Search results for: solid basal cell carcinoma
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6019

Search results for: solid basal cell carcinoma

2359 Optimal Design of Propellant Grain Shape Based on Structural Strength Analysis

Authors: Chen Xiong, Tong Xin, Li Hao, Xu Jin-Sheng

Abstract:

Experiment and simulation researches on the structural integrity of propellant grain in solid rocket motor (SRM) with high volumetric fraction were conducted. First, by using SRM parametric modeling functions with secondary development tool Python of ABAQUS, the three dimensional parameterized modeling programs of star shaped grain, wheel shaped grain and wing cylindrical grain were accomplished. Then, the mechanical properties under different loads for star shaped grain were obtained with the application of automatically established finite element model in ABAQUS. Next, several optimization algorithms are introduced to optimize the star shaped grain, wheel shaped grain and wing cylindrical grain. After meeting the demands of burning surface changes and volumetric fraction, the optimum three dimensional shapes of grain were obtained. Finally, by means of parametric modeling functions, pressure data of SRM’s cold pressurization test was directly applied to simulation of grain in terms of mechanical performance. The results verify the reliability and practical of parameterized modeling program of SRM.

Keywords: cold pressurization test, ğarametric modeling, structural integrity, propellant grain, SRM

Procedia PDF Downloads 344
2358 Hard Carbon Derived From Dextrose as High-Performance Anode Material for Sodium-Ion Batteries

Authors: Rupan Das Chakraborty, Surendra K. Martha

Abstract:

Hard carbons (HCs) are extensively used as anode materials for sodium-ion batteries due to their availability, low cost, and ease of synthesis. It possesses the ability to store Na ion between stacked sp2 carbon layers and micropores. In this work, hard carbons are synthesized from different concentrations (0.5M to 5M) of dextrose solutions by hydrothermal synthesis followed by high-temperature calcination at 1100 ⁰C in an inert atmosphere. Dextrose has been chosen as a precursor material as it is a eco-friendly and renewable source. Among all hard carbon derived from different concentrations of dextrose solutions, hard carbon derived from 3M dextrose solution delivers superior electrochemical performance compared to other hard carbons. Hard carbon derived from 3M dextrose solution (Dextrose derived Hard Carbon-3M) provides an initial reversible capacity of 257 mAh g-1 with a capacity retention of 83 % at the end of 100 cycles at 30 mA g-1). The carbons obtained from different dextrose concentration show very similar Cyclic Voltammetry and chargedischarging behavior at a scan rate of 0.05 mV s-1 the Cyclic Voltammetry curve indicate that solvent reduction and the solid electrolyte interface (SEI) formation start at E < 1.2 V (vs Na/Na+). Among all 3M dextrose derived electrode indicate as a promising anode material for Sodium-ion batteries (SIBs).

Keywords: dextrose derived hard carbon, anode, sodium-ion battery, electrochemical performance

Procedia PDF Downloads 95
2357 Impact of Electric Field on the Optical Properties of Hydrophilic Quantum Dots

Authors: Valentina V. Goftman, Vladislav A. Pankratov, Alexey V. Markin, Tangi Aubert, Zeger Hens, Sarah De Saeger, Irina Yu. Goryacheva

Abstract:

The most important requirements for biochemical applicability of quantum dots (QDs) are: 1) the surface cap should render intact or improved optical properties; 2) mono-dispersion and good stability in aqueous phase in a wide range of pH and ionic strength values; 3) presence of functional groups, available for bioconjugation; 4) minimal impact from the environment on the QDs’ properties and, vice versa, minimal influence of the QDs’ components on the environment; and 5) stability against chemical/biochemical/physical influence. The latter is especially important for in vitro and in vivo applications. For example, some physical intracellular delivery strategies (e.g., electroporation) imply a rapid high-voltage electric field impulse in order to temporarily generate hydrophilic pores in the cell plasma membrane, necessary for the passive transportation of QDs into the cell. In this regard, it is interesting to investigate how different capping layers, which can provide high stability and sufficient fluorescent properties of QDs in a water solution, behave under these abnormal conditions. In this contribution, hydrophobic core-shell CdSe/CdS/CdZnS/ZnS QDs (λem=600 nm), produced by means of the Successive Ion Layer Adsorption and Reaction (SILAR) technique, were transferred to a water solution using two of the most commonly used methods: (i) encapsulation in an amphiphilic brush polymer based on poly(maleic anhydride-alt-1-octadecene) (PMAO) modified with polyethylene glycol (PEG) chains and (ii) silica covering. Polymer encapsulation preserves the initial ligands on the QDs’ surface owing to the hydrophobic attraction between the hydrophobic groups of the amphiphilic molecules and the surface hydrophobic groups of the QDs. This covering process allows maintaining the initial fluorescent properties, but it leads to a considerable increase of the QDs’ size. However, covering with a silica shell, by means of the reverse microemulsion method, allows maintaining both size and fluorescent properties of the initial QDs. The obtained water solutions of polymer covered and silica-coated QDs in three different concentrations were exposed to a low-voltage electric field for a short time and the fluorescent properties were investigated. It is shown that the PMAO-PEG polymer acquires some additional charges in the presence of the electric field, which causes repulsion between the polymer and the QDs’ surface. This process destroys the homogeneity of the whole amphiphilic shell and it dramatically decreases the fluorescent properties (dropping to 10% from its initial value) because of the direct contact of the QDs with the strongly oxidative environment (water). In contrast, a silica shell possesses dielectric properties which allow retaining 90% of its initial fluorescence intensity, even after a longer electric impact. Thus, silica shells are clearly a preferable covering for bio-application of QDs, because – besides the high uniform morphology, controlled size and biocompatibility – it allows protecting QDs from oxidation, even under the influence of an electric field.

