Search results for: spatial and temporal data
23144 Application of Observational Medical Outcomes Partnership-Common Data Model (OMOP-CDM) Database in Nursing Health Problems with Prostate Cancer-a Pilot Study
Authors: Hung Lin-Zin, Lai Mei-Yen
Abstract:
Prostate cancer is the most commonly diagnosed male cancer in the U.S. The prevalence is around 1 in 8. The etiology of prostate cancer is still unknown, but some predisposing factors, such as age, black race, family history, and obesity, may increase the risk of the disease. In 2020, a total of 7,178 Taiwanese people were nearly diagnosed with prostate cancer, accounting for 5.88% of all cancer cases, and the incidence rate ranked fifth among men. In that year, the total number of deaths from prostate cancer was 1,730, accounting for 3.45% of all cancer deaths, and the death rate ranked 6th among men, accounting for 94.34% of the cases of male reproductive organs. Looking for domestic and foreign literature on the use of OMOP (Observational Medical Outcomes Partnership, hereinafter referred to as OMOP) database analysis, there are currently nearly a hundred literature published related to nursing-related health problems and nursing measures built in the OMOP general data model database of medical institutions are extremely rare. The OMOP common data model construction analysis platform is a system developed by the FDA in 2007, using a common data model (common data model, CDM) to analyze and monitor healthcare data. It is important to build up relevant nursing information from the OMOP- CDM database to assist our daily practice. Therefore, we choose prostate cancer patients who are our popular care objects and use the OMOP- CDM database to explore the common associated health problems. With the assistance of OMOP-CDM database analysis, we can expect early diagnosis and prevention of prostate cancer patients' comorbidities to improve patient care.Keywords: OMOP, nursing diagnosis, health problem, prostate cancer
Procedia PDF Downloads 6923143 Investigation of Learning Challenges in Building Measurement Unit
Authors: Argaw T. Gurmu, Muhammad N. Mahmood
Abstract:
The objective of this research is to identify the architecture and construction management students’ learning challenges of the building measurement. This research used the survey data obtained collected from the students who completed the building measurement unit. NVivo qualitative data analysis software was used to identify relevant themes. The analysis of the qualitative data revealed the major learning difficulties such as inadequacy of practice questions for the examination, inability to work as a team, lack of detailed understanding of the prerequisite units, insufficiency of the time allocated for tutorials and incompatibility of lecture and tutorial schedules. The output of this research can be used as a basis for improving the teaching and learning activities in construction measurement units.Keywords: building measurement, construction management, learning challenges, evaluate survey
Procedia PDF Downloads 13823142 Using Data-Driven Model on Online Customer Journey
Authors: Ing-Jen Hung, Tzu-Chien Wang
Abstract:
Nowadays, customers can interact with firms through miscellaneous online ads on different channels easily. In other words, customer now has innumerable options and limitless time to accomplish their commercial activities with firms, individualizing their own online customer journey. This kind of convenience emphasizes the importance of online advertisement allocation on different channels. Therefore, profound understanding of customer behavior can make considerable benefit from optimizing fund allocation on diverse ad channels. To achieve this objective, multiple firms utilize numerical methodology to create data-driven advertisement policy. In our research, we aim to exploit online customer click data to discover the correlations between each channel and their sequential relations. We use LSTM to deal with sequential property of our data and compare its accuracy with other non-sequential methods, such as CART decision tree, logistic regression, etc. Besides, we also classify our customers into several groups by their behavioral characteristics to perceive the differences between all groups as customer portrait. As a result, we discover distinct customer journey under each customer portrait. Our article provides some insights into marketing research and can help firm to formulate online advertising criteria.Keywords: LSTM, customer journey, marketing, channel ads
Procedia PDF Downloads 12123141 Development of Al Foam by a Low-Cost Salt Replication Method for Industrial Applications
Abstract:
Metal foams of Al find diverse applications in several industrial sectors such as in automotive and sports equipment industry as impact, acoustic and vibration absorbers, the aerospace industry as structural components in turbines and spatial cones, in the naval industry as low frequency vibration absorbers, and in construction industry as sound barriers inside tunnels, as fire proof materials and structure protection systems against explosions and even in heat exchangers, orthopedic components, and decorative items. Here, we report on the development of Al foams by a low cost and convenient technique of salt replication method with efficient control over size, geometry and distribution of the pores. Sodium bicarbonate was used as the foaming agent to form the porous refractory salt pattern. The mixed refractory salt slurry was microwave dried followed by sintering for selected time periods. Molten Al was infiltrated into the salt pattern in an inert atmosphere at a pressure of 2 bars. The final products were obtained by leaching out the refractory salt pattern. Mechanical properties of the derived samples were studied with a universal testing machine. The results were analyzed in correlation with their microstructural features evaluated with a scanning electron microscope (SEM).Keywords: metal foam, Al, salt replication method, mechanical properties, SEM
