Search results for: visual design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14049

Search results for: visual design

10389 Development of Underactuated Robot Hand Using Cross Section Deformation Spring

Authors: Naoki Saito, Daisuke Kon, Toshiyuki Sato

Abstract:

This paper describes an underactuated robot hand operated by low-power actuators. It can grasp objects of various shapes using easy operations. This hand is suitable for use as a lightweight prosthetic hand that can grasp various objects using few input channels. To realize operations using a low-power actuator, a cross section deformation spring is proposed. The design procedure of the underactuated robot finger is proposed to realize an adaptive grasping movement. The validity of this mechanism and design procedure are confirmed through an object grasping experiment. Results demonstrate the effectiveness of a cross section deformation spring in reducing the actuator power. Moreover, adaptive grasping movement is realized by an easy operation.

Keywords: robot hand, underactuated mechanism, cross-section deformation spring, prosthetic hand

Procedia PDF Downloads 375
10388 Sustainable Renovation of Cultural Buildings Case Study: Red Bay National Historic Site, Canada

Authors: Richard Briginshaw, Hana Alaojeli, Javaria Ahmad, Hamza Gaffar, Nourtan Murad

Abstract:

Sustainable renovations to cultural buildings and sites require a high level of competency in the sometimes conflicting areas of social/historical demands, environmental concerns, and the programmatic and technical requirements of the project. A detailed analysis of the existing site, building and client program are critical to reveal both challenges and opportunities. This forms the starting point for the design process – empirical explorations that search for a balanced and inspired architectural solution to the project. The Red Bay National Historic Site on the Labrador Coast of eastern Canada is a challenging project to explore and resolve these ideas. Originally the site of a 16ᵗʰ century whaling station occupied by Basque sailors from France and Spain, visitors now experience this history at the interpretive center, along with the unique geography, climate, local culture and vernacular architecture of the area. Working with our client, Parks Canada, the project called for significant alterations and expansion to the existing facility due to an increase in the number of annual visitors. Sustainable aspects of the design are focused on sensitive site development, passive energy strategies such as building orientation and building envelope efficiency, active renewable energy systems, carefully considered material selections, water efficiency, and interiors that respond to human comfort and a unique visitor experience.

Keywords: sustainability, renovations and expansion, cultural project, architectural design, green building

Procedia PDF Downloads 171
10387 Designing a Method to Control and Determine the Financial Performance of the Real Cost Sub-System in the Information Management System of Construction Projects

Authors: Alireza Ghaffari, Hassan Saghi

Abstract:

Project management is more complex than managing the day-to-day affairs of an organization. When the project dimensions are broad and multiple projects have to be monitored in different locations, the integrated management becomes even more complicated. One of the main concerns of project managers is the integrated project management, which is mainly rooted in the lack of accurate and accessible information from different projects in various locations. The collection of dispersed information from various parts of the network, their integration and finally the selective reporting of this information is among the goals of integrated information systems. It can help resolve the main problem, which is bridging the information gap between executives and senior managers in the organization. Therefore, the main objective of this study is to design and implement an important subset of a project management information system in order to successfully control the cost of construction projects so that its results can be used to design raw software forms and proposed relationships between different project units for the collection of necessary information.

Keywords: financial performance, cost subsystem, PMIS, project management

Procedia PDF Downloads 112
10386 Application of Artificial Neural Network in Assessing Fill Slope Stability

Authors: An-Jui. Li, Kelvin Lim, Chien-Kuo Chiu, Benson Hsiung

Abstract:

This paper details the utilization of artificial intelligence (AI) in the field of slope stability whereby quick and convenient solutions can be obtained using the developed tool. The AI tool used in this study is the artificial neural network (ANN), while the slope stability analysis methods are the finite element limit analysis methods. The developed tool allows for the prompt prediction of the safety factors of fill slopes and their corresponding probability of failure (depending on the degree of variation of the soil parameters), which can give the practicing engineer a reasonable basis in their decision making. In fact, the successful use of the Extreme Learning Machine (ELM) algorithm shows that slope stability analysis is no longer confined to the conventional methods of modeling, which at times may be tedious and repetitive during the preliminary design stage where the focus is more on cost saving options rather than detailed design. Therefore, similar ANN-based tools can be further developed to assist engineers in this aspect.

Keywords: landslide, limit analysis, artificial neural network, soil properties

Procedia PDF Downloads 210
10385 6 DOF Cable-Driven Haptic Robot for Rendering High Axial Force with Low Off-Axis Impedance

Authors: Naghmeh Zamani, Ashkan Pourkand, David Grow

Abstract:

This paper presents the design and mechanical model of a hybrid impedance/admittance haptic device optimized for applications, like bone drilling, spinal awl probe use, and other surgical techniques were high force is required in the tool-axial direction, and low impedance is needed in all other directions. The performance levels required cannot be satisfied by existing, off-the-shelf haptic devices. This design may allow critical improvements in simulator fidelity for surgery training. The device consists primarily of two low-mass (carbon fiber) plates with a rod passing through them. Collectively, the device provides 6 DOF. The rod slides through a bushing in the top plate and it is connected to the bottom plate with a universal joint, constrained to move in only 2 DOF, allowing axial torque display the user’s hand. The two parallel plates are actuated and located by means of four cables pulled by motors. The forward kinematic equations are derived to ensure that the plates orientation remains constant. The corresponding equations are solved using the Newton-Raphson method. The static force/torque equations are also presented. Finally, we present the predicted distribution of location error, cables velocity, cable tension, force and torque for the device. These results and preliminary hardware fabrication indicate that this design may provide a revolutionary approach for haptic display of many surgical procedures by means of an architecture that allows arbitrary workspace scaling. Scaling of the height and width can be scaled arbitrarily.

