Search results for: thermal imaging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4605

Search results for: thermal imaging

885 Rapid Flood Damage Assessment of Population and Crops Using Remotely Sensed Data

Authors: Urooj Saeed, Sajid Rashid Ahmad, Iqra Khalid, Sahar Mirza, Imtiaz Younas

Abstract:

Pakistan, a flood-prone country, has experienced worst floods in the recent past which have caused extensive damage to the urban and rural areas by loss of lives, damage to infrastructure and agricultural fields. Poor flood management system in the country has projected the risks of damages as the increasing frequency and magnitude of floods are felt as a consequence of climate change; affecting national economy directly or indirectly. To combat the needs of flood emergency, this paper focuses on remotely sensed data based approach for rapid mapping and monitoring of flood extent and its damages so that fast dissemination of information can be done, from local to national level. In this research study, spatial extent of the flooding caused by heavy rains of 2014 has been mapped by using space borne data to assess the crop damages and affected population in sixteen districts of Punjab. For this purpose, moderate resolution imaging spectroradiometer (MODIS) was used to daily mark the flood extent by using Normalised Difference Water Index (NDWI). The highest flood value data was integrated with the LandScan 2014, 1km x 1km grid based population, to calculate the affected population in flood hazard zone. It was estimated that the floods covered an area of 16,870 square kilometers, with 3.0 million population affected. Moreover, to assess the flood damages, Object Based Image Analysis (OBIA) aided with spectral signatures was applied on Landsat image to attain the thematic layers of healthy (0.54 million acre) and damaged crops (0.43 million acre). The study yields that the population of Jhang district (28% of 2.5 million population) was affected the most. Whereas, in terms of crops, Jhang and Muzzafargarh are the ‘highest damaged’ ranked district of floods 2014 in Punjab. This study was completed within 24 hours of the peak flood time, and proves to be an effective methodology for rapid assessment of damages due to flood hazard

Keywords: flood hazard, space borne data, object based image analysis, rapid damage assessment

Procedia PDF Downloads 302
884 Catalytic Effect on Eco Friendly Functional Material in Flame Retardancy of Cellulose

Authors: Md. Abdul Hannan

Abstract:

Two organophosphorus compounds, namely diethyloxymethyl-9-oxa-10- phosphaphenanthrene-10-oxide (DOPAC) and diethyl (2,2-diethoxyethyl) phosphonate (DPAC) were applied on cotton cellulose to impart non-carcinogenic and durable (in alkaline washing) flame retardant property to it. Some acidic catalysts, sodium dihydrogen phosphate (NaH2PO4), ammonium dihydrogen phosphate (NH4H2PO4) and phosphoric acid (H3PO4) were successfully used. Synergistic acidic catalyzing effect of NaH2PO4+H3PO4 and NaH2PO4+NH4H2PO4 was also investigated. Appreciable limiting oxygen index (LOI) value of 23.2% was achieved in case of the samples treated with flame retardant (FR) compound DPAC along with the combined acidic catalyzing effect. A distinguishing outcome of total heat of combustion (THC) 3.27 KJ/g was revealed during pyrolysis combustion flow calorimetry (PCFC) test of the treated sample. In respect of thermal degradation, low temperature dehydration in conjugation with sufficient amount of char residue (30.5%) was obtained in case of DPAC treated sample. Consistently, the temperature of peak heat release rate (TPHRR) (325°C) of DPAC treated sample supported the expected low temperature pyrolysis in condensed phase mechanism. Subsequent thermogravimetric analysis (TGA) also reported inspiring weight retention% of the treated samples. Furthermore, for both of the flame retardant compounds, effect of different catalysts, considering both individual and combined, effect of solvents and overall the optimization of the process parameters were studied in detail.

Keywords: cotton cellulose, organophosphorus flame retardant, acetal linkage, THC, HRR, PHHR, char residue, LOI

Procedia PDF Downloads 239
883 A Bayesian Parameter Identification Method for Thermorheological Complex Materials

Authors: Michael Anton Kraus, Miriam Schuster, Geralt Siebert, Jens Schneider

Abstract:

Polymers increasingly gained interest in construction materials over the last years in civil engineering applications. As polymeric materials typically show time- and temperature dependent material behavior, which is accounted for in the context of the theory of linear viscoelasticity. Within the context of this paper, the authors show, that some polymeric interlayers for laminated glass can not be considered as thermorheologically simple as they do not follow a simple TTSP, thus a methodology of identifying the thermorheologically complex constitutive bahavioir is needed. ‘Dynamical-Mechanical-Thermal-Analysis’ (DMTA) in tensile and shear mode as well as ‘Differential Scanning Caliometry’ (DSC) tests are carried out on the interlayer material ‘Ethylene-vinyl acetate’ (EVA). A navoel Bayesian framework for the Master Curving Process as well as the detection and parameter identification of the TTSPs along with their associated Prony-series is derived and applied to the EVA material data. To our best knowledge, this is the first time, an uncertainty quantification of the Prony-series in a Bayesian context is shown. Within this paper, we could successfully apply the derived Bayesian methodology to the EVA material data to gather meaningful Master Curves and TTSPs. Uncertainties occurring in this process can be well quantified. We found, that EVA needs two TTSPs with two associated Generalized Maxwell Models. As the methodology is kept general, the derived framework could be also applied to other thermorheologically complex polymers for parameter identification purposes.

Keywords: bayesian parameter identification, generalized Maxwell model, linear viscoelasticity, thermorheological complex

Procedia PDF Downloads 233
882 Triple Intercell Bar for Electrometallurgical Processes: A Design to Increase PV Energy Utilization

Authors: Eduardo P. Wiechmann, Jorge A. Henríquez, Pablo E. Aqueveque, Luis G. Muñoz

Abstract:

PV energy prices are declining rapidly. To take advantage of the benefits of those prices and lower the carbon footprint, operational practices must be modified. Undoubtedly, it challenges the electrowinning practice to operate at constant current throughout the day. This work presents a technology that contributes in providing modulation capacity to the electrode current distribution system. This is to raise the day time dc current and lower it at night. The system is a triple intercell bar that operates in current-source mode. The design is a capping board free dogbone type of bar that ensures an operation free of short circuits, hot swapability repairs and improved current balance. This current-source system eliminates the resetting currents circulating in equipotential bars. Twin auxiliary connectors are added to the main connectors providing secure current paths to bypass faulty or impaired contacts. All system conductive elements are positioned over a baseboard offering a large heat sink area to the ventilation of a facility. The system works with lower temperature than a conventional busbar. Of these attributes, the cathode current balance property stands out and is paramount for day/night modulation and the use of photovoltaic energy. A design based on a 3D finite element method model predicting electric and thermal performance under various industrial scenarios is presented. Preliminary results obtained in an electrowinning facility with industrial prototypes are included.