Keywords: electric field, polymer coating, quantum dots, silica covering, stability

Procedia PDF Downloads 451
2356 Exploring Structure of Human Chromosomes Using Fluorescence Lifetime Imaging

Authors: A. Bhartiya, S. Botchway, M. Yusuf, I. Robinson

Abstract:

Chromatin condensation is maintained by DNA-based proteins and some divalent cations (Mg²⁺, Ca²⁺, etc.). Condensation process during cell division maintains structural and functional organizations of chromosomes by transferring genetic information correctly to daughter cells. Fluorescence Lifetime Imaging (FLIM) technique measures the fluorescence decay of fixed human chromosomes by calculating the lifetime of fluorophores at a pixel x of the arrival of each photon as a function of time delay t, following excitation with a laser pulse. Fixed metaphase human chromosomes were labelled with DNA-binding dye, DAPI and later DAPI fluorescence lifetime measured using multiphoton microscopy. 5 out of 23 pairs of human chromosomes shown shorter lifetime at the centromere region, differentiating proportion of compaction along the length of chromosomes. Different lifetime was observed in a condensed and de-condensed chromosome. It clearly indicates the involvement of divalent cations in the process of condensation.

Keywords: divalent cations, FLIM (Fluorescence Lifetime Imaging), human chromosomes, multiphoton microscopy

Procedia PDF Downloads 265
2355 Analysis of Mechanotransduction-Induced Microalgae under Direct Membrane Distortion

Authors: Myung Kwon Cho, Seul Ki Min, Gwang Heum Yoon, Jung Hyun Joo, Sang Jun Sim, Hwa Sung Shin

Abstract:

Mechanotransduction is a mechanism that external mechanical stimulation is converted to biochemical activity in the cell. When applying this mechanism to the unicellular green algae Chlamydomonas reinhardtii, the dramatic result that the accumulation of intracellular lipid was up to 60% of dry weight basis occurred. Furthermore, various variations in cellular physiology occurred, but there is a lack of the development of the system and related research for applying that technology to control the mechanical stress and facilitate molecular analyses. In this study, applying a mechanical stress to microalgae, the microfluidic device system that finely induced direct membrane distortion of microalgae. Cellular membrane distortion led to deflagellation, calcium influx and lipid accumulation in microalgae. In conclusion, cytological studies such as mechanotransduction can be actualized by using this system and membrane distortion is a promising inducer for biodiesel production.

Keywords: mechanotransduction, microalgae, membrane distortion, biodiesel

Procedia PDF Downloads 311
2354 Determination of Thermophysical Properties of Water Based Magnetic Nanofluids

Authors: Eyüphan Manay, Bayram Sahin, Emre Mandev, Ibrahim Ates, Tuba Yetim

Abstract:

In this study, it was aimed to determine the thermophysical properties of two different magnetic nanofluids (NiFe2O4-water and CoFe2O4-water). Magnetic nanoparticles were dispersed into the pure water at different volume fractions from 0 vol.% to 4 vol.%. The measurements were performed in the temperature range of 15 oC-55 oC. In order to get better idea on the temperature dependent thermophysical properties of magnetic nanofluids (MNFs), viscosity and thermal conductivity measurements were made. SEM images of both NiFe2O4 and CoFe2O4 nanoparticles were used in order to confirm the average dimensions. The measurements showed that the thermal conductivity of MNFs increased with an increase in the volume fraction as well as viscosity. Increase in the temperature of both MNFs resulted in an increase in the thermal conductivity and a decrease in the viscosity. Based on the measured data, the correlations for both the viscosity and the thermal conductivity were presented with respect to solid volume ratio and temperature. Effective thermal conductivity of the prepared MNFs was also calculated. The results indicated that water based NiFe2O4 nanofluid had higher thermal conductivity than that of the CoFe2O4. Once the viscosity values of both MNFs were compared, almost no difference was observed.

Keywords: magnetic nanofluids, thermal conductivity, viscosity, nife2o4-water, cofe2o4-water

Procedia PDF Downloads 244
2353 Tribological Behavior of Warm Rolled Spray Formed Al-6Si-1Mg-1Graphite Composite

Authors: Surendra Kumar Chourasiya, Sandeep Kumar, Devendra Singh

Abstract:

In the present investigation tribological behavior of Al-6Si-1Mg-1Graphite composite has been explained. The composite was developed through the unique spray forming route in the spray forming chamber by using N₂ gas at 7kg/cm² and the flight distance was 400 mm. Spray formed composite having a certain amount of porosity which was reduced by the deformations. The composite was subjected to the warm rolling (WR) at 250ºC up to 40% reduction. Spray forming composite shows the considerable microstructure refinement, equiaxed grains, distribution of silicon and graphite particles in the primary matrix of the composite. Graphite (Gr) was incorporated externally during the process that works as a solid lubricant. Porosity decreased after reduction and hardness increases. Pin on disc test has been performed to analyze the wear behavior which is the function of sliding distance for all percent reduction of the composite. 30% WR composite shows the better result of wear rate and coefficient of friction. The improved wear properties of the composite containing Gr are discussed in light of the microstructural features of spray formed the composite and the nature of the debris particles. Scanning electron microscope and optical microscope analysis of the present material supported the prediction of aforementioned changes.