Procedia PDF Downloads 35423140 A Secure Proxy Signature Scheme with Fault Tolerance Based on RSA System
Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi
Abstract:
Due to the rapid growth in modern communication systems, fault tolerance and data security are two important issues in a secure transaction. During the transmission of data between the sender and receiver, errors may occur frequently. Therefore, the sender must re-transmit the data to the receiver in order to correct these errors, which makes the system very feeble. To improve the scalability of the scheme, we present a secure proxy signature scheme with fault tolerance over an efficient and secure authenticated key agreement protocol based on RSA system. Authenticated key agreement protocols have an important role in building a secure communications network between the two parties.Keywords: proxy signature, fault tolerance, rsa, key agreement protocol
Procedia PDF Downloads 28623139 General Time-Dependent Sequenced Route Queries in Road Networks
Authors: Mohammad Hossein Ahmadi, Vahid Haghighatdoost
Abstract:
Spatial databases have been an active area of research over years. In this paper, we study how to answer the General Time-Dependent Sequenced Route queries. Given the origin and destination of a user over a time-dependent road network graph, an ordered list of categories of interests and a departure time interval, our goal is to find the minimum travel time path along with the best departure time that minimizes the total travel time from the source location to the given destination passing through a sequence of points of interests belonging to each of the specified categories of interest. The challenge of this problem is the added complexity to the optimal sequenced route queries, where we assume that first the road network is time dependent, and secondly the user defines a departure time interval instead of one single departure time instance. For processing general time-dependent sequenced route queries, we propose two solutions as Discrete-Time and Continuous-Time Sequenced Route approaches, finding approximate and exact solutions, respectively. Our proposed approaches traverse the road network based on A*-search paradigm equipped with an efficient heuristic function, for shrinking the search space. Extensive experiments are conducted to verify the efficiency of our proposed approaches.Keywords: trip planning, time dependent, sequenced route query, road networks
Procedia PDF Downloads 32123138 Exploring White-Matter Hyperintensities in Patients with Psychiatric Disorders and Their Clinical Relevance
Authors: Ubaid Ullah Kamgar, Ajaz Ahmed Suhaff, Mohammad Maqbool Dar
Abstract:
Objective: The aim is to study the association of MRI findings of T₂/FLAIR white matter hyperintensities among patients with psychiatric disorders. Background and Rationale: MRI findings in psychiatric disorders can vary widely depending on specific disorders and individual differences. However, some general patterns have been observed, such as, in Depression - reduced volume in areas such as the prefrontal cortex and hippocampus; in Schizophrenia - enlarged ventricles, abnormalities in frontal and temporal lobes, as well as hippocampus and thalamus; in Bipolar Disorder – reduced volume in the prefrontal cortex and hippocampus and abnormalities in the amygdala; in OCD – abnormalities in the orbitofrontal cortex, anterior cingulate cortex and striatum. However, many patients show findings of white-matter hyper-intensities, which are usually considered non-specific in psychiatry. These hyperintensities are low attenuation in the deep and white matter. The pathogenic mechanisms of white matter hyperintensities are not well-understood and have been attributed to cerebral small vessel disease. The aim of the study is to study the association of the above MRI findings in patients with psychiatric disorders after ruling out neurological disorders (if any are found). Methodology: Patients admitted to psychiatric hospitals or presenting to OPDs with underlying psychiatric disorders, having undergone MRI Brain as part of investigations, and having T₂/FLAIR white-matter hyperintensities on MRI were taken to study the association of the above MRI findings with different psychiatric disorders. Results: Out of the 22 patients having MRI findings of T₂/FLAIR white-matter hyper-intensities, the underlying psychiatric comorbidities were: Major Depressive Disorder in 7 pts; Obsessive Compulsive Disorder in 5 pts; Bipolar Disorder in 5 pts; Dementia (vascular type) in 5pts. Discussion and conclusion: In our study, the white matter hyper-intensities were found mostly in MDD (32%), OCD (22.7%), Bipolar Disorder (22.7%) and Dementia in 22.7% of patients. In conclusion, the presence of white-matter hyperintensities in psychiatric disorders underscores the complex interplay between vascular, neurobiological and psychosocial factors. Further research with a large sample size is needed to fully elucidate their clinical significance.Keywords: white-matter hyperintensities, OCD, MDD, dementia, bipolar disorder.