Keywords: cable direct driven robot, haptics, parallel plates, bone drilling

Procedia PDF Downloads 259
10384 Seismic Assessment of RC Structures

Authors: Badla Oualid

Abstract:

A great number of existing buildings are designed without seismic design criteria and detailing rules for dissipative structural behavior. Thus, it is of critical importance that the structures that need seismic retrofitting are correctly identified, and an optimal retrofitting is conducted in a cost effective fashion. Among the retrofitting techniques available, steel braces can be considered as one of the most efficient solution among seismic performance upgrading methods of RC structures. This paper investigates the seismic behavior of RC buildings strengthened with different types of steel braces, X-braced, inverted V braced, ZX braced, and Zipper braced. Static non linear pushover analysis has been conducted to estimate the capacity of three story and six story buildings with different brace-frame systems and different cross sections for the braces. It is found that adding braces enhances the global capacity of the buildings compared to the case with no bracing and that the X and Zipper bracing systems performed better depending on the type and size of the cross section.

Keywords: seismic design, strengthening, RC frames, steel bracing, pushover analysis

Procedia PDF Downloads 523
10383 The Design of Acoustic Horns for Ultrasonic Aided Tube Double Side Flange Making

Authors: Kuen-Ming Shu, Jyun-Wei Chen

Abstract:

Encapsulated O-rings are specifically designed to address the problem of sealing the most hostile chemicals and extreme temperature applications. Ultrasonic vibration hot embossing and ultrasonic welding techniques provide a fast and reliable method to fabricate encapsulated O-ring. This paper performs the design and analysis method of the acoustic horns with double extrusion to process tube double side flange simultaneously. The paper deals with study through Finite Element Method (FEM) of ultrasonic stepped horn used to process a capsulated O-ring, the theoretical dimensions of horns, and their natural frequencies and amplitudes are obtained through the simulations of COMOSOL software. Furthermore, real horns were fabricated, tested and verified to proof the practical utility of these horns.

Keywords: encapsulated O-rings, ultrasonic vibration hot embossing, flange making, acoustic horn, finite element analysis

Procedia PDF Downloads 321
10382 Predicting Food Waste and Losses Reduction for Fresh Products in Modified Atmosphere Packaging

Authors: Matar Celine, Gaucel Sebastien, Gontard Nathalie, Guilbert Stephane, Guillard Valerie

Abstract:

To increase the very short shelf life of fresh fruits and vegetable, Modified Atmosphere Packaging (MAP) allows an optimal atmosphere composition to be maintained around the product and thus prevent its decay. This technology relies on the modification of internal packaging atmosphere due to equilibrium between production/consumption of gases by the respiring product and gas permeation through the packaging material. While, to the best of our knowledge, benefit of MAP for fresh fruits and vegetable has been widely demonstrated in the literature, its effect on shelf life increase has never been quantified and formalized in a clear and simple manner leading difficult to anticipate its economic and environmental benefit, notably through the decrease of food losses. Mathematical modelling of mass transfers in the food/packaging system is the basis for a better design and dimensioning of the food packaging system. But up to now, existing models did not permit to estimate food quality nor shelf life gain reached by using MAP. However, shelf life prediction is an indispensable prerequisite for quantifying the effect of MAP on food losses reduction. The objective of this work is to propose an innovative approach to predict shelf life of MAP food product and then to link it to a reduction of food losses and wastes. In this purpose, a ‘Virtual MAP modeling tool’ was developed by coupling a new predictive deterioration model (based on visual surface prediction of deterioration encompassing colour, texture and spoilage development) with models of the literature for respiration and permeation. A major input of this modelling tool is the maximal percentage of deterioration (MAD) which was assessed from dedicated consumers’ studies. Strawberries of the variety Charlotte were selected as the model food for its high perishability, high respiration rate; 50-100 ml CO₂/h/kg produced at 20°C, allowing it to be a good representative of challenging post-harvest storage. A value of 13% was determined as a limit of acceptability for the consumers, permitting to define products’ shelf life. The ‘Virtual MAP modeling tool’ was validated in isothermal conditions (5, 10 and 20°C) and in dynamic temperature conditions mimicking commercial post-harvest storage of strawberries. RMSE values were systematically lower than 3% for respectively, O₂, CO₂ and deterioration profiles as a function of time confirming the goodness of model fitting. For the investigated temperature profile, a shelf life gain of 0.33 days was obtained in MAP compared to the conventional storage situation (no MAP condition). Shelf life gain of more than 1 day could be obtained for optimized post-harvest conditions as numerically investigated. Such shelf life gain permitted to anticipate a significant reduction of food losses at the distribution and consumer steps. This food losses' reduction as a function of shelf life gain has been quantified using a dedicated mathematical equation that has been developed for this purpose.