Keywords: Al-6Si-1Mg-1Graphite, spray forming, warm rolling, wear

Procedia PDF Downloads 547
2352 Effects of Oxidized LDL in M2 Macrophages: Implications in Atherosclerosis

Authors: Fernanda Gonçalves, Karla Alcântara, Vanessa Moura, Patrícia Nolasco, Jorge Kalil, Maristela Hernandez

Abstract:

Introduction: Atherosclerosis is a chronic disease where two striking features are observed: retention of lipids and inflammation. Understanding the interaction between immune cells and lipoproteins involved in atherogenesis are urgent challenges, since cardiovascular diseases are the leading cause of death worldwide. Macrophages are critical to the development of atherosclerotic plaques and in the perpetuation of inflammation in these lesions. These cells are also directly involved in unstable plaque rupture. Recently different populations of macrophages are being identified in atherosclerotic lesions. Although the presence of M2 macrophages (macrophages activated by the alternative pathway, eg. The IL-4) has been identified, the function of these cells in atherosclerosis is not yet defined. M2 macrophages have a high endocytic capacity, they promote remodeling of tissues and to have anti-inflammatory activity. However, in atherosclerosis, especially unstable plaques, severe inflammatory reaction, accumulation of cellular debris and intense degradation of the tissue is observed. Thus, it is possible that the M2 macrophages have altered function (phenotype) in atherosclerosis. Objective: Our aim is to evaluate if the presence of oxidized LDL alters the phenotype and function of M2 macrophages in vitro. Methods: For this, we will evaluate whether the addition of lipoprotein in M2 macrophages differentiated in vitro with IL -4 induces 1) a reduction in the secretion of anti-inflammatory cytokines (CBA and ELISA), 2) secretion of inflammatory cytokines (CBA and ELISA), 3) expression of cell activation markers (Flow cytometry), 4) alteration in gene expression of molecules adhesion and extracellular matrix (Real-Time PCR) and 5) Matrix degradation (confocal microscopy). Results: In oxLDL stimulated M2 macrophages cultures we did not find any differences in the expression of the cell surface markers tested, including: HLA-DR, CD80, CD86, CD206, CD163 and CD36. Also, cultures stimulated with oxLDL had similar phagocytic capacity when compared to unstimulated cells. However, in the supernatant of these cultures an increase in the secretion of the pro-inflammatory cytokine IL-8 was detected. No significant changes where observed in IL-6, IL-10, IL-12 and IL-1b levels. The culture supernatant also induced massive extracellular matrix (produced by mouse embryo fibroblast) filaments degradation. When evaluating the expression of 84 extracellular matrix and adhesion molecules genes, we observed that the stimulation of oxLDL in M2 macrophages decreased 47% of the genes and increased the expression of only 3% of the genes. In particular we noted that oxLDL inhibit the expression of 60% of the genes constituents of extracellular matrix and collagen expressed by these cells, including fibronectin1 and collagen VI. We also observed a decrease in the expression of matrix protease inhibitors, such as TIMP 2. On the opposite, the matricellular protein thrombospondin had a 12 fold increase in gene expression. In the presence of native LDL 90% of the genes had no altered expression. Conclusion: M2 macrophages stimulated with oxLDL secrete the pro-inflammatory cytokine IL-8, have an altered extracellular matrix constituents gene expression, and promote the degradation of extracellular matrix. M2 macrophages may contribute to the perpetuation of inflammation in atherosclerosis and to plaque rupture.

Keywords: atherosclerosis, LDL, macrophages, m2

Procedia PDF Downloads 322
2351 Local Activities of the Membranes Associated with Glycosaminoglycan-Chitosan Complexes in Bone Cells

Authors: Chih-Chang Yeh, Min-Fang Yang, Hsin-I Chang

Abstract:

Chitosan is a cationic polysaccharide derived from the partial deacetylation of chitin. Hyaluronic acid (HA), chondroitin sulfate (CS) and heparin (HP) are anionic glycosaminoglycans (GCGs) which can regulate osteogenic activity. In this study, chitosan membranes were prepared by glutaraldehyde crosslinking reaction and then complexed with three different types of GCGs. 7F2 osteoblasts-like cells and macrophages Raw264.7 were used as models to study the influence of chitosan membranes on osteometabolism. Although chitosan membranes are highly hydrophilic, the membranes associated with GCG-chitosan complexes showed about 60-70% cell attachment. Furthermore, the membranes associated with HP-chitosan complexes could increase ALP activity in comparison with chitosan films only. Three types of the membranes associated with GCG-chitosan complexes could significantly inhibit LPS induced-nitric oxide expression. In addition, chitosan membranes associated with HP and HA can down-regulate tartrate-resistant acid phosphatase (TRAP) activity but not CS-chitosan complexes. Based on these results, we conclude that chitosan membranes associated with HP can increase ALP activity in osteoblasts and chitosan membranes associated with HP and HA reduce TRAP activity in osteoclasts.

