by the Shota Rustaveli National Science Foundation (grant FR # 217128).

Keywords: archaeometallurgy, Colchis, copper, Lechkhumi

Procedia PDF Downloads 117
3478 The Customization of 3D Last Form Design Based on Weighted Blending

Authors: Shih-Wen Hsiao, Chu-Hsuan Lee, Rong-Qi Chen

Abstract:

When it comes to last, it is regarded as the critical foundation of shoe design and development. Not only the last relates to the comfort of shoes wearing but also it aids the production of shoe styling and manufacturing. In order to enhance the efficiency and application of last development, a computer aided methodology for customized last form designs is proposed in this study. The reverse engineering is mainly applied to the process of scanning for the last form. Then the minimum energy is used for the revision of surface continuity, the surface of the last is reconstructed with the feature curves of the scanned last. When the surface of a last is reconstructed, based on the foundation of the proposed last form reconstruction module, the weighted arithmetic mean method is applied to the calculation on the shape morphing which differs from the grading for the control mesh of last, and the algorithm of subdivision is used to create the surface of last mesh, thus the feet-fitting 3D last form of different sizes is generated from its original form feature with functions remained. Finally, the practicability of the proposed methodology is verified through later case studies.

Keywords: 3D last design, customization, reverse engineering, weighted morphing, shape blending

Procedia PDF Downloads 317
3477 Utilization of Rice and Corn Bran with Dairy By-Product in Tarhana Production

Authors: Kübra Aktaş, Nihat Akin

Abstract:

Tarhana is a traditional Turkish fermented food. It is widely consumed as soup and includes many different ingredients such as wheat flour, various vegetables, and spices, yoghurt, bakery yeast. It can also be enriched by adding other ingredients. Thus, its nutritional properties can be enhanced. In this study, tarhana was supplemented with two different types of brans (rice bran and corn bran) and WPC (whey protein concentrate powder) to improve its nutritional and functional properties. Some chemical properties of tarhana containing two different brans and their levels (0, 5, 10 and 15%) and WPC (0, 5, 10%) were investigated. The results indicated that addition of WPC increased ash content in tarhanas which were fortified with rice and corn bran. The highest antioxidant and phenolic content values were obtained with addition of rice bran in tarhana formulation. Compared to tarhana with corn bran, rice bran addition gave higher oil content values. The cellulose content of tarhana samples was determined between 0.75% and 2.74% and corn bran showed an improving effect on cellulose contents of samples. In terms of protein content, addition of WPC into the tarhana raised protein content for the samples.

Keywords: corn, rice, tarhana, whey

Procedia PDF Downloads 306
3476 The Role Of Diallyl Trisulfide As A Suppressor In Activated-Platelets Induced Human Breast Cancer MDA-MB-435s Cells Hematogenous Metastasis

Authors: Yuping Liu, Li Tao, Yin Lu

Abstract:

Accumulating evidence has been shown that diallyl trisulfide (DATS) from garlic may reduce the risk of developing several types of cancer. In view of the dynamic crosstalk interplayed by tumor cells and platelets in hematogenous metastasis, we demonstrate the effectiveness of DATS on the metastatic behaviors of MDA-MB-435s human breast cancer cell line co-incubated with activated platelets. Indeed, our data identified that DATS significantly blocked platelets fouction induced by PAF, followed by the decreased production of TXB2. DATS was found to dose-dependently suppressed MDA-MB-435s cell migration and invasion in presence of activated platelets by PAF in vitro. Furthermore, the expression, secretion and enzymatic activity of matrix metalloproteinase (MMP)-2/9, as well as the luciferase activity of upstream regulator NF-κB in MDA-MB-435s, were obviously diminished by DATS. In parallel, DATS blocked upstream NF-κB activation signaling complexes composed of extracellular signal-related kinase (ERK) as assessed by measuring the levels of the phosphorylated forms.

Keywords: DATS, ERK, metastasis, MMPs, NF-κB, platelet

Procedia PDF Downloads 362
3475 Crystalline Structure of Starch Based Nano Composites

Authors: Farid Amidi Fazli, Afshin Babazadeh, Farnaz Amidi Fazli

Abstract:

In contrast with literal meaning of nano, researchers have been achieving mega adventures in this area and every day more nanomaterials are being introduced to the market. After long time application of fossil-based plastics, nowadays accumulation of their waste seems to be a big problem to the environment. On the other hand, mankind has more attention to safety and living environment. Replacing common plastic packaging materials with degradable ones that degrade faster and convert to non-dangerous components like water and carbon dioxide have more attractions; these new materials are based on renewable and inexpensive sources of starch and cellulose. However, the functional properties of them do not suitable for packaging. At this point, nanotechnology has an important role. Utilizing of nanomaterials in polymer structure will improve mechanical and physical properties of them; nanocrystalline cellulose (NCC) has this ability. This work has employed a chemical method to produce NCC and starch bio nanocomposite containing NCC. X-Ray Diffraction technique has characterized the obtained materials. Results showed that applied method is a suitable one as well as applicable one to NCC production.