Keywords: food losses and wastes, modified atmosphere packaging, mathematical modeling, shelf life prediction

Procedia PDF Downloads 184
10381 Enhancing Learning Ability among Deaf Students by Using Photographic Images

Authors: Aidah Alias, Mustaffa Halabi Azahari, Adzrool Idzwan Ismail, Salasiah Ahmad

Abstract:

Education is one of the most important elements in a human life. Educations help us in learning and achieve new things in life. The ability of hearing gave us chances to hear voices and it is important in our communication. Hearing stories told by others; hearing news and music to create our creative and sense; seeing and hearing make us understand directly the message trying to deliver. But, what will happen if we are born deaf or having hearing loss while growing up? The objectives of this paper are to identify the current practice in teaching and learning among deaf students and to analyse an appropriate method in enhancing learning process among deaf students. A case study method was employed by using methods of observation and interview to selected deaf students and teachers. The findings indicated that the suitable method of teaching for deaf students is by using pictures and body movement. In other words, by combining these two medium of images and body movement, the best medium that the study suggested is by using video or motion pictures. The study concluded and recommended that video or motion pictures is recommended medium to be used in teaching and learning for deaf students.

Keywords: deaf, photographic images, visual communication, education, learning ability

Procedia PDF Downloads 286
10380 Nickel-Titanium Endodontic Instruments: The Evolution

Authors: Fadwa Chtioui

Abstract:

The field of endodontics has witnessed constant advancements in treatment methods and instrument design, particularly for nickel-titanium (NiTi) files. Despite these developments, it remains crucial for clinicians to have a thorough understanding of their characteristics and behavior to choose the appropriate instruments for different clinical and anatomical situations. Research Aim: The aim of this work is to study and discuss the impact of heat treatment developments on the properties of endodontic NiTi files, with the ultimate goal of providing ways to adapt these files to the anatomical features of dental roots. Methodology: This study involves both clinical cases and extensive bibliographic research. Findings: The study highlights the importance of heat treatment in the design and manufacture of NiTi files, as it significantly affects their physical and mechanical properties. It also provides insights into the ways in which NiTi files can be adapted to the complex geometries of dental roots for more effective endodontic treatments. Theoretical Importance: Theoretical implications of this study include a better understanding of the relationship between heat treatment and the properties of NiTi files, leading to improvements in both their manufacturing methods and clinical applications. Data Collection and Analysis Procedures: The data for this study was collected through clinical cases and an extensive review of relevant literature. Analysis was performed through qualitative and quantitative methods, examining the impact of heat treatment on the physical and mechanical properties of NiTi files. Questions Addressed: This study aims to answer questions concerning the properties of NiTi files and the impact of heat treatment on their behavior. It also seeks to examine ways in which these files can be adapted to complex dental root geometries for more effective endodontic treatments. Conclusion: In conclusion, this study emphasizes the importance of heat treatment in the design and manufacture of NiTi files, as it significantly impacts their physical and mechanical properties. Further research is necessary to explore additional methods for adapting NiTi files to the unique anatomies of dental roots to improve endodontic treatments further. Ultimately, this study provides valuable insights into the continued evolution of endodontic treatment and instrument design.

Keywords: endodontic files, nickel-titanium, tooth anatomy, heat treatment

Procedia PDF Downloads 72
10379 Toward a Radical/Populist Democracy from the Dialectical Tensions between Transgender Movement and Gay Movement in Taiwan: A Rhetorical Analysis

Authors: Hsiao-Yung Wang

Abstract:

This paper aims to elaborate the rhetorical strategies and its inherent dialectical tensions between transgender movement and gay movement in Taiwan; thereby, a radical/populist democratic model will be reproblematized for theorizing the internal dialogicity of the 'umbrella metaphor' of the so-called 'LGBT' label. Firstly, it examined how the representative gay community in Taiwan defined the category of 'LGBT' by its visual rhetoric of pride parade during the last two decades, and how the imaginary of 'transgender' was systematically precluded or even silenced by 'cisgender privilege' or 'cisnormativity' of the gay community in general. Secondly, it employed Laclau & Mouffe’s (1985) perspective of 'empty signifier' which derives from their radical democratic theorization and populist reason, to explore the rhetorical strategies and language tactics on which transgender activists relied for arguing or mapping both the cooperative and competitive relationship with cisgender allies intentionally. Based on research findings, this paper argued that a relationship between rather than an amalgamation of sexual orientation and gender identity should be recognized. Moreover, that resisting defining transgender as other and everyone else as normal could be the critical issue of LGBT community as a whole, especially while it proceeds toward to a radical/populist democracy.

Keywords: empty signifier, LGBT, populist reason, radical democracy, rhetoric, transgender

Procedia PDF Downloads 172
10378 Furnishing The Envelope; 3D Printed Construction Unit as Furniture

Authors: Maryam Kalkatechi

Abstract:

The paper presents the construction unit that was proposed as a result of researching and finding solutions for challenges of the traditional masonry unit. The concept of ‘unit as arrangements of cells’ was investigated in four categories of structure, handling and assembly, thermal characteristics and weather ability which resulted in construction unit as an independent system which shapes a part of the envelope. Comparing to the traditional wall systems in which the system is in layers, the part system is a monolithic piece by itself. Even though the overall wythe-10 inches- is less than the combined layers-14 inches- in a traditional wall system, it is still seen as a spatial component. The component as a furnishing of envelope is discussed from material application point of view. The algorithm definition of the arrangement cells crafts the relationship between cells and functionality with material. This craft is realized as the envelope furnishing. Three alternative materials in relation to furnishing the envelope are discussed for printing the construction unit; transparent plastic, opaque plastic and glass. The qualities vary in the four categories, however this paper focuses on the visual qualities of materials applied. In a diagram the qualities of the materials are compared in relation to each other.