Keywords: osteoblast, osteoclast, chitosan, glycosaminoglycan

Procedia PDF Downloads 510
2350 Iranian Refinery Vacuum Residue Upgrading Using Microwave Irradiation: Effects of Catalyst Type and Amount

Authors: Zarrin Nasri

Abstract:

Microwave irradiation is an innovative technology in the petroleum industry. This kind of energy has been considered to convert vacuum residue of oil refineries into useful products. The advantages of microwaves energy are short time, fast heating, high energy efficiency, and precise process control. In this paper, the effects of catalyst type and amount have been investigated on upgrading of vacuum residue using microwave irradiation. The vacuum residue used in this research is from Tehran oil refinery, Iran. Additives include different catalysts, active carbon as sensitizer, and sodium borohydride as a solid hydrogen donor. Various catalysts contain iron, nickel, molybdenum disulfide, iron oxide and copper. The amount of catalysts in two cases of presence and absence of sodium borohydride have been evaluated. The objective parameters include temperature, asphaltene, viscosity, and API. The specifications of vacuum residue are API, 8.79, viscosity, 16391 cSt (60°C), asphaltene, 13.3 wt %. The results show that there is a significant difference between the effects of catalysts. Among the used catalysts, Fe powder is the best catalyst for upgrading vacuum residue using microwave irradiation and resulted in asphaltene reduction, 31.3 %; viscosity reduction, 76.43 %; and 23.43 % in API increase.

Keywords: asphaltene, microwave, upgrading, vacuum residue, viscosity

Procedia PDF Downloads 238
2349 COVID-19 Genomic Analysis and Complete Evaluation

Authors: Narin Salehiyan, Ramin Ghasemi Shayan

Abstract:

In order to investigate coronavirus RNA replication, transcription, recombination, protein processing and transport, virion assembly, the identification of coronavirus-specific cell receptors, and polymerase processing, the manipulation of coronavirus clones and complementary DNAs (cDNAs) of defective-interfering (DI) RNAs is the subject of this chapter. The idea of the Covid genome is nonsegmented, single-abandoned, and positive-sense RNA. When compared to other RNA viruses, its size is significantly greater, ranging from 27 to 32 kb. The quality encoding the enormous surface glycoprotein depends on 4.4 kb, encoding a forcing trimeric, profoundly glycosylated protein. This takes off exactly 20 nm over the virion envelope, giving the infection the appearance-with a little creative mind of a crown or coronet. Covid research has added to the comprehension of numerous parts of atomic science as a general rule, like the component of RNA union, translational control, and protein transport and handling. It stays a fortune equipped for creating startling experiences.

Keywords: covid-19, corona, virus, genome, genetic

Procedia PDF Downloads 58
2348 The Epigenetic Background Depended Treatment Planning for Glioblastoma Multiforme

Authors: Rasime Kalkan, Emine Ikbal Atli, Ali Arslantaş, Muhsin Özdemir, Sevilhan Artan

Abstract:

Glioblastoma (WHO grade IV), is the malignant form of brain tumor, the genetic background of the GBM is highly variable. The tumor mass of a GBM is multilayered and every tumor layer shows distinct characteristics with a different cell population. The treatment planning of GBM should be focused on the tumor genetic characteristics. We screened primary glioblastoma multiforme (GBM) in a population-based study for MGMT and RARβ methylation and IDH1 mutation correlated them with clinical data and treatment. There was no correlation between MGMT-promoter methylation and overall survival. The overall survival time of the patients with methylated RARβ was statically (OS;p<0,05) significance between the patients who were treated with chemotherapy and radiotherapy. Here we showed the status of IDH1 gene associatied with younger age. We demonstrated that the together with MGMT gene the RARβ gene should be used as a potantial treatment decision marker for GBMs.

Keywords: RARβ, primary glioblastoma multiforme, methylation, MGMT

Procedia PDF Downloads 328
2347 Study of Behavior Tribological Cutting Tools Based on Coating

Authors: A. Achour L. Chekour, A. Mekroud

Abstract:

Tribology, the science of lubrication, friction and wear, plays an important role in science "crossroads" initiated by the recent developments in the industry. Its multidisciplinary nature reinforces its scientific interest. It covers all the sciences that deal with the contact between two solids loaded and relative motion. It is thus one of the many intersections more clearly established disciplines such as solid mechanics and the fluids, rheological, thermal, materials science and chemistry. As for his experimental approach, it is based on the physical and processing signals and images. The optimization of operating conditions by cutting tool must contribute significantly to the development and productivity of advanced automation of machining techniques because their implementation requires sufficient knowledge of how the process and in particular the evolution of tool wear. In addition, technological advances have developed the use of very hard materials, refractory difficult machinability, requiring highly resistant materials tools. In this study, we present the behavior wear a machining tool during the roughing operation according to the cutting parameters. The interpretation of the experimental results is based mainly on observations and analyzes of sharp edges e tool using the latest techniques: scanning electron microscopy (SEM) and optical rugosimetry laser beam.

Keywords: friction, wear, tool, cutting

Procedia PDF Downloads 320
2346 Improvement and Miniaturization RFID Patch Antenna by Inclusion the Complementary Metamaterials

Authors: Seif Naoui, Lassaad Latrach, Ali Gharsallah

Abstract:

This paper is specialized to highlight the method of miniaturization and improvement the patch antenna by using the complementary metamaterial. This method is presented by a simple technique is composed a structure of patch antenna integrated in its surface a cell of complementary split ring resonator. This resonator is placed at the middle of the radiating patch in parallel with the transmission line and with a variable angle of orientation. The objective is to find the ultimate angle where the best results are obtained on improving the characteristics of the considered antenna. This motif widespread at the traceability applications by wireless communication for RFID technology at the operation frequency 2.45 GHz. Our contribution is based on studies empirical often presented in this article. All simulation results were made by the CST Microwave Studio.