Keywords: biofilm, cellulose, nanocomposite, starch

Procedia PDF Downloads 386
3474 Development and Characterization of Kefir Drinks from Pumpkin (Cucurbita moschata) and Winter Melon (Benincasa hispida)

Authors: Uthumporn Utra, Y. N. Shariffa, M. Maizura, A. S. Ruri

Abstract:

This research is to study the utilization of pumpkin and winter melon as the main substrate for kefir fermentation in the production of pumpkin and winter melon-based fermented drinks. Optimized temperature and time were chosen for fermentation of pumpkin and winter melon. Physicochemical and microbiological evaluations were conducted to the end products: P (fermented pumpkin juice) and K (fermented winter melon juice). Ethanol content was detected at low concentration of 0.9% (v/wt) in P, and 1.0% (v/wt) in K. Level of glucose and fructose increased significantly (p < 0.05) in both fermented drinks when compared to unfermented pumpkin (CP) and winter melon (CK) juices. Total phenolic content in P & K was higher than CP and CK, while %DPPH inhibition of both decreased significantly. Total Lactobacilli counts in P & K were 8.9 and 7.88 log cfu/ml respectively, while acetic acid bacteria counts were 8.62 and 7.57 log cfu/ml respectively, yeast counts were 4.71 and 5 log cfu/ml, and no E.coli was detected in all samples. Sensory evaluation yield comparable properties in P & K. This concluded that pumpkin and winter melon fermented drinks inoculated by water kefir grains could be promising source of nutrients with probiotic potency.

Keywords: fermented drinks, functional beverage, kefir, pumpkin, winter melon

Procedia PDF Downloads 123
3473 Hydrogenation of CO2 to Methanol over Copper-Zinc Oxide-Based Catalyst

Authors: S. F. H. Tasfy, N. A. M. Zabidi, M. S. Shaharun

Abstract:

Carbon dioxide is highly thermochemical stable molecules where it is very difficult to activate the molecule and achieve higher catalytic conversion into alcohols or other hydrocarbon compounds. In this paper, series of the bimetallic Cu/ZnO-based catalyst supported by SBA-15 were systematically prepared via impregnation technique with different Cu: Zn ratio for hydrogenation of CO2 to methanol. The synthesized catalysts were characterized by transmission electron microscopy (TEM), temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO), and surface area determination was also performed. All catalysts were tested with respect to the hydrogenation of CO2 to methanol in microactivity fixed-bed reactor at 250oC, 2.25 MPa, and H2/CO2 ratio of 3. The results demonstrate that the catalytic structure, activity, and methanol selectivity was strongly affected by the ratio between Cu: Zn, Where higher catalytic activity of 14 % and methanol selectivity of 92 % was obtained over Cu/ZnO-SBA-15 catalyst with Cu:Zn ratio of 7:3 wt. %. Comparing with the single catalyst, the synergetic between Cu and Zn provides additional active sites to adsorb more H2 and CO2 and accelerate the CO2 conversion, resulting in higher methanol production under mild reaction conditions.

Keywords: hydrogenation of carbon dioxide, methanol synthesis, Cu/ZnO-based catalyst, mesoporous silica (SBA-15), metal ratio

Procedia PDF Downloads 225
3472 Absenteeism of Nursing Staff in Emergency Care Units of a City in the Interior of SãO Paulo

Authors: B. P. G. Figueira, I. C. Pinto, D. Ferro, F. C. M. Zacharias

Abstract:

The absenteeism at work constitutes in a temporary absence of labor functions resulting from various reasons, bringing damage to production, increasing costs of care and overburdening other workers, has its principal cause due to illness, often due exposure to several risks in the workplace. This study aims to know, identify and analyze the types and causes of absenteeism, such as the frequency at which it occurs by professional category, for employment contract and days not worked in Emergency Care Public in a city in the interior of São Paulo. We conducted exploratory and descriptive study with a quantitative approach, with nursing professionals, after selection of inclusion criteria was reached a universe of 208 subjects, the data collected are for the years from 2010-2013. Research has shown that the professional category of nursing assistant had 88,11% of total absenteeism, absenteeism lasting 1 day was the with the highest frequency, the women were responsible for 74,80% of absenteeism disease. It was concluded that absenteeism shall be monitored to plan control actions, establishing better political for the management of human resources, because it can be an aggravating factor in the quality of care.