Keywords: electrowinning, intercell bars, PV energy, current modulation

Procedia PDF Downloads 127
881 Synthesis of Montmorillonite/CuxCd1-xS Nanocomposites and Their Application to the Photodegradation of Methylene Blue

Authors: H. Boukhatem, L. Djouadi, H. Khalaf, R. M. Navarro, F. V. Ganzalez

Abstract:

Synthetic organic dyes are used in various industries, such as textile industry, leather tanning industry, paper production, hair dye production, etc. Wastewaters containing these dyes may be harmful to the environment and living organisms. Therefore, it is very important to remove or degrade these dyes before discharging them into the environment. In addition to standard technologies for the degradation and/or removal of dyes, several new specific technologies, the so-called advanced oxidation processes (AOPs), have been developed to eliminate dangerous compounds from polluted waters. AOPs are all characterized by the same chemical feature: production of radicals (•OH) through a multistep process, although different reaction systems are used. These radicals show little selectivity of attack and are able to oxidize various organic pollutants due to their high oxidative capacity (reduction potential of HO• Eo = 2.8 V). Heterogeneous photocatalysis, as one of the AOPs, could be effective in the oxidation/degradation of organic dyes. A major advantage of using heterogeneous photocatalysis for this purpose is the total mineralization of organic dyes, which results in CO2, H2O and corresponding mineral acids. In this study, nanomaterials based on montmorillonite and CuxCd1-xS with different Cu concentration (0.3 < x < 0.7) were utilized for the degradation of the commercial cationic textile dye Methylene blue (MB), used as a model pollutant. The synthesized nanomaterials were characterized by fourier transform infrared (FTIR) and thermogravimetric-differential thermal analysis (TG–DTA). Test results of photocatalysis of methylene blue under UV-Visible irradiation show that the photoactivity of nanomaterials montmorillonite/ CuxCd1-xS increases with the increasing of Cu concentration. The kinetics of the degradation of the MB dye was described with the Langmuir–Hinshelwood (L–H) kinetic model.

Keywords: heterogeneous photocatalysis, methylene blue, montmorillonite, nanomaterial

Procedia PDF Downloads 348
880 Unlocking Health Insights: Studying Data for Better Care

Authors: Valentina Marutyan

Abstract:

Healthcare data mining is a rapidly developing field at the intersection of technology and medicine that has the potential to change our understanding and approach to providing healthcare. Healthcare and data mining is the process of examining huge amounts of data to extract useful information that can be applied in order to improve patient care, treatment effectiveness, and overall healthcare delivery. This field looks for patterns, trends, and correlations in a variety of healthcare datasets, such as electronic health records (EHRs), medical imaging, patient demographics, and treatment histories. To accomplish this, it uses advanced analytical approaches. Predictive analysis using historical patient data is a major area of interest in healthcare data mining. This enables doctors to get involved early to prevent problems or improve results for patients. It also assists in early disease detection and customized treatment planning for every person. Doctors can customize a patient's care by looking at their medical history, genetic profile, current and previous therapies. In this way, treatments can be more effective and have fewer negative consequences. Moreover, helping patients, it improves the efficiency of hospitals. It helps them determine the number of beds or doctors they require in regard to the number of patients they expect. In this project are used models like logistic regression, random forests, and neural networks for predicting diseases and analyzing medical images. Patients were helped by algorithms such as k-means, and connections between treatments and patient responses were identified by association rule mining. Time series techniques helped in resource management by predicting patient admissions. These methods improved healthcare decision-making and personalized treatment. Also, healthcare data mining must deal with difficulties such as bad data quality, privacy challenges, managing large and complicated datasets, ensuring the reliability of models, managing biases, limited data sharing, and regulatory compliance. Finally, secret code of data mining in healthcare helps medical professionals and hospitals make better decisions, treat patients more efficiently, and work more efficiently. It ultimately comes down to using data to improve treatment, make better choices, and simplify hospital operations for all patients.

Keywords: data mining, healthcare, big data, large amounts of data

Procedia PDF Downloads 38
879 Dual Mode Mobile Based Detection of Endogenous Hydrogen Sulfide for Determination of Live and Antibiotic Resistant Bacteria

Authors: Shashank Gahlaut, Chandrashekhar Sharan, J. P. Singh

Abstract:

Increasing incidence of antibiotic-resistant bacteria is a big concern for the treatment of pathogenic diseases. The effect of treatment of patients with antibiotics often leads to the evolution of antibiotic resistance in the pathogens. The detection of antibiotic or antimicrobial resistant bacteria (microbes) is quite essential as it is becoming one of the big threats globally. Here we propose a novel technique to tackle this problem. We are taking a step forward to prevent the infections and diseases due to drug resistant microbes. This detection is based on some unique features of silver (a noble metal) nanorods (AgNRs) which are fabricated by a physical deposition method called thermal glancing angle deposition (GLAD). Silver nanorods are found to be highly sensitive and selective for hydrogen sulfide (H2S) gas. Color and water wetting (contact angle) of AgNRs are two parameters what are effected in the presence of this gas. H₂S is one of the major gaseous products evolved in the bacterial metabolic process. It is also known as gasotransmitter that transmits some biological singles in living systems. Nitric Oxide (NO) and Carbon mono oxide (CO) are two another members of this family. Orlowski (1895) observed the emission of H₂S by the bacteria for the first time. Most of the microorganism produce these gases. Here we are focusing on H₂S gas evolution to determine live/dead and antibiotic-resistant bacteria. AgNRs array has been used for the detection of H₂S from micro-organisms. A mobile app is also developed to make it easy, portable, user-friendly, and cost-effective.

Keywords: antibiotic resistance, hydrogen sulfide, live and dead bacteria, mobile app

Procedia PDF Downloads 121
878 Anthropometric Indices of Obesity and Coronary Artery Atherosclerosis: An Autopsy Study in South Indian population

Authors: Francis Nanda Prakash Monteiro, Shyna Quadras, Tanush Shetty

Abstract:

The association between human physique and morbidity and mortality resulting from coronary artery disease has been studied extensively over several decades. Multiple studies have also been done on the correlation between grade of atherosclerosis, coronary artery diseases and anthropometrical measurements. However, the number of autopsy-based studies drastically reduces this number. It has been suggested that while in living subjects, it would be expensive, difficult, and even harmful to subject them to imaging modalities like CT scans and procedures involving contrast media to study mild atherosclerosis, no such harm is encountered in study of autopsy cases. This autopsy-based study was aimed to correlate the anthropometric measurements and indices of obesity, such as waist circumference (WC), hip circumference (HC), body mass index (BMI) and waist hip ratio (WHR) with the degree of atherosclerosis in the right coronary artery (RCA), main branch of the left coronary artery (LCA) and the left anterior descending artery (LADA) in 95 South Indian origin victims of both the genders between the age of 18 years and 75 years. The grading of atherosclerosis was done according to criteria suggested by the American Heart Association. The study also analysed the correlation of the anthropometric measurements and indices of obesity with the number of coronaries affected with atherosclerosis in an individual. All the anthropometric measurements and the derived indices were found to be significantly correlated to each other in both the genders except for the age, which is found to have a significant correlation only with the WHR. In both the genders severe degree of atherosclerosis was commonly observed in LADA, followed by LCA and RCA. Grade of atherosclerosis in RCA is significantly related to the WHR in males. Grade of atherosclerosis in LCA and LADA is significantly related to the WHR in females. Significant relation was observed between grade of atherosclerosis in RCA and WC, and WHR, and between grade of atherosclerosis in LADA and HC in males. Significant relation was observed between grade of atherosclerosis in RCA and WC, and WHR, and between grade of atherosclerosis in LADA and HC in females. Anthropometric measurements/indices of obesity can be an effective means to identify high risk cases of atherosclerosis at an early stage that can be effective in reducing the associated cardiac morbidity and mortality. A person with anthropometric measurements suggestive of mild atherosclerosis can be advised to modify his lifestyle, along with decreasing his exposure to the other risk factors. Those with measurements suggestive of higher degree of atherosclerosis can be subjected to confirmatory procedures to start effective treatment.

Keywords: atherosclerosis, coronary artery disease, indices, obesity

Procedia PDF Downloads 40
877 Optimum Performance of the Gas Turbine Power Plant Using Adaptive Neuro-Fuzzy Inference System and Statistical Analysis

Authors: Thamir K. Ibrahim, M. M. Rahman, Marwah Noori Mohammed

Abstract:

This study deals with modeling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of the green environment. These requirements have given way the long-time governing authority of steam turbine (ST) in the world power generation, and the gas turbine (GT) will replace it. Therefore, it is necessary to predict the characteristics of the GT system and optimize its operating strategy by developing a simulation system. The integrated model and simulation code for exploiting the performance of gas turbine power plant are developed utilizing MATLAB code. The performance code for heavy-duty GT and CCGT power plants are validated with the real power plant of Baiji GT and MARAFIQ CCGT plants the results have been satisfactory. A new technology of correlation was considered for all types of simulation data; whose coefficient of determination (R2) was calculated as 0.9825. Some of the latest launched correlations were checked on the Baiji GT plant and apply error analysis. The GT performance was judged by particular parameters opted from the simulation model and also utilized Adaptive Neuro-Fuzzy System (ANFIS) an advanced new optimization technology. The best thermal efficiency and power output attained were about 56% and 345MW respectively. Thus, the operation conditions and ambient temperature are strongly influenced on the overall performance of the GT. The optimum efficiency and power are found at higher turbine inlet temperatures. It can be comprehended that the developed models are powerful tools for estimating the overall performance of the GT plants.

Keywords: gas turbine, optimization, ANFIS, performance, operating conditions

Procedia PDF Downloads 399
876 Progressive Collapse of Cooling Towers

Authors: Esmaeil Asadzadeh, Mehtab Alam

Abstract:

Well documented records of the past failures of the structures reveals that the progressive collapse of structures is one of the major reasons for dramatic human loss and economical consequences. Progressive collapse is the failure mechanism in which the structure fails gradually due to the sudden removal of the structural elements. The sudden removal of some structural elements results in the excessive redistributed loads on the others. This sudden removal may be caused by any sudden loading resulted from local explosion, impact loading and terrorist attacks. Hyperbolic thin walled concrete shell structures being an important part of nuclear and thermal power plants are always prone to such terrorist attacks. In concrete structures, the gradual failure would take place by generation of initial cracks and its propagation in the supporting columns along with the tower shell leading to the collapse of the entire structure. In this study the mechanism of progressive collapse for such high raised towers would be simulated employing the finite element method. The aim of this study would be providing clear conceptual step-by-step descriptions of various procedures for progressive collapse analysis using commercially available finite element structural analysis software’s, with the aim that the explanations would be clear enough that they will be readily understandable and will be used by practicing engineers. The study would be carried out in the following procedures: 1. Provide explanations of modeling, simulation and analysis procedures including input screen snapshots; 2. Interpretation of the results and discussions; 3. Conclusions and recommendations.

Keywords: progressive collapse, cooling towers, finite element analysis, crack generation, reinforced concrete

Procedia PDF Downloads 456
875 The Studies of the Sorption Capabilities of the Porous Microspheres with Lignin

Authors: M. Goliszek, M. Sobiesiak, O. Sevastyanova, B. Podkoscielna

Abstract:

Lignin is one of three main constituents of biomass together with cellulose and hemicellulose. It is a complex biopolymer, which contains a large number of functional groups, including aliphatic and aromatic hydroxyl groups, carbohylic groups and methoxy groups in its structure, that is why it shows potential capacities for process of sorption. Lignin is a highly cross-linked polymer with a three-dimentional structure which can provide large surface area and pore volumes. It can also posses better dispersion, diffusion and mass transfer behavior in a field of the removal of, e.g., heavy-metal-ions or aromatic pollutions. In this work emulsion-suspension copolymerization method, to synthesize the porous microspheres of divinylbenzene (DVB), styrene (St) and lignin was used. There are also microspheres without the addition of lignin for comparison. Before the copolymerization, modification lignin with methacryloyl chloride, to improve its reactivity with other monomers was done. The physico-chemical properties of the obtained microspheres, e.g., pore structures (adsorption-desorption measurements), thermal properties (DSC), tendencies to swell and the actual shapes were also studied. Due to well-developed porous structure and the presence of functional groups our materials may have great potential in sorption processes. To estimate the sorption capabilities of the microspheres towards phenol and its chlorinated derivatives the off-line SPE (solid-phase extraction) method is going to be applied. This method has various advantages, including low-cost, easy to use and enables the rapid measurements for a large number of chemicals. The efficiency of the materials in removing phenols from aqueous solution and in desorption processes will be evaluated.

Keywords: microspheres, lignin, sorption, solid-phase extraction

Procedia PDF Downloads 163
874 H₆P₂W₁₈O₆₂.14H₂O Catalyzed Synthesis and X-Ray Study of α-Aminophosphonates

Authors: Sarra Boughaba

Abstract:

The α-aminophosphonates have received considerable attention in organic and medicinal chemistry because of their structural resemblance with α-amino acids. They are used as antitumor agents, anti-inflammatory and antibiotics. As a result, a number of procedures have been developed for their synthesis. However, many of these methods suffer from some disadvantages such as long reaction times, environmental pollution caused by utilization of organic solvents, and expensive catalyst. On the other hand, thiazole components, particularly 2-aminothiazole is an important class of heterocyclic compounds. They appear in the structure of natural products and biologically actives compounds, thiamine (vitamin-B), and some antibiotics drugs (penicillin, micrococcin). In the past few years, heteropolyacids have received great attention as environmentally benign catalysts for organic synthetic processes, they possess unique physicochemical properties, such as super-acidity, high thermal and chemical stability, ability to accept and release electrons and high proton mobility, and the possibility of varying their acidity and oxidizing potential. In this study, an efficient and eco-friendly process has been developed for the synthesis of α-aminophosphonates containing aminothiazole moiety via Kabachnik-Field reaction catalyzed by H₆P₂W₁₈O₆₂.14H₂O as reusable catalyst, by condensation of aromatic aldehydes, 2-aminothiazole and triethylphosphite under free conditions. The X-ray crystallographic data of obtained compounds were provided. The main advantages of our protocol include the absence of solvent in the reaction, easy work-up, short reaction time, atom-economy and reusability of catalyst without significant loss of its activity.