Keywords: complimentary split ring resonators, computer simulation technology microwave studio, metamaterials patch antennas, microstrip patch antenna, radio frequency identification

Procedia PDF Downloads 427
2345 Chemical Composition, Antioxidant and Antimicrobial Activities of the Essential Oils of Different Pinus Species from Kosovo

Authors: Fatbardhë Kurti, Giangiacomo Beretta, Behxhet Mustafa, Fabrizio Gelmini, Avni Hajdari

Abstract:

Chemical profile, antioxidant and antimicrobial activity of total and fractionated essential oils (EOs) (F1 – hexane, F2 – hexane/diethyl ether, F3 – diethyl ether) derived from five Pinus species (Pinus heldreichii, P. peuce, P. mugo, Pinus nigra, P. sylvestris), were investigated. The hydrodistilled EOs and their chromatographic fractions (direct solid phase extraction, SPE) were analysed by GC-MS and 112 compounds separated and identified. The main constituents were α-pinene, β-pinene, D-limonene, β-caryophyllene, germacrene D, bornyl acetate and 3-carene. The antioxidant activities of total EOs were lower than those of the corresponding fractions, with F2 the strongest in all cases. EOs and fractions showed different degrees of antibacterial efficacy against different microbial pathogens (moderately strong antimicrobial activity against C. albicans and C. krusei ,while low or no activity against E. faecalis and E. coli strains). The detected inhibition zones and MICs for the EOs and fractions were in the range of 14 -35 mm and 0.125 - 1% (v/v), respectively. The components responsible for the antioxidant and antimicrobial activity were oxygenated monoterpenes and sesquiterpenes recovered in the polar EO fractions. These activities seem to be regulated by reciprocal interactions among the different subclasses of phytochemical species present in the EOs.

Keywords: antagonism, antioxidant activity, antibacterial activity, essential oil, fractions, GC-MS, pinus

Procedia PDF Downloads 213
2344 Trace Element Compositions of Placer Gold Samples: Implication for Gold Exploration in Northern Cameroon

Authors: Yanick Blaise Ketchaya, Taofa Zhou

Abstract:

The type of primary source of gold deposit can be explored by using the study of trace element analysis of placer gold which is a valuable exploration tool. Au-bearing deposits are investigated through the placer gold, which is an important indicator mineral. The hydrothermal fluid interacting with diverse geological settings exerts an important function on the chemical composition of gold. Consequently, alluvial gold particles from the placer deposits within the Gamba district in northern Cameroon were examined by an electron probe microanalyzer (EPMA) to show discriminant chemical signatures. The gold grains from a different locality show the same trace element composition, which appears to be in a solid solution in Au. These trace element compositions, contained in gold grains, indicate a homogeneous source. The placer gold particles have significant chemical characteristics (low Ag content), consistent with a mesothermal source. The gold particle signatures in the Gamba district, with high Te and Bi contents, reflect the chemical characteristics of the felsic host rock superimposed on the chemical signature of the hydrothermal fluid.

Keywords: hypogene source, Northern Cameroon, placer gold, trace element

Procedia PDF Downloads 94
2343 Study Mercapto-Nanoscavenger as a Promising Analytical Tool

Authors: Mohammed M. Algaradah

Abstract:

A chelating mercapto- nanoscavenger has been developed exploiting the high surface area of monodisperse nano-sized mesoporous silica. The nanoscavenger acts as a solid phase trace metal extractant whilst suspended as a quasi-stable sol in aqueous samples. This mode of extraction requires no external agitation as the particles move naturally through the sample by Brownian motion, convection and slow sedimentation. Careful size selection enables the nanoscavenger to be easily recovered together with the extracted analyte by conventional filtration or centrifugation. The research describes the successful attachment of chelator mercapto to ca. 136 ± 15 nm high surface area (BET surface area = 1006 m2 g-1) mesoporous silica particles. The resulting material had a copper capacity of ca. 1.34 ± 0.10 mmol g-1 and was successfully applied to the collection of a trace element from water. Essentially complete recovery of Cu (II) has been achieved from freshwater samples giving typical preconcentration factors of 100 from 50 µg/l samples. Data obtained from a nanoscavenger-based extraction of copper from samples were not significantly different from those obtained by using a conventional colorimetric procedure employing complexation/solvent extraction.

Keywords: nano scavenger, mesoporous silica, trace metal, preconcentration

Procedia PDF Downloads 69
2342 Pharmaceutical Scale up for Solid Dosage Forms

Authors: A. Shashank Tiwari, S. P. Mahapatra

Abstract:

Scale-up is defined as the process of increasing batch size. Scale-up of a process viewed as a procedure for applying the same process to different output volumes. There is a subtle difference between these two definitions: batch size enlargement does not always translate into a size increase of the processing volume. In mixing applications, scale-up is indeed concerned with increasing the linear dimensions from the laboratory to the plant size. On the other hand, processes exist (e.g., tableting) where the term ‘scale-up’ simply means enlarging the output by increasing the speed. To complete the picture, one should point out special procedures where an increase of the scale is counterproductive and ‘scale-down’ is required to improve the quality of the product. In moving from Research and Development (R&D) to production scale, it is sometimes essential to have an intermediate batch scale. This is achieved at the so-called pilot scale, which is defined as the manufacturing of drug product by a procedure fully representative of and simulating that used for full manufacturing scale. This scale also makes it possible to produce enough products for clinical testing and to manufacture samples for marketing. However, inserting an intermediate step between R&D and production scales does not, in itself, guarantee a smooth transition. A well-defined process may generate a perfect product both in the laboratory and the pilot plant and then fail quality assurance tests in production.