Keywords: absenteeism; nursing; emergency medical services, human resource

Procedia PDF Downloads 297
3471 Trends and Prospects for the Development of Georgian Wine Market

Authors: E. Kharaishvili, M. Chavleishvili, M. Natsvaladze

Abstract:

The article presents the trends in Georgian wine market development and evaluates the competitive advantages of Georgia to enter the wine market based on its customs, traditions and historical practices combined with modern technologies. In order to analyze the supply of wine, dynamics of vineyard land area and grape varieties are discussed, trends in wine production are presented, trends in export and import are evaluated, local wine market, its micro and macro environments are studied and analyzed based on the interviews with experts and analysis of initial recording materials. For strengthening its position on the international market, the level of competitiveness of Georgian wine is defined, which is evaluated by “ex-ante” and “ex-post” methods, as well as by four basic and two additional factors of the Porter’s diamond method; potential advantages and disadvantages of Georgian wine are revealed. Conclusions are made by identifying the factors that hinder the development of Georgian wine market. Based on the conclusions, relevant recommendations are developed.

Keywords: Georgian wine market, competitive advantage, bio wine, export-import, Porter's diamond model

Procedia PDF Downloads 362
3470 Review on Green Synthesis of Gold Nanoparticles

Authors: Shabnam, Jagdeep Kumar

Abstract:

Because of the impact of their greater surface area and smaller quantum sizes in comparison with other metal atoms or bulk metals, metal nanoparticles, such as those formed of gold, exhibit a variety of unusual chemical and physical properties. The size- and shape-dependent properties of gold nanoparticles (GNPs) are particularly notable. Metal nanoparticles have received a lot of attention due to their unique properties and exciting prospective uses in photonics, electronics, biological sensing, and imaging. The latest developments in GNP synthesis are discussed in this review. Green chemistry measures were used to assess the production of gold nanoparticles, with a focus on Process Mass Intensity (PMI). Based on these measurements, opportunities for improving synthetic approaches were found. With PMIs that were often in the thousands, solvent usage was found to be the main obstacle for nanoparticle synthesis, even ones that were otherwise considered to be environmentally friendly. Since ligated metal nanoparticles are the most industrially relevant but least environmentally friendly, their synthesis by arrested precipitation was chosen as the best chance for significant advances. Gold nanoparticles of small sizes and bio-stability are produced biochemically, and they are used in many biological applications.

Keywords: gold, nanoparticles, green synthesis, AuNP

Procedia PDF Downloads 58
3469 Solanum tuberosum Ammonium Transporter Gene: Some Bioinformatics Insights

Authors: A. T. Adetunji, F. B. Lewu, R. Mundembe

Abstract:

Plants require nitrogen (N) to support desired production levels. Nitrogen is available to plants in the form of nitrate or ammonium, which are transported into the cell with the aid of various transport proteins. Ammonium transporters (AMTs) play a role in the uptake of ammonium, the form in which nitrogen is preferentially absorbed by plants. Solanum tuberosum AMT1 (StAMT1) was characterized using molecular biology and bioinformatics methods. Nucleotide database sequences were used to design AMT1-specific primers which were used to amplify the AMT1 internal regions. Nucleotide sequencing, alignment and phylogenetic analysis assigned StAMT1 to the AMT1 family. The deduced amino acid sequences showed that StAMT1 is 92%, 83% and 76% similar to Solanum lycopersicum LeAMT1.1, Lotus japonicus LjAMT1.1 and Solanum lycopersicum LeAMT1.2 respectively. StAMT1 fragments were shown to correspond to the 5th - 10th trans-membrane domains. Residue StAMT1 D15 is predicted to be essential for ammonium transport, while mutations of StAMT1 S76A may further enhance ammonium transport.

Keywords: ammonium transporter, bioinformatics, nitrogen, primers, Solanum tuberosum

Procedia PDF Downloads 226
3468 Characterization of (GRAS37) Gibberellin Acid Insensitive (GAI), Repressor (RGA), and Scarecrow (SCR) Gene by Using Bioinformatics Tools

Authors: Yusra Tariq

Abstract:

The Grass 37 gene is presently known in tomatoes, which are the source of healthy substances such as ascorbic acid, polyphenols, carotenoids and nutrients. It has a significant impact on the growth and development of humans. The GRASS 37 gene is a plant Transcription factor group assuming significant parts in various reactions of different Abiotic stresses such as (drought, salinity, thermal stresses, temperature, and bright waves) which could highly affect the growth. Tomatoes are very sensitive to temperature, and their growth or production occurs optimally in a temperature range from 21 C to 29.5 C during the daytime and from 18.5 C to 21 C during the night. This protein acts as a positive regulator of salt stress response and abscisic acid signaling. This study summarizes the structure characterized by molecular formula and protein-binding domains by different bioinformatics tools such as Expasy translate tool, Expasy Portparam, Swiss Prot and Inter Pro Scan, Clustal W tool regulatory procedure of GRASS gene components, also their reactions to both biotic and Abiotic stresses.