Keywords: aminophosphonates, green synthesis, H₆P₂W₁₈O₆₂.14H₂O catalyst, x-ray study

Procedia PDF Downloads 85
873 Isolation and Characterization of Actinophages Infecting Streptomyces scabies in Egypt

Authors: D. Zahran, M. AlKhazindar, M. Khalil, E. T. A. Sayed

Abstract:

Streptomyces scabies is a pathogenic actinomycete that infects potato crop causing severe production losses. Actinophages affect the composition and diversity of the bacterial population, thereby, can be used as a biological control. Samples of actinomycetes and phages were collected from different cultivated soils including farms of Faculty of Science, Faculty of Agriculture and different locations in Giza, Egypt. Actinomycetes were identified by using biochemical, morphological tests and molecular studies using 16S rRNA sequencing. Two specific phages (E1 and E2) against Streptomyces scabies and other hosts were isolated. Phages were identified using dilution end point (DEP), longevity in vitro (LIV), thermal inactivation point (TIP), host range and electron microscopy. PhageE1 was characterized by 10-8 (DEP),180 days(LIV), 95°C(TIP), narrow host range and electron microscopy showed ahead (59.9 nm) and neck (10.4nm). On the other hand phageE2 had 10-20 (DEP),180 days(LIV), 90°C(TIP), and the size of head was (67.2 nm) and tail (114nm). Antiviral activity was also studied using different chemicals (NaCL, KCL, CaCL2, BaCL2, CoCL2, AgNO3, ALCL3and HgCL2) with different concentrations and different plant extracts with different concentrations (star anise, tea, tillia, peppermint, ginger, cumin, chamomile, turmeric cinnamon, marjoram and black cumin). Both Phage E1and phage E2 were vulnerable to (cumin, ginger, chamomile, guavas leaves and star anise) but resistant to (Tillie, marjoram, fennelflower seeds, peppermint, and cinnamon).

Keywords: potato scab, actinophages, biological control, electron microscopy, TIP, DEP, LIV, antiviral activity

Procedia PDF Downloads 412
872 Magneto-Hydrodynamic Mixed Convection of Water-Al2O3 Nanofluid in a Wavy Lid-Driven Cavity

Authors: Farshid Fathinia

Abstract:

This paper examines numerically the laminar steady magneto-hydrodynamic mixed convection flow and heat transfer in a wavy lid-driven cavity filled with water-Al2O3 nanofluid using FDM method. The left and right sidewalls of the cavity have a wavy geometry and are maintained at a cold and hot temperature, respectively. The top and bottom walls are considered flat and insulated while, the bottom wall moves from left to right direction with a uniform lid-driven velocity. A magnetic field is applied vertically downward on the bottom wall of the cavity. Based on the numerical results, the effects of the dominant parameters such as Rayleigh number, Hartmann number, solid volume fraction, and wavy wall geometry parameters are examined. The numerical results are obtained for Hartmann number varying as 0 ≤ Ha ≤ 0.6, Rayleigh numbers varying as 103≤ Ra ≤105, and the solid volume fractions varying as 0 ≤ φ ≤ 0.0003. Comparisons with previously published numerical works on mixed convection in a nanofluid filled cavity are performed and good agreements between the results are observed. It is found that the flow circulation and mean Nusselt number decrease as the solid volume fraction and Hartmann number increase. Moreover, the convection enhances when the amplitude ratio of the wavy surface increases. The results also show that both the flow and thermal fields are significantly affected by the amplitude ratio (i.e., wave form) of the wavy wall.

Keywords: nanofluid, mixed convection, magnetic field, wavy cavity, lid-driven, SPH method

Procedia PDF Downloads 290
871 The Effect of Silanization on Alumina for Improving the Compatibility with Poly(Methacrylic Acid) Matrix for Dental Restorative Materials

Authors: Andrei Tiberiu Cucuruz, Ecaterina Andronescu, Cristina Daniela Ghitulica, Andreia Cucuruz

Abstract:

In modern dentistry, the application of resin-based composites continues to increase and in the majority of countries has completely replaced mercury amalgams. Alumina (Al2O3) is a representative bioinert ceramic with a variety of applications in industry as well as in medicine. Alumina has the potential to improve electrical resistivity and thermal conductivity of polymers. The application of poly(methacrylic acid) (PMAA) in medicine was poorly investigated in the past but can lead to good results by the incorporation of alumina particles that can bring bioinertness to the composite. However, because of the differences related to chemical bonding of these materials, the interaction is very weak at the interface leading to no significant values in practical situations. The aim of this work was to modify the structure of alumina with silane coupling agents and to study the influence of silanization on the physicomechanical properties of the resulting composite materials. Two silanes were used in this study: 3-aminopropyl-trimethoxysilane (APTMS) and dichlorodimethylsilane (DCDMS). Both silanes proved to have a significant effect on the overall performance of composites by establishing bonds with the polymer matrix and the filler. All these improvements in dental adhesive systems made for bonding resin composites to tooth structure have enhanced the clinical application of polymeric restorative materials to the position that they are now considered the material of choice for esthetic restoration.

Keywords: alumina, compressive strength, dental materials, silane coupling agents, poly(methacrylic acid)

Procedia PDF Downloads 318
870 Assessment of Airtightness Through a Standardized Procedure in a Nearly-Zero Energy Demand House

Authors: Mar Cañada Soriano, Rafael Royo-Pastor, Carolina Aparicio-Fernández, Jose-Luis Vivancos

Abstract:

The lack of insulation, along with the existence of air leakages, constitute a meaningful impact on the energy performance of buildings. Both of them lead to increases in the energy demand through additional heating and/or cooling loads. Additionally, they cause thermal discomfort. In order to quantify these uncontrolled air currents, pressurization and depressurization tests can be performed. Among them, the Blower Door test is a standardized procedure to determine the airtightness of a space which characterizes the rate of air leakages through the envelope surface, calculating to this purpose an air flow rate indicator. In this sense, the low-energy buildings complying with the Passive House design criteria are required to achieve high levels of airtightness. Due to the invisible nature of air leakages, additional tools are often considered to identify where the infiltrations take place. Among them, the infrared thermography entails a valuable technique to this purpose since it enables their detection. The aim of this study is to assess the airtightness of a typical Mediterranean dwelling house located in the Valencian orchad (Spain) restored under the Passive House standard using to this purpose the blower-door test. Moreover, the building energy performance modelling tools TRNSYS (TRaNsient System Simulation program) and TRNFlow (TRaNsient Flow) have been used to determine its energy performance, and the infiltrations’ identification was carried out by means of infrared thermography. The low levels of infiltrations obtained suggest that this house may comply with the Passive House standard.