Keywords: scale up, research, size, batch

Procedia PDF Downloads 395
2341 Thermomechanical Simulation of Equipment Subjected to an Oxygen Pressure and Heated Locally by the Ignition of Small Particles

Authors: Khaled Ayfi

Abstract:

In industrial oxygen systems at high temperature and high pressure, contamination by solid particles is one of the principal causes of ignition hazards. Indeed, gas can sweep away particles, generated by corrosion inside the pipes or during maintenance operations (welding residues, careless disassembly, etc.) and produce accumulations at places where the gas velocity decrease. Moreover, in such an environment rich in oxygen (oxidant), particles are highly reactive and can ignite system walls more actively and at higher temperatures. Oxidation based thermal effects are responsible for mechanical properties lost, leading to the destruction of the pressure equipment wall. To deal with this problem, a numerical analysis is done regarding a sample representative of a wall subjected to pressure and temperature. The validation and analysis are done comparing the numerical simulations results to experimental measurements. More precisely, in this work, we propose a numerical model that describes the thermomechanical behavior of thin metal disks under pressure and subjected to laser heating. This model takes into account the geometric and material nonlinearity and has been validated by the comparison of simulation results with experimental measurements.

Keywords: ignition, oxygen, numerical simulation, thermomechanical behavior

Procedia PDF Downloads 95
2340 Alumina Generated by Electrocoagulation as Adsorbent for the Elimination of the Iron from Drilling Water

Authors: Aimad Oulebsir, Toufik Chaabane, Venkataraman Sivasankar, André Darchen, Titus A. M. Msagati

Abstract:

Currently, the presence of pharmaceutical substances in the environment is an emerging pollution leading to the disruption of ecosystems. Indeed, water loaded with pharmaceutical residues is an issue that has raised the attention of researchers. The aim of this study was to monitor the effectiveness of the alumina electro-generated by the adsorption process the iron of well water for the production of drugs. The Fe2+ was removed from wastewater by adsorption in a batch cell. Performance results of iron removal by alumina electro-generated revealed that the efficiency of the carrier in the method of electro-generated adsorption. The overall Fe2+ of the synthetically solutions and simulated effluent removal efficiencies reached 75% and 65%, respectively. The application of models and isothermal adsorption kinetics complement the results obtained experimentally. Desorption of iron was investigated using a solution of 0.1M NaOH. Regeneration of the tests shows that the adsorbent maintains its capacity after five adsorption/desorption cycles.

Keywords: electrocoagulation, aluminum electrode, electrogenerated alumina, iron, adsorption/desorption

Procedia PDF Downloads 282
2339 Feasibility of Agro Waste-Derived Adsorbent for Colour Removal

Authors: U. P. L. Wijayarathne, P. W. Vidanage, H. K. D. Jayampath, K. W. P. M. Kothalawala

Abstract:

Feasibility of utilizing Empty Bunch (EB) fibre, a solid waste of palm oil extraction process, as an adsorbent is analysed in this study. Empty bunch fibre is generated after the extraction of retained oil in the sterilized and threshed empty fruit bunches. Besides the numerous characteristics of EB fibre, which enable its utilization as a fuel, a bio-composite material, or mulch, EB fibre also shows exceptional characteristics of a good adsorbent. Fixed bed adsorption method is used to study the adsorptivity of EB fibre using a continuous adsorption column with Methyl-blue (1.13ppm) as the feed. Adsorptivity is assumed to be solely dependent on the bed porosity keeping other parameters (feed flow rate, bed height, bed diameter, and operating temperature) constant. Bed porosity is changed by means of compact ratio and the variation of the feed concentration is analysed using a photometric method. Break through curves are plotted at different porosity levels and optimum bed porosity is identified for a given feed stream. Feasibility of using the EB fibre as an inexpensive and an abundant adsorbent in wastewater treatment facilities, where the effluent colour reduction is adamant, is also discussed.

Keywords: adsorption, fixed bed, break through time, methylene blue, oil palm fibre

Procedia PDF Downloads 265
2338 FTIR Characterization of EPS Ligands from Mercury Resistant Bacterial Isolate, Paenibacillus jamilae PKR1

Authors: Debajit Kalita, Macmillan Nongkhlaw, S. R. Joshi

Abstract:

Mercury (Hg) is a highly toxic heavy metal released both from naturally occurring volcanoes and anthropogenic activities like alkali and mining industries as well as biomedical wastes. Exposure to mercury is known to affect the nervous, gastrointestinal and renal systems. In the present study, a bacterial isolate identified using 16S rRNA marker as Paenibacillus jamilae PKR1 isolated from India’s largest sandstone-type uranium deposits, containing an average of 0.1% U3O8, was found to be resistance to Hg contamination under culture conditions. It showed strong hydrophobicity as revealed by SAT, MATH, PAT, SAA adherence assays. The Fourier Transform Infrared (FTIR) spectra showed the presence of hydroxyl, amino and carboxylic functional groups on the cell surface EPS which are known to contribute in the binding of metals. It is proposed that the characterized isolate tolerating up to 4.0mM of mercury provides scope for its application in bioremediation of mercury from contaminated sites.