Keywords: GRAS37, gene, bioinformatics, tool

Procedia PDF Downloads 17
3467 Progress in Accuracy, Reliability and Safety in Firedamp Detection

Authors: José Luis Lorenzo Bayona, Ljiljana Medic-Pejic, Isabel Amez Arenillas, Blanca Castells Somoza

Abstract:

The communication presents the study results carried out by the Official Laboratory J. M. Madariaga (LOM) of the Polytechnic University of Madrid to analyze the reliability of methane detection systems used in underground mining. Poor firedamp control in work can cause from production stoppages to fatal accidents and since there is currently a great variety of equipment with different functional characteristics, a study is needed to indicate which measurement principles have the highest degree of confidence. For the development of the project, a series of fixed, transportable and portable methane detectors with different measurement principles have been selected to subject them to laboratory tests following the methods described in the applicable regulations. The test equipment has been the one usually used in the certification and calibration of these devices, subject to the LOM quality system, and the tests have been carried out on detectors accessible in the market. The conclusions establish the main advantages and disadvantages of the equipment according to the measurement principle used; catalytic combustion, interferometry and infrared absorption.

Keywords: ATEX standards, gas detector, methane meter, mining safety

Procedia PDF Downloads 113
3466 A Clinico-Bacteriological Study and Their Risk Factors for Diabetic Foot Ulcer with Multidrug-Resistant Microorganisms in Eastern India

Authors: Pampita Chakraborty, Sukumar Mukherjee

Abstract:

This study was done to determine the bacteriological profile and antibiotic resistance of the isolates and to find out the potential risk factors for infection with multidrug-resistant organisms. Diabetic foot ulcer is a major medical, social, economic problem and a leading cause of morbidity and mortality, especially in the developing countries like India. 25 percent of all diabetic patients develop a foot ulcer at some point in their lives which is highly susceptible to infections and that spreads rapidly, leading to overwhelming tissue destruction and subsequent amputation. Infection with multidrug resistant organisms (MDRO) may increase the cost of management and may cause additional morbidity and mortality. Proper management of these infections requires appropriate antibiotic selection based on culture and antimicrobial susceptibility testing. Early diagnosis of microbial infections is aimed to institute the appropriate antibacterial therapy initiative to avoid further complications. A total of 200 Type 2 Diabetic Mellitus patients with infection were admitted at GD Hospital and Diabetes Institute, Kolkata. 60 of them who developed ulcer during the year 2013 were included in this study. A detailed clinical history and physical examination were carried out for every subject. Specimens for microbiological studies were obtained from ulcer region. Gram-negative bacilli were tested for extended spectrum Beta-lactamase (ESBL) production by double disc diffusion method. Staphylococcal isolates were tested for susceptibility to oxacillin by screen agar method and disc diffusion. Potential risk factors for MDRO-positive samples were explored. Gram-negative aerobes were most frequently isolated, followed by gram-positive aerobes. Males were predominant in the study and majority of the patients were in the age group of 41-60 years. The presence of neuropathy was observed in 80% cases followed by peripheral vascular disease (73%). Proteus spp. (22) was the most common pathogen isolated, followed by E.coli (17). Staphylococcus aureus was predominant amongst the gram-positive isolates. S.aureus showed a high rate of resistance to antibiotic tested (63.6%). Other gram-positive isolates were found to be highly resistant to erythromycin, tetracycline and ciprofloxacin, 40% each. All isolates were found to be sensitive to Vancomycin and Linezolid. ESBL production was noted in Proteus spp and E.coli. Approximately 70 % of the patients were positive for MDRO. MDRO-infected patients had poor glycemic control (HbA1c 11± 2). Infection with MDROs is common in diabetic foot ulcers and is associated with risk factors like inadequate glycemic control, the presence of neuropathy, osteomyelitis, ulcer size and increased the requirement for surgical treatment. There is a need for continuous surveillance of resistant bacteria to provide the basis for empirical therapy and reduce the risk of complications.

Keywords: diabetic foot ulcer, bacterial infection, multidrug-resistant organism, extended spectrum beta-lactamase

Procedia PDF Downloads 313
3465 Optimizing Performance of Tablet's Direct Compression Process Using Fuzzy Goal Programming

Authors: Abbas Al-Refaie

Abstract:

This paper aims at improving the performance of the tableting process using statistical quality control and fuzzy goal programming. The tableting process was studied. Statistical control tools were used to characterize the existing process for three critical responses including the averages of a tablet’s weight, hardness, and thickness. At initial process factor settings, the estimated process capability index values for the tablet’s averages of weight, hardness, and thickness were 0.58, 3.36, and 0.88, respectively. The L9 array was utilized to provide experimentation design. Fuzzy goal programming was then employed to find the combination of optimal factor settings. Optimization results showed that the process capability index values for a tablet’s averages of weight, hardness, and thickness were improved to 1.03, 4.42, and 1.42, respectively. Such improvements resulted in significant savings in quality and production costs.