Keywords: airtightness, blower door, trnflow, infrared thermography

Procedia PDF Downloads 100
869 Multiperson Drone Control with Seamless Pilot Switching Using Onboard Camera and Openpose Real-Time Keypoint Detection

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

Traditional classification Convolutional Neural Networks (CNN) attempt to classify an image in its entirety. This becomes problematic when trying to perform classification with a drone’s camera in real-time due to unpredictable backgrounds. Object detectors with bounding boxes can be used to isolate individuals and other items, but the original backgrounds remain within these boxes. These basic detectors have been regularly used to determine what type of object an item is, such as “person” or “dog.” Recent advancement in computer vision, particularly with human imaging, is keypoint detection. Human keypoint detection goes beyond bounding boxes to fully isolate humans and plot points, or Regions of Interest (ROI), on their bodies within an image. ROIs can include shoulders, elbows, knees, heads, etc. These points can then be related to each other and used in deep learning methods such as pose estimation. For drone control based on human motions, poses, or signals using the onboard camera, it is important to have a simple method for pilot identification among multiple individuals while also giving the pilot fine control options for the drone. To achieve this, the OpenPose keypoint detection network was used with body and hand keypoint detection enabled. OpenPose supports the ability to combine multiple keypoint detection methods in real-time with a single network. Body keypoint detection allows simple poses to act as the pilot identifier. The hand keypoint detection with ROIs for each finger can then offer a greater variety of signal options for the pilot once identified. For this work, the individual must raise their non-control arm to be identified as the operator and send commands with the hand on their other arm. The drone ignores all other individuals in the onboard camera feed until the current operator lowers their non-control arm. When another individual wish to operate the drone, they simply raise their arm once the current operator relinquishes control, and then they can begin controlling the drone with their other hand. This is all performed mid-flight with no landing or script editing required. When using a desktop with a discrete NVIDIA GPU, the drone’s 2.4 GHz Wi-Fi connection combined with OpenPose restrictions to only body and hand allows this control method to perform as intended while maintaining the responsiveness required for practical use.

Keywords: computer vision, drone control, keypoint detection, openpose

Procedia PDF Downloads 156
868 Temperature Distribution for Asphalt Concrete-Concrete Composite Pavement

Authors: Tetsya Sok, Seong Jae Hong, Young Kyu Kim, Seung Woo Lee

Abstract:

The temperature distribution for asphalt concrete (AC)-Concrete composite pavement is one of main influencing factor that affects to performance life of pavement. The temperature gradient in concrete slab underneath the AC layer results the critical curling stress and lead to causes de-bonding of AC-Concrete interface. These stresses, when enhanced by repetitive axial loadings, also contribute to the fatigue damage and eventual crack development within the slab. Moreover, the temperature change within concrete slab extremely causes the slab contracts and expands that significantly induces reflective cracking in AC layer. In this paper, the numerical prediction of pavement temperature was investigated using one-dimensional finite different method (FDM) in fully explicit scheme. The numerical predicted model provides a fundamental and clear understanding of heat energy balance including incoming and outgoing thermal energies in addition to dissipated heat in the system. By using the reliable meteorological data for daily air temperature, solar radiation, wind speech and variable pavement surface properties, the predicted pavement temperature profile was validated with the field measured data. Additionally, the effects of AC thickness and daily air temperature on the temperature profile in underlying concrete were also investigated. Based on obtained results, the numerical predicted temperature of AC-Concrete composite pavement using FDM provided a good accuracy compared to field measured data and thicker AC layer significantly insulates the temperature distribution in underlying concrete slab.

Keywords: asphalt concrete, finite different method (FDM), curling effect, heat transfer, solar radiation

Procedia PDF Downloads 250
867 A Rare Cause of Abdominal Pain Post Caesarean Section

Authors: Madeleine Cox

Abstract:

Objective: discussion of diagnosis of vernix caseosa peritonitis, recovery and subsequent caesarean seciton Case: 30 year old G4P1 presented in labour at 40 weeks, planning a vaginal birth afterprevious caesarean section. She underwent an emergency caesarean section due to concerns for fetal wellbeing on CTG. She was found to have a thin lower segment with a very small area of dehiscence centrally. The operation was uncomplicated, and she recovered and went home 2 days later. She then represented to the emergency department day 6 post partum feeling very unwell, with significant abdominal pain, tachycardia as well as urinary retention. Raised white cell count of 13.7 with neutrophils of 11.64, CRP of 153. An abdominal ultrasound was poorly tolerated by the patient and did not aide in the diagnosis. Chest and abdominal xray were normal. She underwent a CT chest and abdomen, which found a small volume of free fluid with no apparent collection. Given no obvious cause of her symptoms were found and the patient did not improve, she had a repeat CT 2 days later, which showed progression of free fluid. A diagnostic laparoscopy was performed with general surgeons, which reveled turbid fluid, an inflamed appendix which was removed. The patient improved remarkably post operatively. The histology showed periappendicitis with acute appendicitis with marked serosal inflammatory reaction to vernix caseosa. Following this, the patient went on to recover well. 4 years later, the patient was booked for an elective caesarean section, on entry into the abdomen, there were very minimal adhesions, and the surgery and her subsequent recovery was uncomplicated. Discussion: this case represents the diagnostic dilemma of a patient who presents unwell without a clear cause. In this circumstance, multiple modes of imaging did not aide in her diagnosis, and so she underwent diagnostic surgery. It is important to evaluate if a patient is or is not responding to the typical causes of post operative pain and adjust management accordingly. A multiteam approach can help to provide a diagnosis for these patients. Conclusion: Vernix caseosa peritonitis is a rare cause of acute abdomen post partum. There are few reports in the literature of the initial presentation and no reports on the possible effects on future pregnancies. This patient did not have any complications in her following pregnancy or delivery secondary to her diagnosis of vernix caseosa peritonitis. This may assist in counselling other women who have had this uncommon diagnosis.