Keywords: furnishing envelope, 3D printed construction unit, opaque plastic, transparent plastic, glass

Procedia PDF Downloads 184
10377 Passive Aeration of Wastewater: Analytical Model

Authors: Ayman M. El-Zahaby, Ahmed S. El-Gendy

Abstract:

Aeration for wastewater is essential for the proper operation of aerobic treatment units where the wastewater normally has zero dissolved oxygen. This is due to the need of oxygen by the aerobic microorganisms to grow and survive. Typical aeration units for wastewater treatment require electric energy for their operation such as mechanical aerators or diffused aerators. The passive units are units that operate without the need of electric energy such as cascade aerators, spray aerators and tray aerators. In contrary to the cascade aerators and spray aerators, tray aerators require much smaller area foot print for their installation as the treatment stages are arranged vertically. To the extent of the authors knowledge, the design of tray aerators for the aeration purpose has not been presented in the literature. The current research concerns with an analytical study for the design of tray aerators for the purpose of increasing the dissolved oxygen in wastewater treatment systems, including an investigation on different design parameters and their impact on the aeration efficiency. The studied aerator shall act as an intermediate stage between an anaerobic primary treatment unit and an aerobic treatment unit for small scale treatment systems. Different free falling flow regimes were investigated, and the thresholds for transition between regimes were obtained from the literature. The study focused on the jetting flow regime between trays. Starting from the two film theory, an equation that relates the dissolved oxygen concentration effluent from the system was derived as a function of the flow rate, number of trays, tray area, spacing between trays, number and diameter of holes and the water temperature. A MATLab ® model was developed for the derived equation. The expected aeration efficiency under different tray configurations and operating conditions were illustrated through running the model with varying the design parameters. The impact of each parameter was illustrated. The overall system efficiency was found to increase by decreasing the hole diameter. On the other side, increasing the number of trays, tray area, flow rate per hole or tray spacing had positive effect on the system efficiency.

Keywords: aeration, analytical, passive, wastewater

Procedia PDF Downloads 212
10376 Design Off-Campus Interactive Cloud-Based Learning Model

Authors: Osamah Al Qadoori

Abstract:

Using cloud computing in educational sectors grow rapidly in UAE. Initially, within Cloud-Learning Environment Students whenever and wherever can remotely join the online-classroom, on the other hand, Cloud-Based Learning is greatly decreasing the infrastructure and the maintenance cost. Nowadays in many schools (K-12), institutes, colleges as well as universities in UAE Cloud-Based Teaching and Learning environments gain a higher demand and concern. Many students don’t use the available online-educational resources effectively. The challenging question is to which extend these educational resources which are installed in the cloud environment are valuable and constructive? In this paper the researcher is seeking to design an expert agent prototype where the huge information being accommodated inside the cloud environment will go through expert filtration before going to be utilized by other clients (students). To achieve this goal, the focus of the present research would be on two different directions the educational human expertise and the automated-educational expert systems.

Keywords: cloud computing, cloud-learning environment, online-classroom, the educational human expertise, the automated-educational expert systems

Procedia PDF Downloads 543
10375 Design of Reconfigurable Supernumerary Robotic Limb Based on Differential Actuated Joints

Authors: Qinghua Zhang, Yanhe Zhu, Xiang Zhao, Yeqin Yang, Hongwei Jing, Guoan Zhang, Jie Zhao

Abstract:

This paper presents a wearable reconfigurable supernumerary robotic limb with differential actuated joints, which is lightweight, compact and comfortable for the wearers. Compared to the existing supernumerary robotic limbs which mostly adopted series structure with large movement space but poor carrying capacity, a prototype with the series-parallel configuration to better adapt to different task requirements has been developed in this design. To achieve a compact structure, two kinds of cable-driven mechanical structures based on guide pulleys and differential actuated joints were designed. Moreover, two different tension devices were also designed to ensure the reliability and accuracy of the cable-driven transmission. The proposed device also employed self-designed bearings which greatly simplified the structure and reduced the cost.

Keywords: cable-driven, differential actuated joints, reconfigurable, supernumerary robotic limb

Procedia PDF Downloads 224
10374 Design and Construction Validation of Pile Performance through High Strain Pile Dynamic Tests for both Contiguous Flight Auger and Drilled Displacement Piles

Authors: S. Pirrello

Abstract:

Sydney’s booming real estate market has pushed property developers to invest in historically “no-go” areas, which were previously too expensive to develop. These areas are usually near rivers where the sites are underlain by deep alluvial and estuarine sediments. In these ground conditions, conventional bored pile techniques are often not competitive. Contiguous Flight Auger (CFA) and Drilled Displacement (DD) Piles techniques are on the other hand suitable for these ground conditions. This paper deals with the design and construction challenges encountered with these piling techniques for a series of high-rise towers in Sydney’s West. The advantages of DD over CFA piles such as reduced overall spoil with substantial cost savings and achievable rock sockets in medium strength bedrock are discussed. Design performances were assessed with PIGLET. Pile performances are validated in two stages, during constructions with the interpretation of real-time data from the piling rigs’ on-board computer data, and after construction with analyses of results from high strain pile dynamic testing (PDA). Results are then presented and discussed. High Strain testing data are presented as Case Pile Wave Analysis Program (CAPWAP) analyses.