Keywords: fuzzy goal programming, control charts, process capability, tablet optimization

Procedia PDF Downloads 245
3464 Enhancing Greenhouse Productivity and Energy Efficiency Through UV-IR Reflective Coatings and Dust Mitigation: A Case Study in Saudi Arabia

Authors: Tayirjan Taylor Isimjan, Essam Jamea, Muien Qaryouti

Abstract:

The demand for efficient greenhouse production is escalating, necessitating continuous improvements in controlled plant growth environments. Central to maximizing growth are critical light-related factors, including quantity, quality, and geometric distribution of intercepted radiation. This becomes particularly crucial in regions like the Middle East, characterized by high solar radiation and dusty atmospheric conditions. Existing greenhouse technologies often rely on additional expensive equipment to manage light conditions effectively. In this study, we propose a distinct approach employing functional coatings to mitigate dust and block UV and IR radiation, thereby conserving energy and enhancing productivity. By combining UV-IR reflective coatings with dust mitigation strategies, we aim to address both environmental challenges and energy consumption issues faced by greenhouse agriculture in Saudi Arabia.

Keywords: greenhouse, UV-IR reflective coatings, dust mitigation, energy efficiency, productivity

Procedia PDF Downloads 34
3463 Assessment of Smart Mechatronics Application in Agriculture

Authors: Sairoel Amertet, Girma Gebresenbet

Abstract:

Smart mechatronics systems in agriculture can be traced back to the mid-1980s, when research into automated fruit harvesting systems began in Japan, Europe, and the United States. Since then, impressive advances have been made in smart mechatronics systems. Furthermore, smart mechatronics systems are promising areas, and as a result, we were intrigued to learn more about them. Consequently, the purpose of this study was to examine the smart mechatronic systems that have been applied to agricultural areas so far, with inspiration from the smart mechatronic system in other sectors. To get an overview of the current state of the art, benefits and drawbacks of smart mechatronics systems, various approaches were investigated. Moreover, smart mechatronic modules and various networks applied in agriculture processing were examined. Finally, we explored how the data retrieved using the one-way analysis of variance related to each other. The result showed that there were strongly related keywords for different journals. With the virtually limited use of sophisticated mechatronics in the agricultural industry and, at the same time, the low production rate, the demand for food security has fallen dramatically. Therefore, the application of smart mechatronics systems in agricultural sectors would be taken into consideration in order to overcome these issues.

Keywords: mechatronics, robotic, robotic system, automation, agriculture mechanism

Procedia PDF Downloads 49
3462 Mathematical Models for GMAW and FCAW Welding Processes for Structural Steels Used in the Oil Industry

Authors: Carlos Alberto Carvalho Castro, Nancy Del Ducca Barbedo, Edmilsom Otoni Côrrea

Abstract:

With increase the production oil and lines transmission gases that are in ample expansion, the industries medium and great transport they had to adapt itself to supply the demand manufacture in this fabrication segment. In this context, two welding processes have been more extensively used: the GMAW (Gas Metal Arc Welding) and the FCAW (Flux Cored Arc Welding). In this work, welds using these processes were carried out in flat position on ASTM A-36 carbon steel plates in order to make a comparative evaluation between them concerning to mechanical and metallurgical properties. A statistical tool based on technical analysis and design of experiments, DOE, from the Minitab software was adopted. For these analyses, the voltage, current, and welding speed, in both processes, were varied. As a result, it was observed that the welds in both processes have different characteristics in relation to the metallurgical properties and performance, but they present good weldability, satisfactory mechanical strength e developed mathematical models.

Keywords: Flux Cored Arc Welding (FCAW), Gas Metal Arc Welding (GMAW), Design of Experiments (DOE), mathematical models

Procedia PDF Downloads 534
3461 Key Aroma Compounds as Predictors of Pineapple Sensory Quality

Authors: Jenson George, Thoa Nguyen, Garth Sanewski, Craig Hardner, Heather Eunice Smyth

Abstract:

Pineapple (Ananas comosus), with its unique sweet flavour, is one of the most popular tropical, non-climacteric fruits consumed worldwide. It is also the third most important tropical fruit in world production. In Australia, 99% of the pineapple production is from the Queensland state due to the favourable subtropical climatic conditions. The flavourful fruit is known to contain around 500 volatile organic compounds (VOC) at varying concentrations and greatly contribute to the flavour quality of pineapple fruit by providing distinct aroma sensory properties that are sweet, fruity, tropical, pineapple-like, caramel-like, coconut-like, etc. The aroma of pineapple is one of the important factors attracting consumers and strengthening the marketplace. To better understand the aroma of Australian-grown pineapples, the matrix-matched Gas chromatography–mass spectrometry (GC-MS), Head Space - Solid-phase microextraction (HS-SPME), Stable-isotope dilution analysis (SIDA) method was developed and validated. The developed method represents a significant improvement over current methods with the incorporation of multiple external reference standards, multiple isotopes labeled internal standards, and a matching model system of pineapple fruit matrix. This method was employed to quantify 28 key aroma compounds in more than 200 genetically diverse pineapple varieties from a breeding program. The Australian pineapple cultivars varied in content and composition of free volatile compounds, which were predominantly comprised of esters, followed by terpenes, alcohols, aldehydes, and ketones. Using selected commercial cultivars grown in Australia, and by employing the sensorial analysis, the appearance (colour), aroma (intensity, sweet, vinegar/tang, tropical fruits, floral, coconut, green, metallic, vegetal, fresh, peppery, fermented, eggy/sulphurous) and texture (crunchiness, fibrousness, and juiciness) were obtained. Relationships between sensory descriptors and volatiles were explored by applying multivariate analysis (PCA) to the sensorial and chemical data. The key aroma compounds of pineapple exhibited a positive correlation with corresponding sensory properties. The sensory and volatile data were also used to explore genetic diversity in the breeding population. GWAS was employed to unravel the genetic control of the pineapple volatilome and its interplay with fruit sensory characteristics. This study enhances our understanding of pineapple aroma (flavour) compounds, their biosynthetic pathways and expands breeding option for pineapple cultivars. This research provides foundational knowledge to support breeding programs, post-harvest and target market studies, and efforts to optimise the flavour of commercial pineapple varieties and their parent lines to produce better tasting fruits for consumers.

Keywords: Ananas comosus, pineapple, flavour, volatile organic compounds, aroma, Gas chromatography–mass spectrometry (GC-MS), Head Space - Solid-phase microextraction (HS-SPME), Stable-isotope dilution analysis (SIDA).

Procedia PDF Downloads 20
3460 Linguoculturological Analysis of Advertising: An Overview of Previous Researches

Authors: Brankica Bojovic

Abstract:

Every study of advertising is intrinsically multidisciplinary, as the researcher must take into account the linguistic, social, psychological, economic, political and cultural factors that have all played a significant role in the history of advertising. A linguoculturological analysis of advertising aims to provide insight into the ideologies and archetypal structures that abide in the discourse of advertising messages, and give an overview of the academic research in the area of linguistics, and cultural and social studies that contributed to the demystification of the discourse of advertising. As the process of globalisation is gaining momentum, so is the expansion of businesses and economies, and migration of the population. Yet, the uniqueness of individual cultures prevails, and demonstrates that the process of communication and translation are not only matters of linguistic, but of cultural transferral as well. Therefore, even the world of business and advertising, the world of fast food, fast production, fast living, is programmed in accordance with the uniqueness of those cultures. The fact that culture, beliefs, ideologies, values and societal expectations permeate every sphere of advertising will be addressed through illustrative examples.

Keywords: culturology, ideology, linguistic analysis in advertising, linguistic and visual metaphors, propaganda, translation of advertisements

Procedia PDF Downloads 261
3459 Total Quality Management and Competitive Advantage in Companies

Authors: Malki Fatima Zahra Nadia, Kellal Cheiimaa, Brahimi Houria

Abstract:

Total Quality Management (TQM) is one of the most important modern management systems in marketing, that help organizations to survive and remain competitive in the dynamic market with frequent changes. It assists them in gaining a competitive advantage, growth, and excellence compared to their competitors. To understand the impact of TQM on competitive advantage in economic companies, a study was conducted in Ooredoo Telecommunications Company. A questionnaire was designed and distributed to OOredoo' 75 employees in each of the departments of leadership, quality assurance, quality control, research and development, production, customer service, Similarly, resulting in the retrieval of 72 questionnaires. To analyze the descriptive results of the study, the SPSS software version 25 was used. Additionally, Structural Equation Modeling (SEM) with the help of Smart Pls4 software was utilized to test the study's hypotheses. The study concluded that there is an impact between total quality management and competitive advantage in Ooredoo company to different degrees. On this basis, the study recommended the need to implement the total quality management system at the level of all organizations and in various fields.