Keywords: peritonitis, obstetrics, caesarean section, pain

Procedia PDF Downloads 74
866 Short Association Bundle Atlas for Lateralization Studies from dMRI Data

Authors: C. Román, M. Guevara, P. Salas, D. Duclap, J. Houenou, C. Poupon, J. F. Mangin, P. Guevara

Abstract:

Diffusion Magnetic Resonance Imaging (dMRI) allows the non-invasive study of human brain white matter. From diffusion data, it is possible to reconstruct fiber trajectories using tractography algorithms. Our previous work consists in an automatic method for the identification of short association bundles of the superficial white matter (SWM), based on a whole brain inter-subject hierarchical clustering applied to a HARDI database. The method finds representative clusters of similar fibers, belonging to a group of subjects, according to a distance measure between fibers, using a non-linear registration (DTI-TK). The algorithm performs an automatic labeling based on the anatomy, defined by a cortex mesh parcelated with FreeSurfer software. The clustering was applied to two independent groups of 37 subjects. The clusters resulting from both groups were compared using a restrictive threshold of mean distance between each pair of bundles from different groups, in order to keep reproducible connections. In the left hemisphere, 48 reproducible bundles were found, while 43 bundles where found in the right hemisphere. An inter-hemispheric bundle correspondence was then applied. The symmetric horizontal reflection of the right bundles was calculated, in order to obtain the position of them in the left hemisphere. Next, the intersection between similar bundles was calculated. The pairs of bundles with a fiber intersection percentage higher than 50% were considered similar. The similar bundles between both hemispheres were fused and symmetrized. We obtained 30 common bundles between hemispheres. An atlas was created with the resulting bundles and used to segment 78 new subjects from another HARDI database, using a distance threshold between 6-8 mm according to the bundle length. Finally, a laterality index was calculated based on the bundle volume. Seven bundles of the atlas presented right laterality (IP_SP_1i, LO_LO_1i, Op_Tr_0i, PoC_PoC_0i, PoC_PreC_2i, PreC_SM_0i, y RoMF_RoMF_0i) and one presented left laterality (IP_SP_2i), there is no tendency of lateralization according to the brain region. Many factors can affect the results, like tractography artifacts, subject registration, and bundle segmentation. Further studies are necessary in order to establish the influence of these factors and evaluate SWM laterality.

Keywords: dMRI, hierarchical clustering, lateralization index, tractography

Procedia PDF Downloads 305
865 Study of the Non-isothermal Crystallization Kinetics of Polypropylene Homopolymer/Impact Copolymer Composites

Authors: Pixiang Wang, Shaoyang Liu, Yucheng Peng

Abstract:

Polypropylene (PP) is an essential material of numerous applications in different industrial sectors, including packaging, construction, and automotive. Because the application of homopolypropylene (HPP) is limited by its relatively low impact strength and high embrittlement temperature, various types of impact copolymer PP (ICPP) that incorporate elastomers/rubbers into HPP to increase impact strength have been successfully commercialized. Crystallization kinetics of an isotactic HPP, an ICPP, and their composites were studied in this work understand the composites’ behaviors better. The Avrami-Jeziorny model was used to describe the crystallization process. For most samples, the Avrami exponent, n, was greater than 3, indicating the crystal grew in three dimensions with spherical geometry. However, the n value could drop below 3 when the ICPP content was 80 wt.% or higher and the cooling rate was 7.5°C/min or lower, implying that the crystals could grow in two dimensions and some lamella structures could be formed under those conditions. The nucleation activity increased with the increase of the ICPP content, demonstrating that the rubber phase in the ICPP acted as a nucleation agent and facilitated the nucleation process. The decrease in crystallization rate after the ICPP content exceeded 60 wt.% might be caused by the excessive amount of crystal nuclei induced by the high ICPP content, which caused strong crystal-crystal interactions and limited the crystal growth space. The nucleation activity and the n value showed high correlations to the mechanical and thermal properties of the materials. The quantitative study of the kinetics of crystallization in this work could be a helpful reference for manufacturing ICPP and HPP/ICPP mixtures.

Keywords: polypropylene, crystallization kinetics, Avrami-Jeziorny model, crystallization activation energy, Nucleation activity

Procedia PDF Downloads 61
864 Maximizing Profit Using Optimal Control by Exploiting the Flexibility in Thermal Power Plants

Authors: Daud Mustafa Minhas, Raja Rehan Khalid, Georg Frey

Abstract:

The next generation power systems are equipped with abundantly available free renewable energy resources (RES). During their low-cost operations, the price of electricity significantly reduces to a lower value, and sometimes it becomes negative. Therefore, it is recommended not to operate the traditional power plants (e.g. coal power plants) and to reduce the losses. In fact, it is not a cost-effective solution, because these power plants exhibit some shutdown and startup costs. Moreover, they require certain time for shutdown and also need enough pause before starting up again, increasing inefficiency in the whole power network. Hence, there is always a trade-off between avoiding negative electricity prices, and the startup costs of power plants. To exploit this trade-off and to increase the profit of a power plant, two main contributions are made: 1) introducing retrofit technology for state of art coal power plant; 2) proposing optimal control strategy for a power plant by exploiting different flexibility features. These flexibility features include: improving ramp rate of power plant, reducing startup time and lowering minimum load. While, the control strategy is solved as mixed integer linear programming (MILP), ensuring optimal solution for the profit maximization problem. Extensive comparisons are made considering pre and post-retrofit coal power plant having the same efficiencies under different electricity price scenarios. It concludes that if the power plant must remain in the market (providing services), more flexibility reflects direct economic advantage to the plant operator.

Keywords: discrete optimization, power plant flexibility, profit maximization, unit commitment model

Procedia PDF Downloads 120
863 Towards a Sustainable Energy Future: Method Used in Existing Buildings to Implement Sustainable Energy Technologies

Authors: Georgi Vendramin, Aurea Lúcia, Yamamoto, Carlos Itsuo, Souza Melegari, N. Samuel

Abstract:

This article describes the development of a model that uses a method where openings are represented by single glass and double glass. The model is based on a healthy balance equations purely theoretical and empirical data. Simplified equations are derived through a synthesis of the measured data obtained from meteorological stations. The implementation of the model in a design tool integrated buildings is discussed in this article, to better punctuate the requirements of comfort and energy efficiency in architecture and engineering. Sustainability, energy efficiency, and the integration of alternative energy systems and concepts are beginning to be incorporated into designs for new buildings and renovations to existing buildings. Few means have existed to effectively validate the potential performance benefits of the design concepts. It was used a method of degree-days for an assessment of the energy performance of a building showed that the design of the architectural design should always be considered the materials used and the size of the openings. The energy performance was obtained through the model, considering the location of the building Central Park Shopping Mall, in the city of Cascavel - PR. Obtained climatic data of these locations and in a second step, it was obtained the coefficient of total heat loss in the building pre-established so evaluating the thermal comfort and energy performance. This means that the more openings in buildings in Cascavel – PR, installed to the east side, they may be higher because the glass added to the geometry of architectural spaces will cause the environment conserve energy.