Procedia PDF Downloads 6123137 Estimating the Receiver Operating Characteristic Curve from Clustered Data and Case-Control Studies
Authors: Yalda Zarnegarnia, Shari Messinger
Abstract:
Receiver operating characteristic (ROC) curves have been widely used in medical research to illustrate the performance of the biomarker in correctly distinguishing the diseased and non-diseased groups. Correlated biomarker data arises in study designs that include subjects that contain same genetic or environmental factors. The information about correlation might help to identify family members at increased risk of disease development, and may lead to initiating treatment to slow or stop the progression to disease. Approaches appropriate to a case-control design matched by family identification, must be able to accommodate both the correlation inherent in the design in correctly estimating the biomarker’s ability to differentiate between cases and controls, as well as to handle estimation from a matched case control design. This talk will review some developed methods for ROC curve estimation in settings with correlated data from case control design and will discuss the limitations of current methods for analyzing correlated familial paired data. An alternative approach using Conditional ROC curves will be demonstrated, to provide appropriate ROC curves for correlated paired data. The proposed approach will use the information about the correlation among biomarker values, producing conditional ROC curves that evaluate the ability of a biomarker to discriminate between diseased and non-diseased subjects in a familial paired design.Keywords: biomarker, correlation, familial paired design, ROC curve
Procedia PDF Downloads 23923136 Impact of Ocean Acidification on Gene Expression Dynamics during Development of the Sea Urchin Species Heliocidaris erythrogramma
Authors: Hannah R. Devens, Phillip L. Davidson, Dione Deaker, Kathryn E. Smith, Gregory A. Wray, Maria Byrne
Abstract:
Marine invertebrate species with calcifying larvae are especially vulnerable to ocean acidification (OA) caused by rising atmospheric CO₂ levels. Acidic conditions can delay development, suppress metabolism, and decrease the availability of carbonate ions in the ocean environment for skeletogenesis. These stresses often result in increased larval mortality, which may lead to significant ecological consequences including alterations to the larval settlement, population distribution, and genetic connectivity. Importantly, many of these physiological and developmental effects are caused by genetic and molecular level changes. Although many studies have examined the effect of near-future oceanic pH levels on gene expression in marine invertebrates, little is known about the impact of OA on gene expression in a developmental context. Here, we performed mRNA-sequencing to investigate the impact of environmental acidity on gene expression across three developmental stages in the sea urchin Heliocidaris erythrogramma. We collected RNA from gastrula, early larva, and 1-day post-metamorphic juvenile sea urchins cultured at present-day and predicted future oceanic pH levels (pH 8.1 and 7.7, respectively). We assembled an annotated reference transcriptome encompassing development from egg to ten days post-metamorphosis by combining these data with datasets from two previous developmental transcriptomic studies of H. erythrogramma. Differential gene expression and time course analyses between pH conditions revealed significant alterations to developmental transcription that are potentially associated with pH stress. Consistent with previous investigations, genes involved in biomineralization and ion transport were significantly upregulated under acidic conditions. Differences in gene expression between the two pH conditions became more pronounced post-metamorphosis, suggesting a development-dependent effect of OA on gene expression. Furthermore, many differences in gene expression later in development appeared to be a result of broad downregulation at pH 7.7: of 539 genes differentially expressed at the juvenile stage, 519 of these were lower in the acidic condition. Time course comparisons between pH 8.1 and 7.7 samples also demonstrated over 500 genes were more lowly expressed in pH 7.7 samples throughout development. Of the genes exhibiting stage-dependent expression level changes, over 15% of these diverged from the expected temporal pattern of expression in the acidic condition. Through these analyses, we identify novel candidate genes involved in development, metabolism, and transcriptional regulation that are possibly affected by pH stress. Our results demonstrate that pH stress significantly alters gene expression dynamics throughout development. A large number of genes differentially expressed between pH conditions in juveniles relative to earlier stages may be attributed to the effects of acidity on transcriptional regulation, as a greater proportion of mRNA at this later stage has been nascent transcribed rather than maternally loaded. Also, the overall downregulation of many genes in the acidic condition suggests that OA-induced developmental delay manifests as suppressed mRNA expression, possibly from lower transcription rates or increased mRNA degradation in the acidic environment. Further studies will be necessary to determine in greater detail the extent of OA effects on early developing marine invertebrates.Keywords: development, gene expression, ocean acidification, RNA-sequencing, sea urchins
Procedia PDF Downloads 16823135 Code-Switching among Local UCSI Stem and N-Stem Undergraduates during Knowledge Sharing
Authors: Adeela Abu Bakar, Minder Kaur, Parthaman Singh
Abstract:
In the Malaysian education system, a formal setting of English language learning takes place in a content-based classroom (CBC). Until recently, there is less study in Malaysia, which researched the effects of code-switching (CS) behaviour towards the students’ knowledge sharing (KS) with their peers. The aim of this study is to investigate the frequency, reasons, and effect that CS, from the English language to Bahasa Melayu, has among local STEM and N-STEM undergraduates towards KS in a content-based classroom. The study implies a mixed-method research design with questionnaire and interviews as the instruments. The data is collected through distribution of questionnaires and interviews with the undergraduates. The quantitative data is analysed using SPSS in simple frequencies and percentages, whereas qualitative data involves organizing the data into themes, followed by analysis. Findings found that N-STEM undergraduates code-switch more as compared to STEM undergraduates. In addition to that, both the STEM and N-STEM undergraduates agree that CS acts as a catalyst towards KS in a content-based classroom. However, they also acknowledge that excess use of CS can be a hindrance towards KS. The findings of the study can benefit STEM and N-STEM undergraduates, education policymakers, language teachers, university educators, and students with significant insights into the role of CS towards KS in a content-based classroom. Some of the recommendations that can be applied for future studies are that the number of participants can be increased, an observation to be included for the data collection.Keywords: switching, content-based classroom, content and language integrated learning, knowledge sharing, STEM and N-STEM undergraduates