Keywords: contiguous flight auger (CFA) , DEFPIG, case pile wave analysis program (CAPWAP), drilled displacement piles (DD), pile dynamic testing (PDA), PIGLET, PLAXIS, repute, pile performance

Procedia PDF Downloads 283
10373 Accessibility and Visibility through Space Syntax Analysis of the Linga Raj Temple in Odisha, India

Authors: S. Pramanik

Abstract:

Since the early ages, the Hindu temples have been interpreted through various Vedic philosophies. These temples are visited by pilgrims which demonstrate the rituals and religious belief of communities, reflecting a variety of actions and behaviors. Darsana a direct seeing, is a part of the pilgrimage activity. During the process of Darsana, a devotee is prepared for entry in the temple to realize the cognizing Truth culminating in visualizing the idol of God, placed at the Garbhagriha (sanctum sanctorum). For this, the pilgrim must pass through a sequential arrangement of spaces. During the process of progress, the pilgrims visualize the spaces differently from various points of views. The viewpoints create a variety of spatial patterns in the minds of pilgrims coherent to the Hindu philosophies. The space organization and its order are perceived by various techniques of spatial analysis. A temple, as examples of Kalinga stylistic variations, has been chosen for the study. This paper intends to demonstrate some visual patterns generated during the process of Darsana (visibility) and its accessibility by Point Isovist Studies and Visibility Graph Analysis from the entrance (Simha Dwara) to The Sanctum sanctorum (Garbhagriha).

Keywords: Hindu temple architecture, point isovist, space syntax analysis, visibility graph analysis

Procedia PDF Downloads 121
10372 Design of the Compliant Mechanism of a Biomechanical Assistive Device for the Knee

Authors: Kevin Giraldo, Juan A. Gallego, Uriel Zapata, Fanny L. Casado

Abstract:

Compliant mechanisms are designed to deform in a controlled manner in response to external forces, utilizing the flexibility of their components to store potential elastic energy during deformation, gradually releasing it upon returning to its original form. This article explores the design of a knee orthosis intended to assist users during stand-up motion. The orthosis makes use of a compliant mechanism to balance the user’s weight, thereby minimizing the strain on leg muscles during standup motion. The primary function of the compliant mechanism is to store and exchange potential energy, so when coupled with the gravitational potential of the user, the total potential energy variation is minimized. The design process for the semi-rigid knee orthosis involved material selection and the development of a numerical model for the compliant mechanism seen as a spring. Geometric properties are obtained through the numerical modeling of the spring once the desired stiffness and safety factor values have been attained. Subsequently, a 3D finite element analysis was conducted. The study demonstrates a strong correlation between the maximum stress in the mathematical model (250.22 MPa) and the simulation (239.8 MPa), with a 4.16% error. Both analyses safety factors: 1.02 for the mathematical approach and 1.1 for the simulation, with a consistent 7.84% margin of error. The spring’s stiffness, calculated at 90.82 Nm/rad analytically and 85.71 Nm/rad in the simulation, exhibits a 5.62% difference. These results suggest significant potential for the proposed device in assisting patients with knee orthopedic restrictions, contributing to ongoing efforts in advancing the understanding and treatment of knee osteoarthritis.

Keywords: biomechanics, complaint mechanisms, gonarthrosis, orthoses

Procedia PDF Downloads 41
10371 Stochastic Modeling for Parameters of Modified Car-Following Model in Area-Based Traffic Flow

Authors: N. C. Sarkar, A. Bhaskar, Z. Zheng

Abstract:

The driving behavior in area-based (i.e., non-lane based) traffic is induced by the presence of other individuals in the choice space from the driver’s visual perception area. The driving behavior of a subject vehicle is constrained by the potential leaders and leaders are frequently changed over time. This paper is to determine a stochastic model for a parameter of modified intelligent driver model (MIDM) in area-based traffic (as in developing countries). The parametric and non-parametric distributions are presented to fit the parameters of MIDM. The goodness of fit for each parameter is measured in two different ways such as graphically and statistically. The quantile-quantile (Q-Q) plot is used for a graphical representation of a theoretical distribution to model a parameter and the Kolmogorov-Smirnov (K-S) test is used for a statistical measure of fitness for a parameter with a theoretical distribution. The distributions are performed on a set of estimated parameters of MIDM. The parameters are estimated on the real vehicle trajectory data from India. The fitness of each parameter with a stochastic model is well represented. The results support the applicability of the proposed modeling for parameters of MIDM in area-based traffic flow simulation.

Keywords: area-based traffic, car-following model, micro-simulation, stochastic modeling

Procedia PDF Downloads 149
10370 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures

Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad

Abstract:

This paper covers application of an elitist selfadaptive
step-size search (ESASS) to optimum design of steel
skeletal structures. In the ESASS two approaches are considered for
improving the convergence accuracy as well as the computational
efficiency of the original technique namely the so called selfadaptive
step-size search (SASS). Firstly, an additional randomness
is incorporated into the sampling step of the technique to preserve
exploration capability of the algorithm during the optimization.
Moreover, an adaptive sampling scheme is introduced to improve the
quality of final solutions. Secondly, computational efficiency of the
technique is accelerated via avoiding unnecessary analyses during the
optimization process using an upper bound strategy. The numerical
results demonstrate the usefulness of the ESASS in the sizing
optimization problems of steel truss and frame structures.

Keywords: structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames

Procedia PDF Downloads 377
10369 Automated Buffer Box Assembly Cell Concept for the Canadian Used Fuel Packing Plant

Authors: Dimitrie Marinceu, Alan Murchison

Abstract:

The Canadian Used Fuel Container (UFC) is a mid-size hemispherical headed copper coated steel container measuring 2.5 meters in length and 0.5 meters in diameter containing 48 used fuel bundles. The contained used fuel produces significant gamma radiation requiring automated assembly processes to complete the assembly. The design throughput of 2,500 UFCs per year places constraints on equipment and hot cell design for repeatability, speed of processing, robustness and recovery from upset conditions. After UFC assembly, the UFC is inserted into a Buffer Box (BB). The BB is made from adequately pre-shaped blocks (lower and upper block) and Highly Compacted Bentonite (HCB) material. The blocks are practically ‘sandwiching’ the UFC between them after assembly. This paper identifies one possible approach for the BB automatic assembly cell and processes. Automation of the BB assembly will have a significant positive impact on nuclear safety, quality, productivity, and reliability.