Keywords: sustainable design, energy modeling, design validation, degree-days methods

Procedia PDF Downloads 393
862 Stainless Steel Swarfs for Replacement of Copper in Non-Asbestos Organic Brake-Pads

Authors: Vishal Mahale, Jayashree Bijwe, Sujeet K. Sinha

Abstract:

Nowadays extensive research is going on in the field of friction materials (FMs) for development of eco-friendly brake-materials by removing copper as it is a proven threat to the aquatic organisms. Researchers are keen to find the solution for copper-free FMs by using different metals or without metals. Steel wool is used as a reinforcement in non-asbestos organic (NAO) FMs mainly for increasing thermal conductivity, and it affects wear adversely, most of the times and also adds friction fluctuations. Copper and brass used to be the preferred choices because of superior performance in almost every aspect except cost. Since these are being phased out because of a proven threat to the aquatic life. Keeping this in view, a series of realistic multi-ingredient FMs containing stainless steel (SS) swarfs as a theme ingredient in increasing amount (0, 5, 10 and 15 wt. %- S₅, S₁₀, and S₁₅) were developed in the form of brake-pads. One more composite containing copper instead of SS swarfs (C₁₀) was developed. These composites were characterized for physical, mechanical, chemical and tribological performance. Composites were tribo-evaluated on a chase machine with various test loops as per SAE J661 standards. Various performance parameters such as normal µ, hot µ, performance µ, fade µ, recovery µ, % fade, % recovery, wear resistance, etc. were used to evaluate the role of amount of SS swarfs in FMs. It was concluded that SS swarfs proved successful in Cu replacement almost in all respects except wear resistance. With increase in amount of SS swarfs, most of the properties improved. Worn surface analysis and wear mechanism were studied using SEM and EDAX techniques.

Keywords: Chase type friction tester, copper-free, non-asbestos organic (NAO) friction materials, stainless steel swarfs

Procedia PDF Downloads 161
861 Measurement of Nasal Septal Cartilage in Adult Filipinos Using Computed Tomography

Authors: Miguel Limbert Ramos, Joseph Amado Galvez

Abstract:

Background: The nasal septal cartilage is an autologous graft that is widely used in different otolaryngologic procedures of the different subspecialties, such as in septorhinoplasty and ear rehabilitation procedures. The cartilage can be easily accessed and harvested to be utilized for such procedures. However, the dimension of the nasal septal cartilage differs, corresponding to race, gender, and age. Measurements can be done via direct measurement of harvested septal cartilage in cadavers or utilizing radiographic imaging studies giving baseline measurement of the nasal septal cartilage distinct to every race. A preliminary baseline measurement of the dimensions of Filipino nasal septal cartilage was previously established by measuring harvested nasal septal cartilage in Filipino Malay cadavers. This study intends to reinforce this baseline measurement by utilizing computed tomography (CT) scans of adult Filipinos in a tertiary government hospital in the City of Manila, Philippines, which will cover a larger sampling population. Methods: The unit of observation and analysis will be the computed tomography (CT) scans of patients ≥ 18years old who underwent cranial, facial, orbital, paranasal sinus, and temporal bone studies for the year 2019. The measurements will be done in a generated best midsagittal image (155 subjects) which is a view through the midline of the cerebrum that is simultaneously viewed with its coronal and axial views for proper orientation. The view should reveal important structures that will be used to plot the anatomic boundaries, which will be measured by a DICOM image viewing software (RadiAnt). The measured area of nasal septal cartilage will be compared by gender and age. Results: The total area of the nasal septal cartilage is larger in males compared to females, with a mean value of 6.52 cm² and 5.71 cm², respectively. The harvestable nasal septal cartilage area is also larger in males with a mean value of 3.57 cm² compared to females with only a measured mean value of 3.13 cm². The total and harvestable area of the nasal septal cartilage is largest in the 18-30 year-old age group with a mean value of 6.47 cm² and 3.60 cm² respectively and tends to decrease with the advancement of age, which can be attributed to continuous ossification changes. Conclusion: The best time to perform septorhinoplasty and other otolaryngologic procedures which utilize the nasal septal cartilage as graft material is during post-pubertal age, hence surgeries should be avoided or delayed to allow growth and maturation of the cartilage. A computed tomography scan is a cost-effective and non-invasive tool that can provide information on septal cartilage areas prior to these procedures.

Keywords: autologous graft, computed tomography, nasal septal cartilage, septorhinoplasty

Procedia PDF Downloads 130
860 Thermodynamic Modeling and Exergoeconomic Analysis of an Isobaric Adiabatic Compressed Air Energy Storage System

Authors: Youssef Mazloum, Haytham Sayah, Maroun Nemer

Abstract:

The penetration of renewable energy sources into the electric grid is significantly increasing. However, the intermittence of these sources breaks the balance between supply and demand for electricity. Hence, the importance of the energy storage technologies, they permit restoring the balance and reducing the drawbacks of intermittence of the renewable energies. This paper discusses the modeling and the cost-effectiveness of an isobaric adiabatic compressed air energy storage (IA-CAES) system. The proposed system is a combination among a compressed air energy storage (CAES) system with pumped hydro storage system and thermal energy storage system. The aim of this combination is to overcome the disadvantages of the conventional CAES system such as the losses due to the storage pressure variation, the loss of the compression heat and the use of fossil fuel sources. A steady state model is developed to perform an energy and exergy analyses of the IA-CAES system and calculate the distribution of the exergy losses in the latter system. A sensitivity analysis is also carried out to estimate the effects of some key parameters on the system’s efficiency, such as the pinch of the heat exchangers, the isentropic efficiency of the rotating machinery and the pressure losses. The conducted sensitivity analysis is a local analysis since the sensibility of each parameter changes with the variation of the other parameters. Therefore, an exergoeconomic study is achieved as well as a cost optimization in order to reduce the electricity cost produced during the production phase. The optimizer used is OmOptim which is a genetic algorithms based optimizer.

Keywords: cost-effectiveness, Exergoeconomic analysis, isobaric adiabatic compressed air energy storage (IA-CAES) system, thermodynamic modeling

Procedia PDF Downloads 220
859 Test Method Development for Evaluation of Process and Design Effect on Reinforced Tube

Authors: Cathal Merz, Gareth O’Donnell

Abstract:

Coil reinforced thin-walled (CRTW) tubes are used in medicine to treat problems affecting blood vessels within the body through minimally invasive procedures. The CRTW tube considered in this research makes up part of such a device and is inserted into the patient via their femoral or brachial arteries and manually navigated to the site in need of treatment. This procedure replaces the requirement to perform open surgery but is limited by reduction of blood vessel lumen diameter and increase in tortuosity of blood vessels deep in the brain. In order to maximize the capability of these procedures, CRTW tube devices are being manufactured with decreasing wall thicknesses in order to deliver treatment deeper into the body and to allow passage of other devices through its inner diameter. This introduces significant stresses to the device materials which have resulted in an observed increase in the breaking of the proximal segment of the device into two separate pieces after it has failed by buckling. As there is currently no international standard for measuring the mechanical properties of these CRTW tube devices, it is difficult to accurately analyze this problem. The aim of the current work is to address this discrepancy in the biomedical device industry by developing a measurement system that can be used to quantify the effect of process and design changes on CRTW tube performance, aiding in the development of better performing, next generation devices. Using materials testing frames, micro-computed tomography (micro-CT) imaging, experiment planning, analysis of variance (ANOVA), T-tests and regression analysis, test methods have been developed for assessing the impact of process and design changes on the device. The major findings of this study have been an insight into the suitability of buckle and three-point bend tests for the measurement of the effect of varying processing factors on the device’s performance, and guidelines for interpreting the output data from the test methods. The findings of this study are of significant interest with respect to verifying and validating key process and design changes associated with the device structure and material condition. Test method integrity evaluation is explored throughout.