Keywords: total quality management, ISO system, competitive advantage, competitive strategies

Procedia PDF Downloads 38
3458 Numerical Simulation of the Production of Ceramic Pigments Using Microwave Radiation: An Energy Efficiency Study Towards the Decarbonization of the Pigment Sector

Authors: Pedro A. V. Ramos, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

Global warming mitigation is one of the main challenges of this century, having the net balance of greenhouse gas (GHG) emissions to be null or negative in 2050. Industry electrification is one of the main paths to achieving carbon neutrality within the goals of the Paris Agreement. Microwave heating is becoming a popular industrial heating mechanism due to the absence of direct GHG emissions, but also the rapid, volumetric, and efficient heating. In the present study, a mathematical model is used to simulate the production using microwave heating of two ceramic pigments, at high temperatures (above 1200 Celsius degrees). The two pigments studied were the yellow (Pr, Zr)SiO₂ and the brown (Ti, Sb, Cr)O₂. The chemical conversion of reactants into products was included in the model by using the kinetic triplet obtained with the model-fitting method and experimental data present in the Literature. The coupling between the electromagnetic, thermal, and chemical interfaces was also included. The simulations were computed in COMSOL Multiphysics. The geometry includes a moving plunger to allow for the cavity impedance matching and thus maximize the electromagnetic efficiency. To accomplish this goal, a MATLAB controller was developed to automatically search the position of the moving plunger that guarantees the maximum efficiency. The power is automatically and permanently adjusted during the transient simulation to impose stationary regime and total conversion, the two requisites of every converged solution. Both 2D and 3D geometries were used and a parametric study regarding the axial bed velocity and the heat transfer coefficient at the boundaries was performed. Moreover, a Verification and Validation study was carried out by comparing the conversion profiles obtained numerically with the experimental data available in the Literature; the numerical uncertainty was also estimated to attest to the result's reliability. The results show that the model-fitting method employed in this work is a suitable tool to predict the chemical conversion of reactants into the pigment, showing excellent agreement between the numerical results and the experimental data. Moreover, it was demonstrated that higher velocities lead to higher thermal efficiencies and thus lower energy consumption during the process. This work concludes that the electromagnetic heating of materials having high loss tangent and low thermal conductivity, like ceramic materials, maybe a challenge due to the presence of hot spots, which may jeopardize the product quality or even the experimental apparatus. The MATLAB controller increased the electromagnetic efficiency by 25% and global efficiency of 54% was obtained for the titanate brown pigment. This work shows that electromagnetic heating will be a key technology in the decarbonization of the ceramic sector as reductions up to 98% in the specific GHG emissions were obtained when compared to the conventional process. Furthermore, numerical simulations appear as a suitable technique to be used in the design and optimization of microwave applicators, showing high agreement with experimental data.

Keywords: automatic impedance matching, ceramic pigments, efficiency maximization, high-temperature microwave heating, input power control, numerical simulation

Procedia PDF Downloads 116
3457 Influence of Inertial Forces of Large Bearings Utilized in Wind Energy Assemblies

Authors: S. Barabas, F. Sarbu, B. Barabas, A. Fota

Abstract:

Main objective of this paper is to establish a link between inertial forces of the bearings used in construction of wind power plant and its behavior. Using bearings with lower inertial forces has the immediate effect of decreasing inertia rotor system, with significant results in increased energy efficiency, due to decreased friction forces between rollers and raceways. The FEM analysis shows the appearance of uniform contact stress at the ends of the rollers, demonstrated the necessity of production of low mass bearings. Favorable results are expected in the economic field, by reducing material consumption and by increasing the durability of bearings. Using low mass bearings with hollow rollers instead of solid rollers has an impact on working temperature, on vibrations and noise which decrease. Implementation of types of hollow rollers of cylindrical tubular type, instead of expensive rollers with logarithmic profile, will bring significant inertial forces decrease with large benefits in behavior of wind power plant.

Keywords: inertial forces, Von Mises stress, hollow rollers, wind turbine

Procedia PDF Downloads 337
3456 Beef Cattle Farmers Perception toward Urea Mineral Molasses Block

Authors: Veronica Sri Lestari, Djoni Prawira Rahardja, Tanrigiling Rasyid, Aslina Asnawi, Ikrar Muhammad Saleh, Ilham Rasyid

Abstract:

Urea Mineral Molasses Block is very important for beef cattle, because it can increase beef production. The purpose of this research was to know beef cattle farmers’ perception towards Urea Mineral Molasses Block (UMMB). This research was conducted in Gowa Regency, South Sulawesi, Indonesia in 2016. The population of this research were all beef cattle farmers. Sample was chosen through purposive sampling. Data were collected through observation and face to face with deep interview using questionnaire. Variables of perception consisted of relative advantage, compatibility, complexity, observability and triability. There were 10 questions. The answer for each question was scored by 1, 2, 3 which refer to disagree, agree enough, strongly agree. The data were analyzed descriptively using frequency distribution. The research revealed that beef cattle farmers’ perception towards UMMB was categorized as strongly agree.