Keywords: mercury, Domiasiat, uranium, paenibacillus jamilae, hydrophobicity, FTIR

Procedia PDF Downloads 395
2337 Acetylation of Peruvian Wood Species

Authors: A. Loayza

Abstract:

Wood acetilationhapens when woody cell wall is saturated with acetic anhydride, the free hydroxyl groups present on cellulosic structures are replaced. Thus, the capillary spaces are filled with acetyl groups, and this replacement avoids further reactions with water. But, there is no information about wood acetilation in peruvianamzonic Wood species (SchizolobiumExcelsumVoge and CalycophyllumSpruceanum). So, in this research, we test acetylation of this two peruvian species in order to assess its ability as a protection estrategy, like the artificially cultivated species common for this type of treatment. A know experimental methodology was applied, using a laboratory reactor, evaluating the time as a principal variable. In this research, we were able to evaluate weight gains. The acetylation was carriet out considering one immersion time of 3 and 6 hours on acetic anhydride, were could it be observed weight gains ranged between 14 and 20% and the improvement of mention properties such as: a) Dimensional stability and water absorption capacity improved as well as its compressive strength.

Keywords: acetylation, calycophyllum spruceanum benth. Hook. F., cedrelinga cateniformis, copaifera langsdorffii, dimensional stability, schizolobium parahybum

Procedia PDF Downloads 82
2336 Effect of Yttrium Doping on Properties of Bi2Sr1.9Ca0.1-xYxCu2O7+δ (Bi-2202) Cuprate Ceramics

Authors: Y. Boudjadja, A. Amira, A. Saoudel, A. Varilci, S. P. Altintas, C. Terzioglu

Abstract:

In this work, we report the effect of Y3+ doping on structural, mechanical and electrical properties of Bi-2202 phase. Samples of Bi2Sr1.9Ca0.1-xYxCu2O7+δ with x = 0, 0.025, 0.05, 0.075 and 0.1 are elaborated in air by conventional solid state reaction and characterized by X-Ray Diffraction (XRD), Scanning Electronic Microscopy (SEM) combined with EDS spectroscopy, density, Vickers micro-hardness and resistivity measurements. A good correlation between the variations of the bulk density and the Vickers micro-hardness with doping is obtained. The SEM photograph shows that the samples are composed of grains with a flat shape that characterizes the Bi-based cuprates. Quantitative EDS analysis confirms the reduction of Ca content and the increase of Y content when x is increased. The variation of resistivity with temperature shows that only samples with x = 0, 0.025 and 0.05 present an onset transition to the superconducting state. The higher onset transition temperature is obtained for x = 0.025 and is about 93.62 K. The transition is wide and is realized in two steps confirming then the presence of the low Tc Bi-2201 phase in the samples. For x = 0.075 and 0.1, a transition to a semiconducting state is seen at low temperatures. Some physical parameters are extracted from these curves and discussed.

Keywords: Bi-2202 phase, doping, structure, mechanical and electrical properties

Procedia PDF Downloads 309
2335 Microbiological Analysis, Cytotoxic and Genotoxic Effects from Material Captured in PM2.5 and PM10 Filters Used in the Aburrá Valley Air Quality Monitoring Network (Colombia)

Authors: Carmen E. Zapata, Juan Bautista, Olga Montoya, Claudia Moreno, Marisol Suarez, Alejandra Betancur, Duvan Nanclares, Natalia A. Cano

Abstract:

This study aims to evaluate the diversity of microorganisms in filters PM2.5 and PM10; and determine the genotoxic and cytotoxic activity of the complex mixture present in PM2.5 filters used in the Aburrá Valley Air Quality Monitoring Network (Colombia). The research results indicate that particulate matter PM2.5 of different monitoring stations are bacteria; however, this study of detection of bacteria and their phylogenetic relationship is not complete evidence to connect the microorganisms with pathogenic or degrading activities of compounds present in the air. Additionally, it was demonstrated the damage induced by the particulate material in the cell membrane, lysosomal and endosomal membrane and in the mitochondrial metabolism; this damage was independent of the PM2.5 concentrations in almost all the cases.

Keywords: cytotoxic, genotoxic, microbiological analysis, PM10, PM2.5

Procedia PDF Downloads 330
2334 Toxic Activity of Biopesticide Metarhizium anisopliae var acridium ‘Green Muscle’ on the Cuticle of the Desert Locust Schistocerca gegaria (Forskål, 1775)

Authors: F. Haddadj, F. Acheuk, S. Hamdi, S. Zenia, A. Smai, H. Saadi, B. Doumandji-Mitiche

Abstract:

Locust is causing significant losses in agricultural production in the countries concerned by the invasion. Up to the present control strategy has consisted only of the spreaders chemicals; they have proven harmful to the environment and taking a conscience prompted researchers and institutions to lean towards the biological control based mostly by using microorganism. It is in that sense is we've made our contribution by the use of a biopesticide which is entomopathogenic fungus Metarhizium anisopliae var acridium ‘Green Muscle’ on part of the cuticle the larval of fifth instar locust Schistocerca gregaria. Preliminary test on the study of the pathogenicity of the bio-control agent, was conducted in the laboratory on L5 S. gregaria, on which we inoculated treatment by direct spraying of the cuticle, 5 days after treatment individuals are sacrificed. Microscopic observation revealed alterations in the architecture of the cuticle which leads to disorganization of cell layers.