Keywords: neurovascular catheter, coil reinforced tube, buckling, three-point bend, tensile

Procedia PDF Downloads 95
858 Satellite Interferometric Investigations of Subsidence Events Associated with Groundwater Extraction in Sao Paulo, Brazil

Authors: B. Mendonça, D. Sandwell

Abstract:

The Metropolitan Region of Sao Paulo (MRSP) has suffered from serious water scarcity. Consequently, the most convenient solution has been building wells to extract groundwater from local aquifers. However, it requires constant vigilance to prevent over extraction and future events that can pose serious threat to the population, such as subsidence. Radar imaging techniques (InSAR) have allowed continuous investigation of such phenomena. The analysis of data in the present study consists of 23 SAR images dated from October 2007 to March 2011, obtained by the ALOS-1 spacecraft. Data processing was made with the software GMTSAR, by using the InSAR technique to create pairs of interferograms with ground displacement during different time spans. First results show a correlation between the location of 102 wells registered in 2009 and signals of ground displacement equal or lower than -90 millimeters (mm) in the region. The longest time span interferogram obtained dates from October 2007 to March 2010. As a result, from that interferogram, it was possible to detect the average velocity of displacement in millimeters per year (mm/y), and which areas strong signals have persisted in the MRSP. Four specific areas with signals of subsidence of 28 mm/y to 40 mm/y were chosen to investigate the phenomenon: Guarulhos (Sao Paulo International Airport), the Greater Sao Paulo, Itaquera and Sao Caetano do Sul. The coverage area of the signals was between 0.6 km and 1.65 km of length. All areas are located above a sedimentary type of aquifer. Itaquera and Sao Caetano do Sul showed signals varying from 28 mm/y to 32 mm/y. On the other hand, the places most likely to be suffering from stronger subsidence are the ones in the Greater Sao Paulo and Guarulhos, right beside the International Airport of Sao Paulo. The rate of displacement observed in both regions goes from 35 mm/y to 40 mm/y. Previous investigations of the water use at the International Airport highlight the risks of excessive water extraction that was being done through 9 deep wells. Therefore, it is affirmed that subsidence events are likely to occur and to cause serious damage in the area. This study could show a situation that has not been explored with proper importance in the city, given its social and economic consequences. Since the data were only available until 2011, the question that remains is if the situation still persists. It could be reaffirmed, however, a scenario of risk at the International Airport of Sao Paulo that needs further investigation.

Keywords: ground subsidence, Interferometric Satellite Aperture Radar (InSAR), metropolitan region of Sao Paulo, water extraction

Procedia PDF Downloads 329
857 Biocellulose Template for 3D Mineral Scaffolds

Authors: C. Busuioc, G. Voicu, S. I. Jinga

Abstract:

The field of tissue engineering brings new challenges in terms of proposing original solutions for ongoing medical issues, improving the biological performances of existing clinical systems and speeding the healing process for a faster recovery and a more comfortable life as patient. In this context, we propose the obtaining of 3D porous scaffolds of mineral nature, dedicated to bone repairing and regeneration purposes or employed as bioactive filler for bone cements. Thus, bacterial cellulose - calcium phosphates composite materials have been synthesized by successive immersing of the polymeric membranes in the precursor solution containing Ca2+ and [PO4]3- ions. The mineral phase deposited on the surface of biocellulose fibers was varied as amount through the number of immersing cycles. The intermediary composites were subjected to thermal treatments at different temperatures in order to remove the organic part and provide the formation of a self-sustained 3D architecture. The resulting phase composition consists of common phosphates, while the morphology largely depends on the preparation parameters. Thus, the aspect of the 3D mineral scaffolds can be tuned from a loose microstructure composed of large grains connected via monocrystalline nanorods to a trabecular pattern crossed by parallel internal channels, just like the natural bone. The bioactivity and biocompatibility of the obtained materials have been also assessed, with encouraging results in the clinical use direction. In conclusion, the compositional, structural, morphological and biological characterizations sustain the suitability of the reported biostructures for integration in hard tissue engineering applications.

Keywords: bacterial cellulose, bone reconstruction, calcium phosphates, mineral scaffolds

Procedia PDF Downloads 172
856 The Effect of Electrical Discharge Plasma on Inactivation of Escherichia Coli MG 1655 in Pure Culture

Authors: Zoran Herceg, Višnja Stulić, Anet Režek Jambrak, Tomislava Vukušić

Abstract:

Electrical discharge plasma is a new non-thermal processing technique which is used for the inactivation of contaminating and hazardous microbes in liquids. Plasma is a source of different antimicrobial species including UV photons, charged particles, and reactive species such as superoxide, hydroxyl radicals, nitric oxide and ozone. Escherichia coli was studied as foodborne pathogen. The aim of this work was to examine inactivation effects of electrical discharge plasma treatment on the Escherichia coli MG 1655 in pure culture. Two types of plasma configuration and polarity were used. First configuration was with titanium wire as high voltage needle and another with medical stainless steel needle used to form bubbles in treated volume and titanium wire as high voltage needle. Model solution samples were inoculated with Escerichia coli MG 1655 and treated by electrical discharge plasma at treatment time of 5 and 10 min, and frequency of 60, 90 and 120 Hz. With the first configuration after 5 minutes of treatment at frequency of 120 Hz the inactivation rate was 1.3 log₁₀ reduction and after 10 minutes of treatment the inactivation rate was 3.0 log₁₀ reduction. At the frequency of 90 Hz after 10 minutes inactivation rate was 1.3 log₁₀ reduction. With the second configuration after 5 minutes of treatment at frequency of 120 Hz the inactivation rate was 1.2 log₁₀ reduction and after 10 minutes of treatment the inactivation rate was also 3.0 log₁₀ reduction. In this work it was also examined the formation of biofilm, nucleotide and protein leakage at 260/280 nm, before and after treatment and recuperation of treated samples. Further optimization of method is needed to understand mechanism of inactivation.

Keywords: electrical discharge plasma, escherichia coli MG 1655, inactivation, point-to-plate electrode configuration

Procedia PDF Downloads 406