Procedia PDF Downloads 13423134 Fuzzy Multi-Component DEA with Shared and Undesirable Fuzzy Resources
Authors: Jolly Puri, Shiv Prasad Yadav
Abstract:
Multi-component data envelopment analysis (MC-DEA) is a popular technique for measuring aggregate performance of the decision making units (DMUs) along with their components. However, the conventional MC-DEA is limited to crisp input and output data which may not always be available in exact form. In real life problems, data may be imprecise or fuzzy. Therefore, in this paper, we propose (i) a fuzzy MC-DEA (FMC-DEA) model in which shared and undesirable fuzzy resources are incorporated, (ii) the proposed FMC-DEA model is transformed into a pair of crisp models using cut approach, (iii) fuzzy aggregate performance of a DMU and fuzzy efficiencies of components are defined to be fuzzy numbers, and (iv) a numerical example is illustrated to validate the proposed approach.Keywords: multi-component DEA, fuzzy multi-component DEA, fuzzy resources, decision making units (DMUs)
Procedia PDF Downloads 40723133 A Computational Cost-Effective Clustering Algorithm in Multidimensional Space Using the Manhattan Metric: Application to the Global Terrorism Database
Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami
Abstract:
The increasing amount of collected data has limited the performance of the current analyzing algorithms. Thus, developing new cost-effective algorithms in terms of complexity, scalability, and accuracy raised significant interests. In this paper, a modified effective k-means based algorithm is developed and experimented. The new algorithm aims to reduce the computational load without significantly affecting the quality of the clusterings. The algorithm uses the City Block distance and a new stop criterion to guarantee the convergence. Conducted experiments on a real data set show its high performance when compared with the original k-means version.Keywords: pattern recognition, global terrorism database, Manhattan distance, k-means clustering, terrorism data analysis
Procedia PDF Downloads 38623132 AniMoveMineR: Animal Behavior Exploratory Analysis Using Association Rules Mining
Authors: Suelane Garcia Fontes, Silvio Luiz Stanzani, Pedro L. Pizzigatti Corrła Ronaldo G. Morato
Abstract:
Environmental changes and major natural disasters are most prevalent in the world due to the damage that humanity has caused to nature and these damages directly affect the lives of animals. Thus, the study of animal behavior and their interactions with the environment can provide knowledge that guides researchers and public agencies in preservation and conservation actions. Exploratory analysis of animal movement can determine the patterns of animal behavior and with technological advances the ability of animals to be tracked and, consequently, behavioral studies have been expanded. There is a lot of research on animal movement and behavior, but we note that a proposal that combines resources and allows for exploratory analysis of animal movement and provide statistical measures on individual animal behavior and its interaction with the environment is missing. The contribution of this paper is to present the framework AniMoveMineR, a unified solution that aggregates trajectory analysis and data mining techniques to explore animal movement data and provide a first step in responding questions about the animal individual behavior and their interactions with other animals over time and space. We evaluated the framework through the use of monitored jaguar data in the city of Miranda Pantanal, Brazil, in order to verify if the use of AniMoveMineR allows to identify the interaction level between these jaguars. The results were positive and provided indications about the individual behavior of jaguars and about which jaguars have the highest or lowest correlation.Keywords: data mining, data science, trajectory, animal behavior
Procedia PDF Downloads 14423131 Applications for Additive Manufacturing Technology for Reducing the Weight of Body Parts of Gas Turbine Engines
Authors: Liubov Magerramova, Mikhail Petrov, Vladimir Isakov, Liana Shcherbinina, Suren Gukasyan, Daniil Povalyukhin, Olga Klimova-Korsmik, Darya Volosevich
Abstract:
Aircraft engines are developing along the path of increasing resource, strength, reliability, and safety. The building of gas turbine engine body parts is a complex design and technological task. Particularly complex in the design and manufacturing are the casings of the input stages of helicopter gearboxes and central drives of aircraft engines. Traditional technologies, such as precision casting or isothermal forging, are characterized by significant limitations in parts production. For parts like housing, additive technologies guarantee spatial freedom and limitless or flexible design. This article presents the results of computational and experimental studies. These investigations justify the applicability of additive technologies (AT) to reduce the weight of aircraft housing gearbox parts by up to 32%. This is possible due to geometrical optimization compared to the classical, less flexible manufacturing methods and as-casted aircraft parts with over-insured values of safety factors. Using an example of the body of the input stage of an aircraft gearbox, visualization of the layer-by-layer manufacturing of a part based on thermal deformation was demonstrated.Keywords: additive technologies, gas turbine engines, topological optimization, synthesis process
Procedia PDF Downloads 11623130 A Study on Using Network Coding for Packet Transmissions in Wireless Sensor Networks
Authors: Rei-Heng Cheng, Wen-Pinn Fang
Abstract:
A wireless sensor network (WSN) is composed by a large number of sensors and one or a few base stations, where the sensor is responsible for detecting specific event information, which is sent back to the base station(s). However, how to save electricity consumption to extend the network lifetime is a problem that cannot be ignored in the wireless sensor networks. Since the sensor network is used to monitor a region or specific events, how the information can be reliably sent back to the base station is surly important. Network coding technique is often used to enhance the reliability of the network transmission. When a node needs to send out M data packets, it encodes these data with redundant data and sends out totally M + R packets. If the receiver can get any M packets out from these M + R packets, it can decode and get the original M data packets. To transmit redundant packets will certainly result in the excess energy consumption. This paper will explore relationship between the quality of wireless transmission and the number of redundant packets. Hopefully, each sensor can overhear the nearby transmissions, learn the wireless transmission quality around it, and dynamically determine the number of redundant packets used in network coding.Keywords: energy consumption, network coding, transmission reliability, wireless sensor networks
Procedia PDF Downloads 39123129 Peculiarities of Snow Cover in Belarus
Authors: Aleh Meshyk, Anastasiya Vouchak
Abstract:
On the average snow covers Belarus for 75 days in the south-west and 125 days in the north-east. During the cold season snowpack often destroys due to thaws, especially at the beginning and end of winter. Over 50% of thawing days have a positive mean daily temperature, which results in complete snow melting. For instance, in December 10% of thaws occur at 4 С mean daily temperature. Stable snowpack lying for over a month forms in the north-east in the first decade of December but in the south-west in the third decade of December. The cover disappears in March: in the north-east in the last decade but in the south-west in the first decade. This research takes into account that precipitation falling during a cold season could be not only liquid and solid but also a mixed type (about 10-15 % a year). Another important feature of snow cover is its density. In Belarus, the density of freshly fallen snow ranges from 0.08-0.12 g/cm³ in the north-east to 0.12-0.17 g/cm³ in the south-west. Over time, snow settles under its weight and after melting and refreezing. Averaged annual density of snow at the end of January is 0.23-0.28 g/сm³, in February – 0.25-0.30 g/сm³, in March – 0.29-0.36 g/сm³. Sometimes it can be over 0.50 g/сm³ if the snow melts too fast. The density of melting snow saturated with water can reach 0.80 g/сm³. Average maximum of snow depth is 15-33 cm: minimum is in Brest, maximum is in Lyntupy. Maximum registered snow depth ranges within 40-72 cm. The water content in snowpack, as well as its depth and density, reaches its maximum in the second half of February – beginning of March. Spatial distribution of the amount of liquid in snow corresponds to the trend described above, i.e. it increases in the direction from south-west to north-east and on the highlands. Average annual value of maximum water content in snow ranges from 35 mm in the south-west to 80-100 mm in the north-east. The water content in snow is over 80 mm on the central Belarusian highland. In certain years it exceeds 2-3 times the average annual values. Moderate water content in snow (80-95 mm) is characteristic of western highlands. Maximum water content in snow varies over the country from 107 mm (Brest) to 207 mm (Novogrudok). Maximum water content in snow varies significantly in time (in years), which is confirmed by high variation coefficient (Cv). Maximums (0.62-0.69) are in the south and south-west of Belarus. Minimums (0.42-0.46) are in central and north-eastern Belarus where snow cover is more stable. Since 1987 most gauge stations in Belarus have observed a trend to a decrease in water content in snow. It is confirmed by the research. The biggest snow cover forms on the highlands in central and north-eastern Belarus. Novogrudok, Minsk, Volkovysk, and Sventayny highlands are a natural orographic barrier which prevents snow-bringing air masses from penetrating inside the country. The research is based on data from gauge stations in Belarus registered from 1944 to 2014.Keywords: density, depth, snow, water content in snow
Procedia PDF Downloads 16123128 Pattern the Location and Area of Earth-Dumping Stations from Vehicle GPS Data in Taiwan
Authors: Chun-Yuan Chen, Ming-Chang Li, Xiu-Hui Wen, Yi-Ching Tu
Abstract:
The objective of this study explores GPS (Global Positioning System) applied to trace construction vehicles such as trucks or cranes, help to pattern the earth-dumping stations of traffic construction in Taiwan. Traffic construction in this research is defined as the engineering of high-speed railways, expressways, and which that distance more than kilometers. Audit the location and check the compliance with regulations of earth-dumping stations is one of important tasks in Taiwan EPA. Basically, the earth-dumping station was known as one source of particulate matter from air pollution during construction process. Due to GPS data can be analyzed quickly and be used conveniently, this study tried to find out dumping stations by modeling vehicles tracks from GPS data during work cycle of construction. The GPS data updated from 13 vehicles related to an expressway construction in central Taiwan. The GPS footprints were retrieved to Keyhole Markup Language (KML) files so that can pattern the tracks of trucks by computer applications, the data was collected about eight months- from Feb. to Oct. in 2017. The results of GPS footprints identified dumping station and outlined the areas of earthwork had been passed to the Taiwan EPA for on-site inspection. Taiwan EPA had issued advice comments to the agency which was in charge of the construction to prevent the air pollution. According to the result of this study compared to the commonly methods in inspecting environment by manual collection, the GPS with KML patterning and modeling method can consumes less time. On the other hand, through monitoring the GPS data from construction vehicles could be useful for administration to development and implementation of strategies in environmental management.Keywords: automatic management, earth-dumping station, environmental management, Global Positioning System (GPS), particulate matter, traffic construction
Procedia PDF Downloads 16423127 Effect of Bank Specific and Macro Economic Factors on Credit Risk of Islamic Banks in Pakistan
Authors: Mati Ullah, Shams Ur Rahman
Abstract:
The purpose of this research study is to investigate the effect of macroeconomic and bank-specific factors on credit risk in Islamic banking in Pakistan. The future of financial institutions largely depends on how well they manage risks. Credit risk is an important type of risk affecting the banking sector. The current study has taken quarterly data for the period of 6 years, from 1st July 2014 to 30 Jun 2020. The data set consisted of secondary data. Data was extracted from the websites of the State Bank and World Bank and from the financial statements of the concerned banks. In this study, the Ordinary least square model was used for the analysis of the data. The results supported the hypothesis that macroeconomic factors and bank-specific factors have a significant effect on credit risk. Macroeconomic variables, Inflation and exchange rates have positive significant effects on credit risk. However, gross domestic product has a negative significant relationship with credit risk. Moreover, the corporate rate has no significant relation with credit risk. Internal variables, size, management efficiency, net profit share income and capital adequacy have been proven to influence positively and significantly the credit risk. However, loan to deposit-has a negative insignificance relationship with credit risk. The contribution of this article is that similar conclusions have been made regarding the influence of banking factors on credit risk.Keywords: credit risk, Islamic banks, macroeconomic variables, banks specific variable
Procedia PDF Downloads 1723126 Non-Parametric Regression over Its Parametric Couterparts with Large Sample Size
Authors: Jude Opara, Esemokumo Perewarebo Akpos
Abstract:
This paper is on non-parametric linear regression over its parametric counterparts with large sample size. Data set on anthropometric measurement of primary school pupils was taken for the analysis. The study used 50 randomly selected pupils for the study. The set of data was subjected to normality test, and it was discovered that the residuals are not normally distributed (i.e. they do not follow a Gaussian distribution) for the commonly used least squares regression method for fitting an equation into a set of (x,y)-data points using the Anderson-Darling technique. The algorithms for the nonparametric Theil’s regression are stated in this paper as well as its parametric OLS counterpart. The use of a programming language software known as “R Development” was used in this paper. From the analysis, the result showed that there exists a significant relationship between the response and the explanatory variable for both the parametric and non-parametric regression. To know the efficiency of one method over the other, the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) are used, and it is discovered that the nonparametric regression performs better than its parametric regression counterparts due to their lower values in both the AIC and BIC. The study however recommends that future researchers should study a similar work by examining the presence of outliers in the data set, and probably expunge it if detected and re-analyze to compare results.Keywords: Theil’s regression, Bayesian information criterion, Akaike information criterion, OLS
Procedia PDF Downloads 30523125 Improving the Performance of Requisition Document Online System for Royal Thai Army by Using Time Series Model
Authors: D. Prangchumpol
Abstract:
This research presents a forecasting method of requisition document demands for Military units by using Exponential Smoothing methods to analyze data. The data used in the forecast is an actual data requisition document of The Adjutant General Department. The results of the forecasting model to forecast the requisition of the document found that Holt–Winters’ trend and seasonality method of α=0.1, β=0, γ=0 is appropriate and matches for requisition of documents. In addition, the researcher has developed a requisition online system to improve the performance of requisition documents of The Adjutant General Department, and also ensuring that the operation can be checked.Keywords: requisition, holt–winters, time series, royal thai army
Procedia PDF Downloads 30823124 Geoelectric Survey for Groundwater Potential in Waziri Umaru Federal Polytechnic, Birnin Kebbi, Nigeria
Authors: Ibrahim Mohammed, Suleiman Taofiq, Muhammad Naziru Yahya
Abstract:
Geoelectrical measurements using Schlumberger Vertical Electrical Sounding (VES) method were carried out in Waziri Umaru Federal Polytechnic, Birnin Kebbi, Nigeria, with the aim of determining the groundwater potential in the area. Twelve (12) Vertical Electric Sounding (VES) data were collected using Terrameter (ABEM SAS 300c) and analyzed using computer software (IPI2win), which gives an automatic interpretation of the apparent resistivity. The results of the interpretation of VES data were used in the characterization of three to five geo-electric layers from which the aquifer units were delineated. Data analysis indicated that water bearing formation exists in the third and fourth layers having resistivity range of 312 to 767 Ωm and 9.51 to 681 Ωm, respectively. The thickness of the formation ranges from 14.7 to 41.8 m, while the depth is from 8.22 to 53.7 m. Based on the result obtained from the interpretation of the data, five (5) VES stations were recommended as the most viable locations for groundwater exploration in the study area. The VES stations include VES A4, A5, A6, B1, and B2. The VES results of the entire area indicated that the water bearing formation occurs at maximum depth of 53.7 m at the time of this survey.Keywords: aquifer, depth, groundwater, resistivity, Schlumberger
Procedia PDF Downloads 16623123 The Integration of Patient Health Record Generated from Wearable and Internet of Things Devices into Health Information Exchanges
Authors: Dalvin D. Hill, Hector M. Castro Garcia
Abstract:
A growing number of individuals utilize wearable devices on a daily basis. The usage and functionality of these wearable devices vary from user to user. One popular usage of said devices is to track health-related activities that are typically stored on a device’s memory or uploaded to an account in the cloud; based on the current trend, the data accumulated from the wearable device are stored in a standalone location. In many of these cases, this health related datum is not a factor when considering the holistic view of a user’s health lifestyle or record. This health-related data generated from wearable and Internet of Things (IoT) devices can serve as empirical information to a medical provider, as the standalone data can add value to the holistic health record of a patient. This paper proposes a solution to incorporate the data gathered from these wearable and IoT devices, with that a patient’s Personal Health Record (PHR) stored within the confines of a Health Information Exchange (HIE).Keywords: electronic health record, health information exchanges, internet of things, personal health records, wearable devices, wearables