Keywords: biopesticide, cuticle, desert locust, effect

Procedia PDF Downloads 402
2333 Evaluation of Fluidized Bed Bioreactor Process for Mmabatho Waste Water Treatment Plant

Authors: Shohreh Azizi, Wag Nel

Abstract:

The rapid population growth in South Africa has increased the requirement of waste water treatment facilities. The aim of this study is to assess the potential use of Fluidized bed Bio Reactor for Mmabatho sewage treatment plant. The samples were collected from the Inlet and Outlet of reactor daily to analysis the pH, Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solid (TSS) as per standard method APHA 2005. The studies were undertaken on a continue laboratory scale, and analytical data was collected before and after treatment. The reduction of 87.22 % COD, 89.80 BOD % was achieved. Fluidized Bed Bio Reactor remove Bod/COD removal as well as nutrient removal. The efforts also made to study the impact of the biological system if the domestic wastewater gets contaminated with any industrial contamination and the result shows that the biological system can tolerate high Total dissolved solids up to 6000 mg/L as well as high heavy metal concentration up to 4 mg/L. The data obtained through the experimental research are demonstrated that the FBBR may be used (<3 h total Hydraulic Retention Time) for secondary treatment in Mmabatho wastewater treatment plant.

Keywords: fluidized bed bioreactor, wastewater treatment plant, biological system, high TDS, heavy metal

Procedia PDF Downloads 147
2332 Enhanced COVID-19 Pharmaceuticals and Microplastics Removal from Wastewater Using Hybrid Reactor System

Authors: Reda Dzingelevičienė, Vytautas Abromaitis, Nerijus Dzingelevičius, Kęstutis Baranauskis, Saulius Raugelė, Malgorzata Mlynska-Szultka, Sergej Suzdalev, Reza Pashaei, Sajjad Abbasi, Boguslaw Buszewski

Abstract:

A unique hybrid technology was developed for the removal of COVID-19 specific contaminants from wastewater. Reactor testing was performed using model water samples contaminated with COVID-19 pharmaceuticals and microplastics. Different hydraulic retention times, concentrations of pollutants and dissolved ozone were tested. Liquid Chromatography-Mass Spectrometry, solid phase extraction, surface area and porosity, analytical tools were used to monitor the treatment efficiency and remaining sorption capacity of the spent adsorbent. The combination of advanced oxidation and adsorption processes was found to be the most effective, with the highest 90-99% and 89-95% molnupiravir and microplastics contaminants removal efficiency from the model wastewater. The research has received funding from the European Regional Development Fund (project No 13.1.1-LMT-K-718-05-0014) under a grant agreement with the Research Council of Lithuania (LMTLT), and it was funded as part of the European Union’s measure in response to the COVID-19 pandemic.

Keywords: adsorption, hybrid reactor system, pharmaceuticals-microplastics, wastewater

Procedia PDF Downloads 67
2331 Land Use Change Modeling Using Cellular Automata, Case Study: Karawang City, West Java Province, Indonesia

Authors: Bagus Indrawan Hardi

Abstract:

Cellular Automata are widely used in land use modeling, it has been proven powerful to simulate land use change for small scale in many large cities in the world. In this paper, we try to implement CA for land use modeling in unique city in Indonesia, Karawang. Instead the complex numerical implementation, CA are simple, and it is accurate and also highly dependable on the on the rules (rule based). The most important to do in CA is how we form and calculate the neighborhood effect. The neighborhood effect represents the environment and relationship situation between the occupied cell and others. We adopted 196 cells of circular neighborhood with 8 cells of radius. For the results, CA works well in this study, we exhibit several analyzed and proceed of zoomed part in Karawang region. The rule set can handle the complexity in land use modeling. However, we cannot strictly believe of the result, many non-technical parameters, such as politics, natural disaster activities, etc. may change the results dramatically.

Keywords: cellular automata (CA), land use change, spatial dynamics, urban sprawl

Procedia PDF Downloads 229
2330 The Flotation Device Designed to Treat Phosphate Rock

Authors: Z. Q. Zhang, Y. Zhang, D. L. Li

Abstract:

To overcome the some shortcomings associated with traditional flotation machines and columns in collophanite flotation, a flotation device was designed and fabricated in the laboratory. A multi-impeller pump with same function as a mechanical cell was used instead of the injection sparger and circulation pump in column flotation unit. The influence of main operational parameters of the device like feed flow rate, air flow rate and impellers’ speed on collophanite flotation was analyzed. Experiment results indicate that the influence of the operational parameters were significant on flotation recovery and grade of phosphate concentrate. The best operating conditions of the device were: feed flow rate 0.62 L/min, air flow rate 6.67 L/min and impellers speed 900 rpm. At these conditions, a phosphate concentrate assaying about 30.5% P2O5 and 1% MgO with a P2O5 recovery of about 81% was obtained from a Yuan'an phosphate ore sample containing about 22.30% P2O5 and 3.2% MgO.

Keywords: collophanite flotation, flotation columns, flotation machines, multi-impeller pump

Procedia PDF Downloads 251