Keywords: used fuel packing plant, automatic assembly cell, used fuel container, buffer box, deep geological repository

Procedia PDF Downloads 277
10368 Design Ultra Fast Gate Drive Board for Silicon Carbide MOSFET Applications

Authors: Syakirin O. Yong, Nasrudin A. Rahim, Bilal M. Eid, Buray Tankut

Abstract:

The aim of this paper is to develop an ultra-fast gate driver for Silicon Carbide (SiC) based switching device applications such as AC/DC DC/AC converters. Wide bandgap semiconductors such as SiC switches are growing rapidly nowadays due to their numerous capabilities such as faster switching, higher power density and higher voltage level. Wide band-gap switches can work properly on high frequencies such 50-250 kHz which is very useful for many power electronic applications such as solar inverters. Increasing the frequency minimizes the output filter size and system complexity however, this causes huge spike between MOSFET’s drain and source leg which leads to the failure of MOSFET if the voltage rating is exceeded. This paper investigates and concludes the optimum design for a gate drive board for SiC MOSFET switches without causing spikes and noises.

Keywords: PV system, lithium-ion, charger, constant current, constant voltage, renewable energy

Procedia PDF Downloads 157
10367 Modernism’s Influence on Architect-Client Relationship: Comparative Case Studies of Schroder and Farnsworth Houses

Authors: Omneya Messallam, Sara S. Fouad

Abstract:

The Modernist Movement initially flourished in France, Holland, Germany and the Soviet Union. Many architects and designers were inspired and followed its principles. Two of its most important architects (Gerrit Rietveld and Ludwig Mies van de Rohe) were introduced in this paper. Each did not follow the other’s principles and had their own particular rules; however, they shared the same features of the Modernist International Style, such as Anti-historicism, Abstraction, Technology, Function and Internationalism/ Universality. Key Modernist principles translated into high expectations, which sometimes did not meet the inhabitants’ aspirations of living comfortably; consequently, leading to a conflict and misunderstanding between the designer and their clients’ needs. Therefore, historical case studies (the Schroder and the Farnsworth houses) involving two Modernist pioneer architects have been chosen. This paper is an attempt to explore some of the influential factors affecting buildings design such as: needs, gender, and question concerning commonalities between both designers and their clients. The three aspects and two designers explored here have been chosen because they have been influenced the researchers to understand the impact of those factors on the design process, building’s performance, and the dweller’s satisfaction. This is a descriptive/ analytical research based on two historical comparative case studies that involve several steps such as: key evaluation questions (KEQs), observations, document analysis, etc. The methodology is based on data collation and finding validations. The research aims to state a manifest to regulate the relation between architects and their clients to reach the optimum building performance and functional interior design that suits their clients’ needs, reflects the architects’ character, and the school they belong to. At the end, through the investigation in this paper, the different needs between both the designers and the clients have been seen not only in the building itself but also it could convert the inhabitant’s life in various ways. Moreover, a successful relationship between the architect and their clients could play a significant role in the success of projects. In contrast, not every good design or celebrated building could end up with a successful relationship between the designer and their client or full-fill the inhabitant’s aspirations.

Keywords: architect’s character, building’s performance, commonalities, client’s character, gender, modernist movement, needs

Procedia PDF Downloads 151
10366 A Full Factorial Analysis of Microhardness Variation in Bead Welds Deposited by the Process Cold Wire Gas Metal Arc Welding (CW-GMAW)

Authors: R. A. Ribeiro, P. D. Angelo Assunção, E. M. Braga

Abstract:

The microhardness in weld beads is a function of the microstructure obtained in the welding process, and this by its time is dependent of the input variables established at the outset of the process. In this study the influence of angle between the plate and the cold wire, the position in which the cold wire is introduced and the rate in which this introduction is made are assessed as input parameters in CW-GMAW process. This paper looks to show that ordinary changes in the frame of CW-GMAW can improve microhardness, which is expected to vary as the input parameters change. To properly correlate the changes in the input parameters to consequent changes in microhardness of the weld bead, a full factorial design was employed. In fact, changes in the operational parameters improved the overall microhardness of the weld bead, which in turns can be an indication of improvement in the resistance to abrasive wear, constituting a cheap way to augment the abrasion wear resistance of welds used for cladding.

Keywords: abrasion, CW-GMAW, full factorial design, microhardness

Procedia PDF Downloads 552
10365 Application of Computational Chemistry for Searching Anticancer Derivatives of 2-Phenazinamines as Bcr-Abl Tyrosine Kinase Inhibitors

Authors: Gajanan M. Sonwane

Abstract:

The computational studies on 2-phenazinamines with their protein targets have been carried out to design compounds with potential anticancer activity. This strategy of designing compounds possessing selectivity over specific tyrosine kinase has been achieved through G-QSAR and molecular docking studies. The objective of this research has been to design newer 2-phenazinamine derivatives as Bcr-Abl tyrosine kinase inhibitors by G-QSAR, molecular docking studies followed by wet-lab studies along with evaluation of their anticancer potential. Computational chemistry was done by using VLife MDS 4.3 and Autodock 4.2 followed by wet-lab experiments for synthesizing 2-phenazinamine derivatives. The chemical structures of ligands in 2D were drawn by employing Chemdraw 2D Ultra 8.0 and were converted into 3D. These were optimized by using a semi-empirical method called MOPAC. The protein structure was retrieved from RCSC protein data bank as a PDB file. The binding interactions of protein and ligands were done by using PYMOL. The molecular properties of the designed compounds were predicted in silico by using Osiris property explorer. The parent compound 2-phenazinamine was synthesized by reduction of 2, 4-dinitro-N-phenyl-benzenamine in the presence of tin chloride followed by cyclization in the presence of nitrobenzene and magnesium sulfate. The derivatization at the amino function of 2-phenazinamine was performed by treating parent compound with various aldehydes in the presence of dicyclohexylcarbodiimide (DCC) and urea to afford 2-(2-chlorophenyl)-3-(phenazine-2-yl) thiazolidine-4-one. Synthesized 39 novel derivatives of 2-phenazinamine and performed antioxidant activity, anti antiproliferative on the bulb of onion and anticancer activity on cell line showing significant competition with marked blockbuster drug imatinib.

Keywords: computer-aided drug design, tyrosin kinases, anticancer, docking

Procedia PDF Downloads 141
10364 Modeling, Topology Optimization and Experimental Validation of Glass-Transition-Based 4D-Printed Polymeric Structures

Authors: Sara A. Pakvis, Giulia Scalet, Stefania Marconi, Ferdinando Auricchio, Matthijs Langelaar

Abstract:

In recent developments in the field of multi-material additive manufacturing, differences in material properties are exploited to create printed shape-memory structures, which are referred to as 4D-printed structures. New printing techniques allow for the deliberate introduction of prestresses in the specimen during manufacturing, and, in combination with the right design, this enables new functionalities. This research focuses on bi-polymer 4D-printed structures, where the transformation process is based on a heat-induced glass transition in one material lowering its Young’s modulus, combined with an initial prestress in the other material. Upon the decrease in stiffness, the prestress is released, which results in the realization of an essentially pre-programmed deformation. As the design of such functional multi-material structures is crucial but far from trivial, a systematic methodology to find the design of 4D-printed structures is developed, where a finite element model is combined with a density-based topology optimization method to describe the material layout. This modeling approach is verified by a convergence analysis and validated by comparing its numerical results to analytical and published data. Specific aspects that are addressed include the interplay between the definition of the prestress and the material interpolation function used in the density-based topology description, the inclusion of a temperature-dependent stiffness relationship to simulate the glass transition effect, and the importance of the consideration of geometric nonlinearity in the finite element modeling. The efficacy of topology optimization to design 4D-printed structures is explored by applying the methodology to a variety of design problems, both in 2D and 3D settings. Bi-layer designs composed of thermoplastic polymers are printed by means of the fused deposition modeling (FDM) technology. Acrylonitrile butadiene styrene (ABS) polymer undergoes the glass transition transformation, while polyurethane (TPU) polymer is prestressed by means of the 3D-printing process itself. Tests inducing shape transformation in the printed samples through heating are performed to calibrate the prestress and validate the modeling approach by comparing the numerical results to the experimental findings. Using the experimentally obtained prestress values, more complex designs have been generated through topology optimization, and samples have been printed and tested to evaluate their performance. This study demonstrates that by combining topology optimization and 4D-printing concepts, stimuli-responsive structures with specific properties can be designed and realized.

Keywords: 4D-printing, glass transition, shape memory polymer, topology optimization

Procedia PDF Downloads 212
10363 Coupled Field Formulation – A Unified Method for Formulating Structural Mechanics Problems

Authors: Ramprasad Srinivasan

Abstract:

Engineers create inventions and put their ideas in concrete terms to design new products. Design drivers must be established, which requires, among other things, a complete understanding of the product design, load paths, etc. For Aerospace Vehicles, weight/strength ratio, strength, stiffness and stability are the important design drivers. A complex built-up structure is made up of an assemblage of primitive structural forms of arbitrary shape, which include 1D structures like beams and frames, 2D structures like membranes, plate and shell structures, and 3D solid structures. Justification through simulation involves a check for all the quantities of interest, namely stresses, deformation, frequencies, and buckling loads and is normally achieved through the finite element (FE) method. Over the past few decades, Fiber-reinforced composites are fast replacing the traditional metallic structures in the weight-sensitive aerospace and aircraft industries due to their high specific strength, high specific stiffness, anisotropic properties, design freedom for tailoring etc. Composite panel constructions are used in aircraft to design primary structure components like wings, empennage, ailerons, etc., while thin-walled composite beams (TWCB) are used to model slender structures like stiffened panels, helicopter, and wind turbine rotor blades, etc. The TWCB demonstrates many non-classical effects like torsional and constrained warping, transverse shear, coupling effects, heterogeneity, etc., which makes the analysis of composite structures far more complex. Conventional FE formulations to model 1D structures suffer from many limitations like shear locking, particularly in slender beams, lower convergence rates due to material coupling in composites, inability to satisfy, equilibrium in the domain and natural boundary conditions (NBC) etc. For 2D structures, the limitations of conventional displacement-based FE formulations include the inability to satisfy NBC explicitly and many pathological problems such as shear and membrane locking, spurious modes, stress oscillations, lower convergence due to mesh distortion etc. This mandates frequent re-meshing to even achieve an acceptable mesh (satisfy stringent quality metrics) for analysis leading to significant cycle time. Besides, currently, there is a need for separate formulations (u/p) to model incompressible materials, and a single unified formulation is missing in the literature. Hence coupled field formulation (CFF) is a unified formulation proposed by the author for the solution of complex 1D and 2D structures addressing the gaps in the literature mentioned above. The salient features of CFF and its many advantages over other conventional methods shall be presented in this paper.