Procedia PDF Downloads 12823122 System Identification in Presence of Outliers
Authors: Chao Yu, Qing-Guo Wang, Dan Zhang
Abstract:
The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low-rank, sparse matrices and further recast as a semidefinite programming (SDP) problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered “clean” data from the proposed method can give much better parameter estimation compared with that based on the raw data.Keywords: outlier detection, system identification, matrix decomposition, low-rank matrix, sparsity, semidefinite programming, interior-point methods, denoising
Procedia PDF Downloads 30723121 Defining a Reference Architecture for Predictive Maintenance Systems: A Case Study Using the Microsoft Azure IoT-Cloud Components
Authors: Walter Bernhofer, Peter Haber, Tobias Mayer, Manfred Mayr, Markus Ziegler
Abstract:
Current preventive maintenance measures are cost intensive and not efficient. With the available sensor data of state of the art internet of things devices new possibilities of automated data processing emerge. Current advances in data science and in machine learning enable new, so called predictive maintenance technologies, which empower data scientists to forecast possible system failures. The goal of this approach is to cut expenses in preventive maintenance by automating the detection of possible failures and to improve efficiency and quality of maintenance measures. Additionally, a centralization of the sensor data monitoring can be achieved by using this approach. This paper describes the approach of three students to define a reference architecture for a predictive maintenance solution in the internet of things domain with a connected smartphone app for service technicians. The reference architecture is validated by a case study. The case study is implemented with current Microsoft Azure cloud technologies. The results of the case study show that the reference architecture is valid and can be used to achieve a system for predictive maintenance execution with the cloud components of Microsoft Azure. The used concepts are technology platform agnostic and can be reused in many different cloud platforms. The reference architecture is valid and can be used in many use cases, like gas station maintenance, elevator maintenance and many more.Keywords: case study, internet of things, predictive maintenance, reference architecture
Procedia PDF Downloads 25123120 An Ecosystem Approach to Natural Resource Management: Case Study of the Topčiderska River, Serbia
Authors: Katarina Lazarević, Mirjana Todosijević, Tijana Vulević, Natalija Momirović, Ranka Erić
Abstract:
Due to increasing demand, climate change, and world population growth, natural resources are getting exploit fast. One of the most important natural resources is soil, which is susceptible to degradation. Erosion as one of the forms of land degradation is also one of the most global environmental problems. Ecosystem services are often defined as benefits that nature provides to humankind. Soil, as the foundation of basic ecosystem functions, provides benefits to people, erosion control, water infiltration, food, fuel, fibers… This research is using the ecosystem approach as a strategy for natural resources management for promoting sustainability and conservation. The research was done on the Topčiderska River basin (Belgrade, Serbia). The InVEST Sediment Delivery Ratio model was used, to quantify erosion intensity with a spatial distribution output map of overland sediment generation and delivery to the stream. InVEST SDR, a spatially explicit model, is using a method based on the concept of hydrological connectivity and (R) USLE model. This, combined with socio-economic and law and policy analysis, gives a full set of information to decision-makers helping them to successfully manage and deliver sustainable ecosystems.Keywords: ecosystem services, InVEST model, soil erosion, sustainability
Procedia PDF Downloads 14123119 Intellectual Property Rights and Health Rights: A Feasible Reform Proposal to Facilitate Access to Drugs in Developing Countries
Authors: M. G. Cattaneo
Abstract:
The non-effectiveness of certain codified human rights is particularly apparent with reference to the lack of access to essential drugs in developing countries, which represents a breach of the human right to receive adequate health assistance. This paper underlines the conflict and the legal contradictions between human rights, namely health rights, international Intellectual Property Rights, in particular patent law, as well as international trade law. The paper discusses the crucial links between R&D costs for innovation, patents and new medical drugs, with the goal of reformulating the hierarchies of priorities and of interests at stake in the international intellectual property (IP) law system. Different from what happens today, International patent law should be a legal instrument apt at rebalancing an axiological asymmetry between the (conflicting) needs at stake The core argument in the paper is the proposal of an alternative pathway, namely a feasible proposal for a patent law reform. IP laws tend to balance the benefits deriving from innovation with the costs of the provided monopoly, but since developing countries and industrialized countries are in completely different political and economic situations, it is necessary to (re)modulate such exchange according to the different needs. Based on this critical analysis, the paper puts forward a proposal, called Trading Time for Space (TTS), whereby a longer time for patent exclusive life in western countries (Time) is offered to the patent holder company, in exchange for the latter selling the medical drug at cost price in developing countries (Space). Accordingly, pharmaceutical companies should sell drugs in developing countries at the cost price, or alternatively grant a free license for the sale in such countries, without any royalties or fees. However, such social service shall be duly compensated. Therefore, the consideration for such a service shall be an extension of the temporal duration of the patent’s exclusive in the country of origin that will compensate the reduced profits caused by the supply at the price cost in developing countries.Keywords: global health, global justice, patent law reform, access to drugs
Procedia PDF Downloads 24623118 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction
Authors: Yan Zhang
Abstract:
Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.Keywords: Internet of Things, machine learning, predictive maintenance, streaming data