Keywords: beef cattle, farmers, perception, urea mineral molasses block

Procedia PDF Downloads 315
3455 Experimental Assessment of Micromechanical Models for Mechanical Properties of Recycled Short Fiber Composites

Authors: Mohammad S. Rouhi, Magdalena Juntikka

Abstract:

Processing of polymer fiber composites has a remarkable influence on their mechanical performance. These mechanical properties are even more influenced when using recycled reinforcement. Therefore, we place particular attention on the evaluation of micromechanical models to estimate the mechanical properties and compare them against the experimental results of the manufactured composites. For the manufacturing process, an epoxy matrix and carbon fiber production cut-offs as reinforcing material are incorporated using a vacuum infusion process. In addition, continuous textile reinforcement in combination with the epoxy matrix is used as reference material to evaluate the kick-down in mechanical performance of the recycled composite. The experimental results show less degradation of the composite stiffness compared to the strength properties. Observations from the modeling also show the same trend as the error between the theoretical and experimental results is lower for stiffness comparisons than the strength calculations. Yet still, good mechanical performance for specific applications can be expected from these materials.

Keywords: composite recycling, carbon fibers, mechanical properties, micromechanics

Procedia PDF Downloads 132
3454 Production and Investigation of Ceramic-Metal Composite from Electroless Ni Plated AlN and Al Powders

Authors: Ahmet Yönetken

Abstract:

Al metal matrix composites reinforced with AlN have been fabricated by Tube furnace sintering at various temperatures. A uniform nickel layer on Al(%1AlN)%19Ni, Al(%2AlN)%18Ni, Al(%3AlN)%17Ni, Al(%4AlN)%16Ni, Al(%5AlN)%15Ni powders were deposited prior to sintering using electroless plating technique, allowing closer surface contact than can be achieved using conventional methods such as mechanical alloying. A composite consisting of quaternary additions, a ceramic phase, AlN, within a matrix of Al, AlN, Ni has been prepared at the temperature range between 550°C and 650°C under Ar shroud. X-Ray diffraction, SEM (Scanning Electron Microscope) density, and hardness measurements were employed to characterize the properties of the specimens. Experimental results carried out for 650°C suggest that the best properties as comprehension strength σmax and hardness 681.51(HV) were obtained at 650°C, and the tube furnace sintering of electroless Al plated (%5AlN)%15Ni powders is a promising technique to produce ceramic reinforced Al (%5AlN)%15Ni composites.

Keywords: electroless nickel plating, ceramic-metal composites, powder metallurgy, sintering

Procedia PDF Downloads 219
3453 qPCR Method for Detection of Halal Food Adulteration

Authors: Gabriela Borilova, Monika Petrakova, Petr Kralik

Abstract:

Nowadays, European producers are increasingly interested in the production of halal meat products. Halal meat has been increasingly appearing in the EU's market network and meat products from European producers are being exported to Islamic countries. Halal criteria are mainly related to the origin of muscle used in production, and also to the way products are obtained and processed. Although the EU has legislatively addressed the question of food authenticity, the circumstances of previous years when products with undeclared horse or poultry meat content appeared on EU markets raised the question of the effectiveness of control mechanisms. Replacement of expensive or not-available types of meat for low-priced meat has been on a global scale for a long time. Likewise, halal products may be contaminated (falsified) by pork or food components obtained from pigs. These components include collagen, offal, pork fat, mechanically separated pork, emulsifier, blood, dried blood, dried blood plasma, gelatin, and others. These substances can influence sensory properties of the meat products - color, aroma, flavor, consistency and texture or they are added for preservation and stabilization. Food manufacturers sometimes access these substances mainly due to their dense availability and low prices. However, the use of these substances is not always declared on the product packaging. Verification of the presence of declared ingredients, including the detection of undeclared ingredients, are among the basic control procedures for determining the authenticity of food. Molecular biology methods, based on DNA analysis, offer rapid and sensitive testing. The PCR method and its modification can be successfully used to identify animal species in single- and multi-ingredient raw and processed foods and qPCR is the first choice for food analysis. Like all PCR-based methods, it is simple to implement and its greatest advantage is the absence of post-PCR visualization by electrophoresis. qPCR allows detection of trace amounts of nucleic acids, and by comparing an unknown sample with a calibration curve, it can also provide information on the absolute quantity of individual components in the sample. Our study addresses a problem that is related to the fact that the molecular biological approach of most of the work associated with the identification and quantification of animal species is based on the construction of specific primers amplifying the selected section of the mitochondrial genome. In addition, the sections amplified in conventional PCR are relatively long (hundreds of bp) and unsuitable for use in qPCR, because in DNA fragmentation, amplification of long target sequences is quite limited. Our study focuses on finding a suitable genomic DNA target and optimizing qPCR to reduce variability and distortion of results, which is necessary for the correct interpretation of quantification results. In halal products, the impact of falsification of meat products by the addition of components derived from pigs is all the greater that it is not just about the economic aspect but above all about the religious and social aspect. This work was supported by the Ministry of Agriculture of the Czech Republic (QJ1530107).

Keywords: food fraud, halal food, pork, qPCR

Procedia PDF Downloads 224