Keywords: coupled field formulation, kinematic and material coupling, natural boundary condition, locking free formulation

Procedia PDF Downloads 67
10362 An International Curriculum Development for Languages and Technology

Authors: Miguel Nino

Abstract:

When considering the challenges of a changing and demanding globalizing world, it is important to reflect on how university students will be prepared for the realities of internationalization, marketization and intercultural conversation. The present study is an interdisciplinary program designed to respond to the needs of the global community. The proposal bridges the humanities and science through three different fields: Languages, graphic design and computer science, specifically, fundamentals of programming such as python, java script and software animation. Therefore, the goal of the four year program is twofold: First, enable students for intercultural communication between English and other languages such as Spanish, Mandarin, French or German. Second, students will acquire knowledge in practical software and relevant employable skills to collaborate in assisted computer projects that most probable will require essential programing background in interpreted or compiled languages. In order to become inclusive and constructivist, the cognitive linguistics approach is suggested for the three different fields, particularly for languages that rely on the traditional method of repetition. This methodology will help students develop their creativity and encourage them to become independent problem solving individuals, as languages enhance their common ground of interaction for culture and technology. Participants in this course of study will be evaluated in their second language acquisition at the Intermediate-High level. For graphic design and computer science students will apply their creative digital skills, as well as their critical thinking skills learned from the cognitive linguistics approach, to collaborate on a group project design to find solutions for media web design problems or marketing experimentation for a company or the community. It is understood that it will be necessary to apply programming knowledge and skills to deliver the final product. In conclusion, the program equips students with linguistics knowledge and skills to be competent in intercultural communication, where English, the lingua franca, remains the medium for marketing and product delivery. In addition to their employability, students can expand their knowledge and skills in digital humanities, computational linguistics, or increase their portfolio in advertising and marketing. These students will be the global human capital for the competitive globalizing community.

Keywords: curriculum, international, languages, technology

Procedia PDF Downloads 444
10361 Diagnostics of Existing Steel Structures of Winter Sport Halls

Authors: Marcela Karmazínová, Jindrich Melcher, Lubomír Vítek, Petr Cikrle

Abstract:

The paper deals with the diagnostics of steel roof structure of the winter sports stadiums built in 1970 year. The necessity of the diagnostics has been given by the requirement to the evaluation design of this structure, which has been caused by the new situation in the field of the loadings given by the validity of the European Standards in the Czech Republic from 2010 year. Due to these changes in the normative rules, in practice, existing structures are gradually subjected to the evaluation design and depending on its results to the strengthening or reconstruction, respectively. The steel roof is composed of plane truss main girders, purlins and bracings and the roof structure is supported by two arch main girders with the span of L=84 m. The in situ diagnostics of the roof structure was oriented to the following parts: (i) determination and evaluation of the actual material properties of used steel and (ii) verification of the actual dimensions of the structural members. For the solution, the non-destructive methods have been used for in situ measurement. For the indicative determination of steel strengths the modified method based on the determination of Rockwell’s hardness has been used. For the verification of the member’s dimensions (thickness of hollow sections) the ultrasound method has been used. This paper presents the results obtained using these testing methods and their evaluation, from the viewpoint of the usage for the subsequent static assessment and design evaluation of the existing structure. For the comparison, the examples of the similar evaluations realized for steel structures of the stadiums in Olomouc and Jihlava cities are briefly illustrated, too.

Keywords: actual dimensions, destructive methods, diagnostics, existing steel structure, indirect non-destructive methods, Rockwel’s hardness, sport hall, steel strength, ultrasound method.

Procedia PDF Downloads 343
10360 Clean Sky 2 Project LiBAT: Light Battery Pack for High Power Applications in Aviation – Simulation Methods in Early Stage Design

Authors: Jan Dahlhaus, Alejandro Cardenas Miranda, Frederik Scholer, Maximilian Leonhardt, Matthias Moullion, Frank Beutenmuller, Julia Eckhardt, Josef Wasner, Frank Nittel, Sebastian Stoll, Devin Atukalp, Daniel Folgmann, Tobias Mayer, Obrad Dordevic, Paul Riley, Jean-Marc Le Peuvedic

Abstract:

Electrical and hybrid aerospace technologies pose very challenging demands on the battery pack – especially with respect to weight and power. In the Clean Sky 2 research project LiBAT (funded by the EU), the consortium is currently building an ambitious prototype with state-of-the art cells that shows the potential of an intelligent pack design with a high level of integration, especially with respect to thermal management and power electronics. For the latter, innovative multi-level-inverter technology is used to realize the required power converting functions with reduced equipment. In this talk the key approaches and methods of the LiBat project will be presented and central results shown. Special focus will be set on the simulative methods used to support the early design and development stages from an overall system perspective. The applied methods can efficiently handle multiple domains and deal with different time and length scales, thus allowing the analysis and optimization of overall- or sub-system behavior. It will be shown how these simulations provide valuable information and insights for the efficient evaluation of concepts. As a result, the construction and iteration of hardware prototypes has been reduced and development cycles shortened.

Keywords: electric aircraft, battery, Li-ion, multi-level-inverter, Novec

Procedia PDF Downloads 170