Procedia PDF Downloads 38623117 Road Condition Monitoring Using Built-in Vehicle Technology Data, Drones, and Deep Learning
Authors: Judith Mwakalonge, Geophrey Mbatta, Saidi Siuhi, Gurcan Comert, Cuthbert Ruseruka
Abstract:
Transportation agencies worldwide continuously monitor their roads' conditions to minimize road maintenance costs and maintain public safety and rideability quality. Existing methods for carrying out road condition surveys involve manual observations of roads using standard survey forms done by qualified road condition surveyors or engineers either on foot or by vehicle. Automated road condition survey vehicles exist; however, they are very expensive since they require special vehicles equipped with sensors for data collection together with data processing and computing devices. The manual methods are expensive, time-consuming, infrequent, and can hardly provide real-time information for road conditions. This study contributes to this arena by utilizing built-in vehicle technologies, drones, and deep learning to automate road condition surveys while using low-cost technology. A single model is trained to capture flexible pavement distresses (Potholes, Rutting, Cracking, and raveling), thereby providing a more cost-effective and efficient road condition monitoring approach that can also provide real-time road conditions. Additionally, data fusion is employed to enhance the road condition assessment with data from vehicles and drones.Keywords: road conditions, built-in vehicle technology, deep learning, drones
Procedia PDF Downloads 12423116 Enhancing Student Learning Outcomes Using Engineering Design Process: Case Study in Physics Course
Authors: Thien Van Ngo
Abstract:
The engineering design process is a systematic approach to solving problems. It involves identifying a problem, brainstorming solutions, prototyping and testing solutions, and evaluating the results. The engineering design process can be used to teach students how to solve problems in a creative and innovative way. The research aim of this study was to investigate the effectiveness of using the engineering design process to enhance student learning outcomes in a physics course. A mixed research method was used in this study. The quantitative data were collected using a pretest-posttest control group design. The qualitative data were collected using semi-structured interviews. The sample was 150 first-year students in the Department of Mechanical Engineering Technology at Cao Thang Technical College in Vietnam in the 2022-2023 school year. The quantitative data were collected using a pretest-posttest control group design. The pretest was administered to both groups at the beginning of the study. The posttest was administered to both groups at the end of the study. The qualitative data were collected using semi-structured interviews with a sample of eight students in the experimental group. The interviews were conducted after the posttest. The quantitative data were analyzed using independent sample T-tests. The qualitative data were analyzed using thematic analysis. The quantitative data showed that students in the experimental group, who were taught using the engineering design process, had significantly higher post-test scores on physics problem-solving than students in the control group, who were taught using the conventional method. The qualitative data showed that students in the experimental group were more motivated and engaged in the learning process than students in the control group. Students in the experimental group also reported that they found the engineering design process to be a more effective way of learning physics. The findings of this study suggest that the engineering design process can be an effective way of enhancing student learning outcomes in physics courses. The engineering design process engages students in the learning process and helps them to develop problem-solving skills.Keywords: engineering design process, problem-solving, learning outcome of physics, students’ physics competencies, deep learning
Procedia PDF Downloads 6523115 Using Business Intelligence Capabilities to Improve the Quality of Decision-Making: A Case Study of Mellat Bank
Authors: Jalal Haghighat Monfared, Zahra Akbari
Abstract:
Today, business executives need to have useful information to make better decisions. Banks have also been using information tools so that they can direct the decision-making process in order to achieve their desired goals by rapidly extracting information from sources with the help of business intelligence. The research seeks to investigate whether there is a relationship between the quality of decision making and the business intelligence capabilities of Mellat Bank. Each of the factors studied is divided into several components, and these and their relationships are measured by a questionnaire. The statistical population of this study consists of all managers and experts of Mellat Bank's General Departments (including 190 people) who use commercial intelligence reports. The sample size of this study was 123 randomly determined by statistical method. In this research, relevant statistical inference has been used for data analysis and hypothesis testing. In the first stage, using the Kolmogorov-Smirnov test, the normalization of the data was investigated and in the next stage, the construct validity of both variables and their resulting indexes were verified using confirmatory factor analysis. Finally, using the structural equation modeling and Pearson's correlation coefficient, the research hypotheses were tested. The results confirmed the existence of a positive relationship between decision quality and business intelligence capabilities in Mellat Bank. Among the various capabilities, including data quality, correlation with other systems, user access, flexibility and risk management support, the flexibility of the business intelligence system was the most correlated with the dependent variable of the present research. This shows that it is necessary for Mellat Bank to pay more attention to choose the required business intelligence systems with high flexibility in terms of the ability to submit custom formatted reports. Subsequently, the quality of data on business intelligence systems showed the strongest relationship with quality of decision making. Therefore, improving the quality of data, including the source of data internally or externally, the type of data in quantitative or qualitative terms, the credibility of the data and perceptions of who uses the business intelligence system, improves the quality of decision making in Mellat Bank.Keywords: business intelligence, business intelligence capability, decision making, decision quality
Procedia PDF Downloads 112